0

0
0

文字

分享

0
0
0

「再生能源市場機制」能成為解決氣候變遷問題的超級英雄嗎?

PanSci_96
・2018/06/29 ・3899字 ・閱讀時間約 8 分鐘 ・SR值 586 ・九年級

  • 文/陳妤寧

在我們進入正題,端詳複雜的再生能源市場之前,先來俯瞰一番國際政治對氣候變遷的處理態勢吧。2017 年 6 月 1 日,美國總統川普正式宣布美國退出《巴黎協定》。關心環保議題者人人咬牙切齒,不過其實打從 1997 年的《京都議定書》提出,布希與歐巴馬政府都未簽署京都議定書,而柯林頓政府雖有簽署議定書,但礙於國內壓力,仍未向美國國會提交。

2017 年美國總統川普宣布美國退出巴黎協定。他指出,巴黎協定並未為美國帶來實質效益。 圖/nature

《聯合國氣候變化綱要公約》的締約國大會(Conferences of the Parties,COP)自 1995 年起年年開會,最具代表性的共識從《京都議定書》一直到《巴黎協定》,已經十幾個年頭過去了。這些國際間的約定,縱然貌似具有劃時代的指標意義,卻又由於缺乏策略在實質推動減碳的運動中影響力有限。「碳交易」以及「再生能源憑證」的市場交易制度如何在這些歷史背景中被推上線?這些利用自利人性與市場機制的做法,真能拯救地球面臨的能源與氣候危機嗎?

從《京都議定書》到《巴黎協定》:執行壓力在哪裡?

圖/byrev @Pixabay

從歷史的脈絡來看,1997 年通過的《京都議定書》身為第一個具體推動減少溫室氣體排放的國際公約,具有相當的時代意義,也為日後的其他公約提供了基本框架,包括:共同減量(Joint Implementation,JI)、清潔發展機制(Clean Development Mechanism,CDM)及排放權交易(Emission Trading,ET)等規範。然而,《京都議定書》直到 2005 年才正式生效,其中訂下的減碳目標對締約國並無約束力,甚至美國從沒加入過。《京都議定書》對那些年的國際減碳運動到底提供了多少實質幫助,是非常需要打上問號的

正因為《京都議定書》需要後繼有人地提供更有約束力的具體規則,往後每年的大會都戮力希望制定出更有約束力的公約,但結果總是讓人失望。其中2009年的《哥本哈根協定》便是讓人搥心肝的知名失敗案例,屬於毫不具法律效力的一紙政治協議。2015年的《巴黎協定》雖然在許多環保人士的眼中仍是欲振乏力,不過此紙訂出了保持全球溫升低於 2°C甚至 1.5°C的「硬目標」、且獲得了與會 196 個國家的點頭共識,已屬極大成就。

巴黎協定》和《京都議定書》不同的是減排的機制和做法,各國的減排目標並非由大會由上而下規範、而是由各國自行評估國內條件後予以承諾。這條款被稱為「國家自定預期貢獻」(Intended Nationally Defined Contributions,INDC),這樣的自願制度或許是巴黎協定得以在會中取得各國共識的原因之一。。但是 各國的 INDC 也不盡然能代表絕對的法律約束力,例如德國原規劃 2020 年,完成與 1990 年相比,減碳 40% 的目標,但仍因對化石能源的依賴而自行將減碳目標降為 35%。

企業省電到極限,減排開始買綠電

圖/meineresterampe @Pixabay

儘管如此,《巴黎協定》仍開始貢獻了較高的執行壓力,一方面促使了各國企業、特別是跨國巨型企業著手認真研究減排功夫,另一方面也催熟了碳交易與再生能源憑證交易的市場機制作為最重要的減排政策工具之一。

當各國企業著手減排之時,有兩種方法必須分開研究與討論,第一種是減少能源消耗,第二種則是使用如再生能源等低碳能源──前者節流、後者開源。特別對於巨型企業與先進製程的製造業,由於減少能耗有助於企業節省電費成本,因此,許多具一定規模的企業或廠區,均在減低能耗上,投入了相當努力。相較之下,選擇使用再生能源做為電力來源,需要比起單一企業或廠區更龐大的發展量能,導致過去企業界對於採用再生能源的方案,並不如投注於減少能耗的努力程度

