Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

在氣候變遷的影響下,更要聰明的與水一起生活──《科學月刊》

科學月刊_96
・2018/05/19 ・2921字 ・閱讀時間約 6 分鐘 ・SR值 508 ・六年級

-----廣告,請繼續往下閱讀-----

  • 范賢娟/科普寫作者

氣候變遷是個讓現代人感受深刻的議題,許多人都為此感到憂心。臺灣大學生物環境系統工程學系童慶斌教授則根據研究表示,我們所面對的是過去不曾見過的現象,很難從經驗中去找答案。然而,只要善用科學知識並具分析與整合的能力,說不定可從中找到發展的新契機,甚至開拓新的產業、聰明生活。

今(2018)年 3 月 24 日,童慶斌在高雄科工館舉辦的《健康科學大師在科工講座》跟聽眾分享「在氣候變遷的影響下,我們如何聰明的用水生活」。演講一開始他針對題目「用水生活」一詞更正,覺得或許用「與水生活」會更好,其中深意請讀者慢慢閱讀體會。

圖/pxhere

臺灣獨特的自然環境

臺灣山多且高,河川短急,降水後很快便流到海洋,雖然這在多人眼中是缺點,但從另外一個角度來思考,萬一淹水時就可以快速地排水恢復。在水資源供給上的缺點卻變成在淹水議題的一個優點,這是臺灣地形一個很有特色的地方。

臺灣的天氣是雨季(5~10月)與乾季(11~4月)明顯,尤其南部地區一年約 2500 公釐的降雨量有 90% 是集中在雨季,乾季僅有 10%。因此正常來講,4 月會是臺灣最缺水的時刻。如果 5、6 月適逢乾梅,7、8 月又少颱風,那就會有更嚴重的缺水問題,因此在水資源管理上會是個考驗,因為大量的雨水很快就流掉了,能收集的很有限。而在全球暖化的影響下,極端旱澇交互出現,這些極端的氣候事件規模越來越大、頻率越來越高,的確增加了風險管理的難度。

-----廣告,請繼續往下閱讀-----

猶記得 2009 年莫拉克颱風來前原本預計會對北部帶來較大的風雨,南部則希望能給極度乾渴的水庫帶點水,原本 8 月 7 日水利單位還召開抗旱會議,沒料到 8 月 8 日南部受到旺盛西南氣流影響帶來大量的雨水,留下許多歷史紀錄。想看看:

一個水庫管理者,從極度乾涸的低水位,看到幾個小時內水庫水位不斷上升,他怎麼知道未來流入的水量是水庫可以容受,還是要即早洩洪?

石門水庫。圖/wikimedia

災難處理雖不完美,但恢復很快

2001 年的納莉颱風曾在 9 月 17 日造成臺北大淹水,當初捷運的擋水閘門以百年回歸頻率洪峰的規模設計,沒想到輕易被超越,大量泥水進入包括臺北火車站的捷運地下空間,雖讓許多機具受損,但也及時成為蓄水池使得地表淹水不至於更嚴重。臺北捷運當時有 10 多個站體空間都淹水,但經過 3 個月的搶修,最後在該年 12 月 15 日全線恢復通車,這樣的復原速度相當快。

童慶斌強調,世界上很少有地區像臺灣一樣雨量那麼大、那麼集中,臺灣的都市防洪設計標準是每個小時排水量大約 70 公釐,不過近年來的降雨常常超過此數字,自然會淹水。不過,國外有些區域時雨量 20 公釐就開始淹水,所以臺灣現有的排水設施絕對比多數地方還好,雖然在面對越來越多的短時大量降水,現有設施還是稍嫌不足。

圖/wikimedia

因此,應思考還能如何進行輔助,而非全然否定掉現有的方式,否則將會越改越糟。童慶斌建議,不要光靠一個中央集中方式來處理,例如可以讓建築物在降水時都可吸收儲存部份的水量。納莉風災時的水淹捷運站雖是個諷刺,代價太昂貴,但也的確可考慮建造人工溼地、蓄水池等方式,這些積少成多的做法,多少可以緩衝大雨來時的傷害。