於是我們開始見到像是 RE100EP100、還有 EV100 這樣的企業串聯,分別在再生能源、能源生產力、以及電動汽車的領域做出承諾。舉例來說,只要加入 RE100,便等於承諾使用100%的再生能源 ;加入 EP100,則代表承諾在 2030年之前將能源效率提升為現在的兩倍。唯有做出承諾,才能躋身與 Google、Apple、Facebook、可口可樂、雀巢、Nike、IKEA、星巴克、花旗銀行、H&M 等 136 個世界企業並列的綠電俱樂部。

不過雖說承諾要 100% 使用再生能源,但其實企業並不需要真的親自勞師動眾上山下海地弄到一大把太陽能/生質能/地熱/水力/風力的電力來用才行,購買再生能源憑證(Renewable Electricity Certificates,REC)也完全可行。這些再生能源憑證,便是每單位再生能源的身分證(證明內容包括:發電設施地點、設施擁有者、發電方式、發電 容量、發電設施開始運轉日期及電力產生之時間等),因此再生能源廠廠商除了售出電力,還另有憑證可以另行販售。

「再生能源憑證」這樣特殊的市場機制安排,讓願意採用綠電的企業能夠藉由購買再生能源憑證有效讓這些資本流入製造綠電的廠商,快速成為支持綠電生產的有利資金。電證分離的交易設計,使得採用綠電的行動可以擺脫電網輸送的物理約束,並活絡了綠電的流動運用。

從碳交易到再生能源憑證:市場機制的美好與邪惡

經濟部也建立了再生能源憑證中心,但目前以自願制為主,並未形成成熟的交易市場。 圖/國家再生能源憑證中心

這種市場機制,打從 2005 年的歐盟排放交易體系(European Union Emission Trading Scheme,EU ETS)便被應用,它的法源依據來自於《京都議定書》中約定的排放交易機制(Emissions Trade,ET),理論基礎則來自寇斯定理(Coase Theorem)──原本不具有明確財產權定義的共有資源(例如空氣、氣候)產權界定以及自由交易機制,便能推動溫室氣體減排。每個企業的減排能力各自不同,碳交易和「碳稅」機制直接針對二氧化碳排量設定定價收取相比,由於採用溯及既往原則、先撥給企業一筆免費的排放量;並允許企業自行決定是降低碳排放量、還是在市場上向其他企業購買碳排放量較為划算,因此對於企業的成本衝擊較小,執行接受度也較高。

但既然是運用了市場機制的優勢,便不能忽視歷史上市場機制曾經帶來的各種副作用或漏洞,是否也會複製在如今的綠色金融事業中?舉例來說,碳交易市場的發展急速膨脹,年交易額近 2000 億美元,不只買家賣家,各種顧問仲介掮客(包括投資機構、金融服務、碳資產管理、額度驗證、法律諮詢、技術服務等各種機構,都是利害關係者)應運而生,詐欺者也所在多有。《國際刑警組織防制碳交易犯罪指南便指出,由於碳權無形的特質,使得各種內幕交易、貪汙洗錢、偷工減料之事未能受到充分監督。

也別忘了,碳交易能夠順利運作的一大前提是:國家必須設下適合的總量管制。一旦政府對總排放量的額度配給過於寬鬆,那就有如中央銀行印出太多鈔票,通貨膨脹便會讓票值大幅下跌。這正是過去好一陣子歐美碳市場的景況:每公噸的排放權價格從 30 多美元一路跌至 1 美元。與此同時,其他的環境政策如能源補貼等,也會降低碳權對企業的迫切性和價值。

目前的交易制度設計,也尚未能為一些社會問題提供令人滿意的解方。比如說「甲地污染,乙地補償」,真的是對等與平衡的做法嗎?而當碳排變成了一張張紙上數字,會不會使人們過度化約了環境問題、以及疏忽了環境惡化對生活的真切影響究竟為何?

此外,碳交易制度的成功,也仰賴對碳排放量的監測技術是否能有效反映碳排狀況;碳排放資料的回報與查核機制是否能落實到政府與產業的關係;以及既有政府的管理量能,又是否能有效稽查企業的碳排狀況;特別是對於中小企業具相當規模的台灣來說,以大型企業為主的碳交易制度與受政治因素主導的能源補貼的競合,又是否能反映出再生能源憑證交易機制與碳交易機制所欲達到的環境公平與正義?

氣候變遷的議題,經過國際政治戰場上的洗禮後,已非當年只能在體制外高呼口號的小白兔。當這場救地球的運動,以碳權和再生能源憑證交易市場的形式廣為推行,除了稱頌和採納,還需要更多長期的監督和評估。本篇文章概覽了綠電交易在國際氣候協議中的法源背景、以及在企業組織中逐漸提高的策略地位,並且藉由回顧碳交易市場的一些黑歷史,點出綠電及其憑證在自由交易市場中可能衍生的問題。

參考資料:

文章難易度
PanSci_96
1039 篇文章 ・ 1364 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

1
2

文字

分享

1
1
2
2022 年《Science》年度十大科學突破(下):EBV 病毒與發燒的地球
PanSci_96
・2022/12/30 ・2786字 ・閱讀時間約 5 分鐘

接續上篇:2022 年《Science》年度十大科學突破(上):持續進化的 AI 與韋伯太空望遠鏡

看過 2022 年十大科學突破的前五項後,你是否迫不及待想知道另外五項呢?讓我們繼續看下去吧!

多發性硬化症的元兇:EBV 病毒

多發性硬化症(Multiple sclerosis)是一種中樞神經系統疾病,初期症狀只有視力模糊、手腳麻木、走路不穩等,到了後期便逐漸讓病患喪失視力、無法說話和行走。

長久以來,科學家懷疑多發性硬化症的元兇是「人類疱疹病毒第四型病毒」(EBV)。這種病毒主要透過唾液傳播,幾乎每個人一生中都會感染到,然後病毒會潛伏在白血球中。雖然患者大多都有 EBV 抗體,但 95% 的健康成年人也有,難以作為判定依據。

然而,今年 1 月刊載在《Science》的研究指出,感染 EBV 將導致罹患多發性硬化症的風險增加 32 倍。另一篇《Science》研究也發現潛伏在白血球中的病毒可能會「甦醒」,而病毒的其中一種蛋白質,會誘使免疫系統攻擊中樞神經細胞。

這些新發現給了科學家開發疫苗的方向。目前,有一種 EBV 疫苗正在進行臨床試驗,要是數據顯示疫苗有效,那麼在未來,多發性硬化症或許就能像小兒麻痺一樣,從此絕跡。

新研究確定了 EBV 病毒(藍色)與多發性硬化症的關聯。圖/Science

美國簽署《降低通膨法案》,搶救發燒的地球

今年 2 月,聯合國 IPCC 第六次評估報告指出,若是全球平均升溫超過 1.5°C,各地都將出現多種極端氣候災害,部分地區也將不再適合人類居住。

8 月,美國總統拜登(Joe Biden)簽署了《降低通膨法案》(Inflation Reduction Act),試圖從綠能、醫療、稅收等三大面向解決通貨膨脹的問題,同時減少溫室氣體排放,堪稱美國史上最重要的氣候法案。

身為全球第二的溫室氣體排放國,美國將在未來 10 年撥出 3690 億美元,投入綠能、電動車、核能發電等產業,目標是在 10 年後(2032 年)將溫室氣體排放量降低到 2005 年的 40%。

目前,全球平均升溫(相較於工業革命前)來到 1.2°C,而且今年的溫室氣體排放量仍持續上升,沒有下降趨勢。許多氣候科學家都認為升溫幅度必然超過《巴黎協定》規範的 1.5°C 上限,因此我們都需要盡快採取更多行動保護地球。

《降低通膨法案》將補貼太陽能在內的綠能產業。圖/Science

逃過黑死病的方法,竟然是遺傳?

700 年前,橫行歐洲的黑死病殺死了 1/3 到 1/2 的人口。關於那些倖存者,科學家好奇了很久,想知道他們當初是如何逃過一劫,以及黑死病究竟帶來了什麼影響。

今年 10 月, ㄧ篇《Science》的研究顯示倖存者體內可能有基因變異,提升他們對鼠疫桿菌(Yersinia pestis)的免疫反應。團隊分析了 500 多具遺骨中的古代 DNA,發現在英國倫敦爆發黑死病後,倖存者體內有 245 處的基因都有出現變異。

在這些 DNA 裡,內質網胺肽酶 2(ERAP2)引起了科學家的注意。這種蛋白酶有兩種變體:一種是完整尺寸,另一種較短,但都可以幫助免疫細胞識別、對抗病毒。科學家發現,遺傳完整尺寸 ERAP2 的人類存活機率是 2 倍,因為他們能夠生成更多細胞激素,協助免疫系統對抗鼠疫桿菌。

如今,約有 45% 的英國人體內還存有完整尺寸的 ERAP2 變體,但代價就是 ERAP2 也會增加罹患克羅恩病(Crohn’s disease)和類風濕性關節炎等自體免疫性疾病的風險。

從 14 世紀英國倫敦的遺骨中採集 DNA 並紀錄變化。圖/Science

碰!NASA 撞歪小行星!