-----廣告,請繼續往下閱讀-----

然而,實際執行會遭遇許多困難,例如若利用建築短暫的滯留降雨,就牽涉到建築法規的修改,故需要跨層級、跨領域、跨部會的溝通,這在現行體制下很不容易完成。童慶斌還建議大家心態上不要奢求大雨時完全不淹水,要達到這樣的成本太大;反之該抱持著如果雨量太大太急就能接受淹水事件,但要有良好的預警系統保護人命安全,而災後也可快速復原。

圖/flickr

善用知識與資訊,防災更聰明

這些應變策略不該只是憑著個人經驗來思考,童慶斌建議要參考現在各部門既有的各項資料,然後根據「政府間氣候變化專門委員會(Intergovernmental Panel on Climate Change, IPCC)」對氣候變遷風險的架構考慮三個面向作系統性的分析:一是危害(hazard),例如強降雨、乾旱等;二是脆弱度(vulnerability)用來表示我們所關心人事物的本身特質,例如在強降雨下是否容易淹水或坡地崩塌等;三是暴露(exposure),指的是在空間上的分布,也就是所關心的人事物是否會於該處出現。

藉由指標分析與空間分布,可呈現氣候變遷下的熱點區域及各地區可能遭受特定災害的風險程度。藉由風險圖的等級區分及展示,了解風險區位相對分布,即可提供政府單位決策者參考。

圖說:IPCC氣候變遷風險。(IPCC第五次評估報告)圖/永續發展研究室

在童慶斌的分析架構當中,這不光是政府的事情,也要邀請利害關係人(包括決策者、科學家、民眾等)針對關鍵議題來討論,公私協力一起製作出危害地圖與風險地圖,進一步擬定策略。目前政府各單位已經建置許多資訊雲,但如何讓這些既有的「雲」凝結成「雨」降落下來,使其功用發揮,則似乎仍有段距離。或許從政府角度來說要思考該如何做不容易,但可以考慮放手讓資訊公開透明且正確,鼓勵有興趣的軟體開發者想辦法去開發相關的資訊服務應用,這說不定是最容易水到渠成的事情。

-----廣告,請繼續往下閱讀-----

而這些應用也不光用在防災,也可讓我們擁有更好的生活。例如你想去哪邊旅遊後,帶點名產回家烹煮,有個 APP 參考當地氣象、農產菜價之後,能提供一些建議。這些訊息的整合,可以讓我們更積極地迎向知天、順天、樂天的生活。然而,也有人會擔心有些資訊公開後會有重大影響,譬如知道哪些地段常淹水,說不定水災風險高的地方房價低靡,造成現行屋主抱怨。

不過換個角度來看,過去汐止常淹水,房價曾經低靡許久,但後來政府意識到淹水嚴重性,推動員山子分洪道工程,2005 年完工之後多次啟用分洪,汐止淹水的問題就徹底解決,房價也水漲船高。因此,不須過度擔心資訊公開後短暫的衝擊,而該放長時間去看這樣才有助於讓大家正視問題,一起尋求解法。

哪些區域在那些情況下可能會淹水,這些都應該可以運用資訊來表明。圖/wikimedia

順應自然、掌握知識運用創意

童慶斌不斷提醒大家,臺灣特殊的環境讓我們所面臨的危機比其他地區還大,而國人在其中應變調適很快,恢復能力很強,因此在國際上跟別人分享臺灣經驗是很有價值的。未來就看國人在順應自然的時候,能不能掌握知識並用更富有創意的眼光去設想未來情景,結合臺灣產業在軟體、製造業的專長,譬如說設想水下生活、城市梯田等方式,用系統的方法與知識服務來支援發展調適路徑,以達成有品質的永續未來。

 

〈本文選自《科學月刊》2018年5月號〉

-----廣告,請繼續往下閱讀-----

什麼?!你還不知道《科學月刊》,我們48歲囉!