多年來,NASA 持續監測直徑超過 0.5 公里的近地小行星,並且透過「雙小行星重定向測試計劃」(DART)研究多種讓小行星偏離軌道的方法。

今年 9 月,NASA 讓 DART 飛行器以 22,530 公里的時速撞擊小行星 Dimorphos,讓 Dimorphos 更靠近它繞行的另一顆小行星 Didymos,縮短了 32 分鐘的公轉週期,比 NASA 原先設定的目標還要高出 26 倍。

目前為止,天文學家估計軌道與地球軌道相交的近地小行星有 25,000 顆,大小都足以摧毀一座大城市。雖然行星防禦系統(Planetary Defense)尚未建構出完整情報,但針對人類首次改變天體運行的壯舉,NASA 署長表示「這是行星防禦任務的分水嶺,也是人類文明的分水嶺」,有助於降低小行星或隕石撞到地球的機率。

寬達 160 公尺的小行星 Dimorphos。圖/Science

從永凍土提取環境 DNA,重建古代生態系統

以往普遍認為 DNA 的保質期約為 100 萬年,但在今年 12 月,科學家從北極寒漠的永凍土中,提取了 200 萬年前殘留至今的環境 DNA 片段。透過分析這些片段,科學家還原了格陵蘭東北部皮里地(Peary Land)約 200 萬年前生態系統的樣貌。

英國劍橋大學研究顯示,在 200 萬至 300 萬年前,皮里地的平均氣溫比現在高 11℃ 至 19℃。從 5 處沉積層中提取的 41 個 DNA 片段,證實了當時有楊樹、樺樹、崖柏和各種針葉樹,也有野兔旅鼠、馴鹿、囓齒動物,以及 1 萬年前滅絕的大象近親——乳齒象。過去從來沒有科學家料到乳齒象的活動範圍竟然延伸到那麼遠的北方。

可惜的是,因為缺少脊椎動物的化石,目前還不清楚確切的生物群落組成,但這項研究證明了利用環境 DNA 追溯 200 萬年前的古生物是可行的,而這也有助於科學家進一步探討生物和環境的演化。

環境 DNA 揭示了 200 萬年前格陵蘭的生態。圖/Science
所有討論 1

3

5
1

文字

分享

3
5
1
電子貨架標籤真的比紙本商品價格卡划算嗎|2021數感盃|高中專題|優選
數感實驗室_96
・2021/12/25 ・2804字 ・閱讀時間約 5 分鐘

  • 作者:彭姿寧、周丞祺、康育綸/新店高中

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。
本文為 2021 數感盃青少年寫作競賽/高中組專題報導類佳作之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

一、研究動機 

台灣每個奇數月的 25 號是發票開獎的日子,不少人用行動載具存發票,取代紙張發票的使用,以減少樹木砍伐,保護環境。一般民眾在購物時,最常見的商品價格標籤大部分還是以紙張形式(紙價卡),但若能夠將全面設為電子紙貨價標籤(下簡稱「電子標籤」),又將能減少多少的樹木砍伐和更換的人力成本呢?對於環境的改善與影響是否划算呢?

圖/envato elements

二、研究背景 

(一)以 7-11 為研究對象,將實地訪查結果整理如下表:

(二)透過實地訪查與網路搜尋,整理紙本商品價卡和電子貨架標籤資訊比較,如下表:

三、探究過程 

(一)歷年來時薪的調整 

 雖然目前的時薪是 160 元/hr,但過去已有多次調整,因此考慮薪資的平均成長率。一個電子標籤的壽命是 6 年,所以我們取 104 年到 109 年期間的薪資調整。根據中華民國勞動部網站表示,薪資調整如下: 

運用「幾何平均數」來計算基本薪資每年平均成長率為 1.057:  \( \sqrt[5]{1.0500\times 1.0555\times 1.0526\times 1.0533\times 1.0714} \) ≒ 1.057

訪問結果可知 1 週需要花 1+0.5+0.5=2 小時的時間在價卡上,一個月大約有 4 週, 所以每個月需要花 2×4=8 小時的時間在這,每年則是 8×12=96 小時。我們有了調整倍律(公比),以及 110 年(首項)到 115 年(末項)的時薪,使用「等比級數」計算未來 6 年需花費的人力成本為 153600 元(110 年每小時基本工資為 160)。

 \( S6= \frac{96\times 160\left [ 1-\left ( 1.057 \right )^{6} \right ]}{1-1.057} \) ≒ 1.06335

(二)環境影響-樹木砍伐與碳足跡: 

我們上網蒐集樹木所能製造的產量。每噸紙漿可以做出 40 箱 5000 張紙,1 噸紙漿約需砍掉 24 棵高度 12 公尺、直徑 15~20 公分的樹木,所以 1 箱的紙需要砍掉:24÷40=0.6 棵樹 

1 箱的紙有 5000 張,因此 1 張 A4 紙需要: 0.6÷5000=0.00012 棵樹 

在保育環境方面,透過產品碳足跡資訊網,我們可以得知一包 500 張的 A4 紙的碳足跡為 3.8kg CO2e,一張 A4 紙的碳足跡為:3.8÷500=0.0076kg CO2e  

(三)紙本商品價卡與電子貨價標籤成本分析: 


更換時間這方面,人力更換 2 週換 250 張,1 次換 1 小時,1 個月大約有 4 週, 可得 1 個月換 250×2=500 張紙需要花費:1×2=2 小時 

(1)若新開一間便利商店,使用紙本商品價卡成本分析: 

一包 A4 大小的紙價卡有 20 張,價格為 47 元。而 1 張 A4 大小的紙可以分成 48 張的價卡,所以 1 包可以分成 20×48=960 張的價卡,是全店 960÷1000=0.96 倍所 以全店紙張需花費 47÷0.96≒49 元 

根據店員所述,自行影印全電價卡的墨水費為 5 元左右,耗時 1.5 小時,耗電為 2 度電,而 1 度電為 1.5 元,所以電費是 2×1.5=3 元。 

價格卡上的字,是使用條碼掃得商品資訊,掃描再加上更換的時間,全店更換則需要 4 小時。目前總共是要花 5.5 小時去更換全商店的價卡,再加上平時的檢查和清點等其他時間,一共要 8 小時左右,目前員工的薪水是 160/hr,所以全部費用是 49+5+3+8×160=1337 元。

於環境方面,1000 張價卡相當於:砍 1000÷48×0.00012=0.0025 棵樹排放 1000÷48×0.1538=3.297kg CO2e。 

(2)若一間便利商店六年,「紙本商品價卡」與「電子貨架標籤」成本比較:

我們知道 2 週花 1 小時換 250 張價卡,1 個月大約為 4 週,算出 1 個月大約要花 1×2 小時換 250×2=500 張紙價卡。電子標籤的壽命是 5~7 年上下,我們打算以平均的 6 年(72 個月)為基準去估算。 

  • 「紙本商品價卡成本」: 

紙本商品價卡須花費 [(1000+500×72)÷960]×47+106335 ≒ 108146 元 

對於環境相當於砍伐 37000÷1000×0.0025×72=6.66 棵樹,並排放 37000÷1000×0.1583×72≒421.7kg 的 CO2e。 

  • 「電子貨架標籤成本」: 

1 個電子標籤是 140 元,全店一千項商品更換全部需要 140×1000=140000 元, 電子標籤更換效率是 3000 張/hr,而 6 年內會換 36000 張,需耗費 6000÷3000=12 小時。 

所以將紙本商品價卡更換成電子貨架標籤會少花費 236760-140000=96760 元,並省下人工耗費 (72×2)-12=132 個小時,減輕許多員工的工作量。

(四)不同規模商場比較 

以 6 年(110 年~115 年)為期限,假設中型商場(營業面積 200 至 2,000 坪)的用量是小型商場(營業面積 60 至 200 坪)10 倍,更換量是 5 倍,其他成本是 10 倍; 大型商場(營業面積超過 2,000 坪)的用量是小型商場的 30 倍,更換量是 15 倍, 其他成本是 30 倍。