入不惑之年還是可以當個科青

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3735 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
223 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
氣候變遷讓缺水、淹水更嚴重,臺灣做好準備了嗎?——專訪水利署賴建信署長
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/31 ・3262字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 經濟部水利署 委託,泛科學企劃執行。

「30年後,我們將面對更嚴峻的缺水考驗。」水利署署長賴建信接受我們採訪時坦承地說。

水利署署長賴建信

近年,全臺西部地區都曾遇過「供五停二」的停水措施,,缺水問題更早已是全球問題。根據 2021 年發表在 Nature Communication 上的論文,2016 年全球有 9.33 億的城市人口面臨缺水問題,約為總人口的 12 %;依據過往趨勢推測,至 2050 年,全球將有 16.93-23.73 億的城市人口面臨缺水問題,相當於 2050 年總人口的 17%-24%。

為什麼全球缺水問題會如此嚴重呢?賴建信署長認為首要是「氣候變遷」改變了降雨強度與頻率,並舉生活中的經驗來說明氣候變遷:

「生活在臺灣地區的我們,會感覺到最近好像很久都不會下雨,然後不下雨的時候很熱,但一下雨,雨滴大到打在身上都會痛。」而近期紐約暴雨造成地鐵淹水癱瘓,也是氣候變遷造成的。

-----廣告,請繼續往下閱讀-----

氣候變遷讓降雨更加極端

賴署長說:「可以說以後的降雨會非常集中在特定某幾天。就像剛剛講的,就是突然暴雨,然後接下來一個大乾旱。 」

無論是缺水還是淹水,氣候變遷造成的影響都不容忽視,賴署長表示,不只是降雨頻率會更低,降雨地區也會更加不平均,降雨的強度也會有所提升。

依照聯合國政府間氣候變化專門委員會最糟糕的預測(SSP5-8.5),到了這個世紀中,臺灣暴雨強度會比世紀初提升 20%,世紀末會提升 40%,即便是最優預測(SSP1-2.6),也會在世紀中提升 15.7%。

據上所述,氣候變遷讓全人類無法迴避「降雨不均造成的地區性缺水」,以及「降雨強度提升造成的地區性水災」這兩個問題。雖然個人、企業與政府都為了減緩氣候變遷有所作為,但賴署長也表示,我們該「從科學擁抱殘酷現實,對未來做最壞打算」。

簡單來說,若所有締約國都遵守聯合國氣候變遷大會(COP)的決議完成減碳工作,那氣候變遷也只是不再加劇,並不會立刻恢復到過去的型態,而只要有其中幾項沒有達成,那全世界就得面對更嚴峻的情況。

-----廣告,請繼續往下閱讀-----

回到開頭賴署長所說的 30 年,我們還有時間做好基礎建設,降低氣候變遷對人民造成的影響。「從2016年開始,我們就思考這些問題,思考說臺灣未來面對的自然環境,我們應該如何因應、構築一個怎麼樣的未來。所以當時我們就開始思考包括區域調度、多元水源等相關計畫。」

賴署長提到的「區域調度」相關計畫,即是目前正在進行的「珍珠串計畫」。

地區性缺水解決方案—「珍珠串計畫」

「珍珠串計畫」預計把台灣西部像珍珠一樣珍貴的水源,用聯通管線串聯起來,讓珍貴的水資源可以妥為應用。

臺灣降雨時間和空間差異極大,桃園至屏東等西部地區,在 5 月至 10 月是豐水期,11 月到隔年 4 月是枯水期,然而北北基與宜蘭等東北地區,卻是完全相反,10 月至隔年 4 月有東北季風帶來的豐沛雨量,此時若能將東北地區的水調度至西部地區,將能緩解西部地區缺水。而未來面對更加極端的降雨情況,也能提供一定的支援。

珍珠串計畫的聯通管線預計將在 2028 年全數完成,而在 2021 年旱災中搶先開通的「桃園—新竹備援管線」,從桃園每日調度 20 萬噸的水給新竹,在旱災期間總計調度 2300 萬噸,約是 0.6 座寶山第二水庫的蓄水量,不僅讓新竹地區免於限水所苦,也讓新竹科學園區的科技業能維持生產。