因此由仿照前面的計算方式,可以推算不同規模商場使用不同商品價格卡所需成本:

四、發現與結論 

雖然汰換電子標籤並不是很划算,但與年營業額相比,更換的錢就像沙漠裡的一粒沙。電子貨架標籤不止能以彩色文字顯示商品價格,也能以圖案顯示顯示品牌 Logo,或顯示二維條碼,讓顧客立即掃描瞭解商品產銷履歷,除了能更吸引顧客目光、拉長顧客在店內停留時間進而提高商品購買數量,或者是另類廣告行銷等優勢,但因為這些為潛在效益,若不考慮價格,也可能吸引部分銷售業者使用。 

參考資料

  1. POS系統加值服務:電子標籤一秒完成你的售價更新!
  2. 到賣場買東西還要比價?電子標籤直接幫你比!
  3. 銷售時點情報系統
  4. 無線電紙整合線上線下 電子貨架標籤造就智慧零售
  5. 電子貨架標籤
  6. 紙張碳足跡基本資訊
  7. 勞動部:基本工資之制訂與調整經過(歷年薪資調整)
  8. 公交站牌變電子墨水屏黑白,代價是什麼?LCD與墨水屏技術的優缺點(電子標籤碳足跡)
  9. 1度電排放多少二氧化碳?(電力碳足跡)
  10. 便利商店(商場定義)
所有討論 3
數感實驗室_96
60 篇文章 ・ 35 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

2

7
4

文字

分享

2
7
4
「氫」進你的生活,探索太陽能變成電的秘密——專訪東海化學系助理教授王迪彥
科技大觀園_96
・2021/04/28 ・4629字 ・閱讀時間約 9 分鐘 ・SR值 559 ・八年級

在氣候變遷的世代,綠色電力是各領域學者爭相研究的議題,而太陽能為綠電的一大重點。專精於奈米材料、光電領域的王迪彥教授,帶領「新世代能源研究團隊」研發出新型光電化學製氫技術。本次專訪中,王迪彥教授將與我們分享台灣綠電的現況,太陽能如何轉化為電能,以及未來的趨勢及展望。

地球暖化、能源耗竭是這個世代環環相扣的問題,雖然大家皆知北極熊正在瀕臨生存危機、每天呼吸的空氣越來越髒;但是,沒有電,手機就無法充電、電腦及各種電器設備就無法運轉,缺電的後果不堪設想。正因如此兩難,科學家們開始發展「綠色電力」(以下簡稱「綠電」)。太陽能是綠電的一大重點,如何將太陽能儲存起來供大眾使用更是目前學者們的競相研究的主軸。而在台灣,「新世代能源研究團隊」發現能把太陽能用「氫」儲存起來的方法,究竟是什麼樣的神奇技術呢?就讓身為團隊主力之一的王迪彥教授帶我們來一探究竟吧!

地球暖化、能源耗竭是這個世代面臨最嚴峻的問題之一。(圖/pixabay

王迪彥教授小簡介

王迪彥教授目前任職於東海大學化學系,專長是開發奈米材料於光電及催化方面之應用。王教授去年科技部計畫主要研究的方向著重發展新型態鋁離子電池之陰極材料,同時建立金屬離子電池測試平台。此外,王教授與台大教授陳俊維、臺灣科技大學教授黃炳照所組成的跨校際「新世代能源研究團隊」,突破了「太陽能轉換氫能」的技術門檻 :研發出以原子層材料石墨烯與矽基材料結合之新型的光電化學製氫技術。

關於綠電的大小事

火力發電通常是仰賴燃燒化石燃料,將鍋爐水加熱,產生高溫高壓的蒸氣後,將蒸氣導入汽渦輪機推動葉片轉動,而這類的機械能會帶動發電機產生電力,並將電力輸送至各地。但是,火力發電最大的缺點,就在於它會產生飛灰、底灰、二氧化碳、氮氧化物、硫氧化物及粒狀物等副產物,而破壞地球環境。

而綠電則是以減少對環境衝擊為前提的情況下生產電力,像是其發電所產生的二氧化碳排放量為零或趨近於零,目前大家時常聽到的風力發電、水力發電及太陽能發電均屬綠電的範疇。那麼……為何不用綠電取代火力發電呢?如果你也有相同的疑惑,以下這些事情,你必須知道!

目前台灣綠電的比例占多少?

109年台電系統發購電量結構(圖/台灣電力公司「再生能源發電概況」

根據 109 年台電發電量統計結果:火力發電占 78.5%,核能發電占 12.7%,再生能源(綠電)僅占 5.8%。而當我們再細分這些再生發電的種類,當中太陽能發電的比例居冠 (43.6%),亞軍是水力發電 (21.8%),季軍則是風力發電 (15%),其他還有垃圾沼氣、生質、地熱發電也有少數貢獻。

109 年再生能源發購電量結構(圖/台灣電力公司「再生能源發電概況」

為什麼台灣綠電的比例那麼少?

這就得說到以下幾個層面的問題:

  1. 土地問題:無論是現階段的太陽能或是風力發電的陸上風機,若要達到以綠電為發電主力,均需要用到大面積的土地,進而會造成整合地權的問題。
  2. 制度問題:雖然當前經濟部標準檢驗局推動「再生能源憑證 (Renewable Energy Certificate,簡稱 REC) 」,它是綠電的「身分證」,讓國內的生產的綠電符合國際綠色供應鏈的要求,角逐國際競爭,也是國際企業進駐台灣投資的重要關鍵,更是綠能發展的加速器 。但這類憑證仍存在一些制度漏洞(例如經濟部標檢局似乎並未追蹤及註銷憑證的具體規劃),因此若要達到完善且明確的綠電使用制度需待加強。

用電習慣會是推動綠電的絆腳石嗎?

不管是炎炎夏日,抑或是酷寒冬日,大家都會下意識地打開冷氣、暖氣機讓自己舒服一下,加上去年疫情影響下,選擇在家辦公的人數激增,因此台灣 2020 年 1 到 10 月住宅用電量較同期成長足足 7% !幾乎現代人都 24 小時無法脫離用電,但現階段的綠電根本無法達到人們連續用電的需求。若要達成電力以綠電為主的目標,不僅僅是技術層面上的精進,也需要配合人們的節電意識。

如何將太陽能如何變「氫」?

本篇文章的重頭戲來了,上述提及太陽能發電占整個綠電的比例為大宗,那麼……太陽能究竟是如何變成氫的呢?就讓王迪彥教授來為大家解釋一下當中奧秘吧!

將太陽能「存」起來的方法

傳統太陽能電池,是直接將太陽光轉換成電能,直接進入電網,提供給社會大眾所使用。但我們這項研究是希望先將太陽光能轉變成化學能—氫能,以方便儲存以及運輸。其常見的轉換方法有利用太陽能電解水、太陽能熱分解水及太陽能光電化學電池分解水製氫,但是這些方法有的耗能量高,有的轉換率不佳,而新世代能源研究團隊發現將矽結合石墨烯形成的蕭基介面 (Schottky Junction) 能大幅提升太陽能轉換成氫能的轉換率。

一般半導體的二極體內含有 P 型和 N 型半導體,而 P 和 N 型半導體的接面就叫做 PN junction(註一);而蕭基介面則是由 P 型矽基材料,與類金屬特性之石墨烯所形成,並在石墨烯表面沉積一層鉑奈米觸媒金屬,如此一來,觸媒和太陽能板一體成形,就同時兼顧吸收太陽能及轉換成氫氣之功能。此外,三維特殊結構(如金字塔造型)的矽晶材料也大幅降低了矽的反射率,增加其太陽光吸收效率高達 20%,因此也連帶增加產氫效率。

當太陽能轉成氫以後該如何儲存呢?王教授提及目前能想到的方法就是將氫氣儲存在鋼瓶中,而部分學者也試圖運用儲氫材料,將氫氣儲存在這些固體材料中,但現階段的儲氫材料能儲存的氫氣相對較低,大概 100 公斤的儲氫材料就只能儲存 6 公斤的氫氣。然而,將氫氣儲存在鋼瓶中仍有安全上的疑慮(例如不小心接觸到火源而爆炸),因此如何儲存氫氣仍是科學家們需要再琢磨的考量點。

氫能如何放電

當太陽能變成氫能後,可以作為氫燃料電池的原料,當位在燃料電池陽極的氫氣,與位在燃料電池陰極的氧氣,經過催化劑的作用下,使陽極的氫分子氧化分解成兩個氫質子 (proton) 和兩個電子 (electron) ,當中質子會通過到薄膜到達陰極,電子則由外電路形成電流到達陰極。在陰極催化劑的作用下,氫質子、氧分子及電子,發生還原反應形成水分子。而水就是燃料電池唯一的副產物,因此也稱為潔淨能源。

與教授的問答時間

1. 為何化學元素週期表當中那麼多個元素,偏偏要變成氫呢?

由於氫的能量密度高,且地球廣泛存在氫,因此氫能作為太陽能的能量載體是再好不過的了!

2. 為什麼想選用石墨烯與矽作為太陽能轉換氫能的材料?

以前太陽能需要先轉換成電,再用這些電去電解水,但若直接將觸媒成長於石墨烯與矽所形成的蕭基介面,就可以省去另外在架設一電解槽進行電解轉換成電的步驟,而直接用太陽能轉換成氫能。

接著,公主通常都需要由守衛來保護,所以石墨烯還有做為保護矽不會強酸電解質所腐蝕之強大功能!由於矽身處的電池環境不是強酸,就是強鹼,而具高載子透明率(註二)的石墨烯能完整貼合包覆矽,使其免於環境的腐蝕,使其發揮最大效用。

3. 王教授在研發過程中曾經遇過什麼樣的難題?

之前遇過兩大難題:第一個,是如何讓石墨烯完整地貼附在矽晶板上?想像一下,若矽晶板是手機,而石墨烯就是螢幕保護貼,大家總希望自己的保護貼能完整貼附在自己的手機螢幕上,以達到最大的保護效果。同理,雖然石墨烯具有延展性,我們使用的是具有三維結構的矽基板,因此花了很大的功夫找到與矽晶板貼附率最好的轉印方法,才能發揮其最佳之光電轉換效果及保護程度。

第二個,要如何增加矽晶板的吸光率?教授們也是費了一些精力,終於找到像金字塔造型的 3D 表面矽晶材料能達到最大的吸光率。

綠電的未來展望及應用

若太陽能轉換氫能的效率提升,王教授表示將來可望建造一座太陽能電解廠以將太陽光直接轉換成化學能進行儲存。另外,氫能電動車的興起也能減低汽車廢氣對環境的汙染。雖然將太陽能轉為氫能是對環境友善的第一步,但如何儲存這些氫能在目前技術仍是一大挑戰,想像一下,若一座太陽能電廠要儲存氫氣,現階段常見的方法就是用鋼瓶儲存,一旦鋼瓶外洩或是爆炸,其後果實在不堪設想。而當前氫能電動車,每跑 500 公里就需要消耗 3-4 公斤的氫氣,就算設立加氫站(相當於現在的加油站),也得思考是否有安全疑慮。

即便現階段發展的綠電離完全取代火力發電還有好幾大步的距離,但是,新世代能源研究團隊提升氫能轉換率的成果就像阿姆斯壯登上月球一樣,相信未來,透過團隊及科學家們的努力,能將綠能科技提升到另一個境界,讓人們普及使用。

給地球人的省思

王教授認為要發展綠電,需要考量綠電的產能與製造綠電設備耗能的比重(產能/製造耗能),現階段的再生能源仍需仰賴火力發電的支持才能進行,若是為了發展綠電,而耗掉更多能源,豈不是本末倒置了嗎?因此,綠電發展的最終目標,是以再生能源足以支持自身的耗能,以正向回饋的機制產能。

另外,大家近期吵得熱烈的藻礁公投。燃燒天然氣發電能減少空汙問題,加上政府為了減少南電北送的成本,因此選擇將第三天然氣接收站蓋在桃園大潭一帶以支援當地的發電廠。但是,此舉會破壞當地稀有的藻礁生態,藻礁的形成速度非常緩慢因此珍貴,而大潭藻礁的分布規模尤其廣泛,是維持生物多樣性的關鍵角色。這是一個能源轉型與生態保育的取捨,雙方各持立場,兩方都沒有絕對的對錯,這是一個開放性問題。這個事件也值得大家思考,要擁有健全的綠電發展、能源轉型,其實不單靠專家投入心力,也需要大家共同商討及各界努力來達成。

參考資料

所有討論 2
科技大觀園_96
82 篇文章 ・ 1109 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。