-----廣告,請繼續往下閱讀-----
寶山第二水庫。圖/Wikipedia

不僅管線串聯,更要開創「多元水源」

有了聯通管串聯,就能解決缺水問題嗎?賴署長給出否定答案:「如果只有一種供水方式,突然有意外就完了。當然要有多股水源,多條管線。」

過往開發新水源,直覺想到的是蓋水庫,不過蓋水庫不僅要謹慎評估該地是否有充足水源,考慮安全性及經濟性是否合理,更要謹慎評估對環境生態的影響,通常一座水庫從規劃到興建完成,需耗時數十年的時間。

為了因應氣候變遷與逐步增加的用水量,水利署目前已朝「多元水源」的方式來尋找新水源,像是南化與寶山第二水庫藉由「溢流堰加高」擴增蓄水量,臺中水楠經貿園區淨化污水再利用的「再生水」,以及以及高屏溪的「伏流水」與新竹的「海淡水」,這些多元水源將與水庫水、川流水及地下水等傳統水源共同支撐起全臺用水。

此外,水利署也正想辦法讓洪水資源化,臺灣山高水急,大雨過後的洪水大部分都流向大海,只有少部分可被水庫收集,像是「河槽人工湖」就能增加收集水量,來供應日常使用,或補注超抽的地下水。

地區性強降雨解決方案—從「不淹水」轉變為「耐災韌性」

受氣候變遷影響,近年臺灣短延時強降雨頻率提高,低窪地區或排水系統也時常發生淹水,顯現目前臺灣防洪工程的不足。

-----廣告,請繼續往下閱讀-----

過去臺灣由於預算有限,治水策略多以建護岸、堤防或下水道為主,然而這種作法有其極限,即便已完成防洪工程的區域,也未必能面對未來極端降雨的情況,為此,水利署改變過往治水策略,從「不淹水」轉變為「耐災韌性、與水共生」,而在多年來中央與地方政府的聯合推動下,各地開始邁向「逕流分攤」的方式來治理水患。

「逕流」是指下雨時地表土壤無法吸收的水份,在地表形成的水流。「逕流分攤」是在淹水較為嚴重的河段,於新建(或改建)公共設施時,以不妨礙設施功能,建設洪水期間可收集逕流的滯洪池。此外,為提升土地耐淹能力,「出流管制」政策也要求開發單位,必須提升建築物的透水、保水與滯洪能力。

以日本東京鶴見川為例,由於東京市的發展,導致土地保水、滲透能力降低,洪水尖峰流量增加,更容易發生淹水。為此日本將橫濱日產體育館建置成兼具滯洪功能的公共設施,來應對鶴見川的洪峰流量,館場下方的滯洪池高度高達五公尺,平日則作為停車場使用。

橫濱日產體育館。圖/Wikipedia

「我們希望所有的土地都能更有效地利用,例如我們學校的操場,如果下面是一個蓄水池,那大雨下來是不是就不容易淹水了?」賴署長表示,近期開工的鹿港洛津國小的地下停車場兼滯洪池工程,正是「逕流分攤」的案例。

風暴將至,我們能做好準備嗎?

賴署長略為嚴肅地說:「我不期待氣候型態會回到 30 年前。」並重提了在 IPCC 的最優預測(SSP1-2.6)下,臺灣仍必須在 2050 年面對暴雨強度提高 15.7% 的情況。

-----廣告,請繼續往下閱讀-----

無論我們怎麼做,風暴已確定到來,那麼我們能事先做好準備嗎?賴署長說:「我認為我們能做到的,是使用適當的方法趨吉避凶。」隨著科學進步,模擬變得越來越精準,但終究還是預測,存在不確定性,雖然 2050 年最優預測是暴雨強度提高 15.7%,但上限呢?真的就只有前面提到的 20% 嗎?賴署長提醒我們要面對氣候變遷的現實,並在面臨風暴來臨之前做好準備,這個準備不只要能面對預估強度,更要有足夠的韌性,來面對超越預期的情況。

最後,賴署長說:「每個巨大的改變,一定是從一個微小的生活習慣,比如說開始固定運動,或是固定減少能源浪費。」也許現在看來微不足道的小動作,都將是未來的「重要一步」,就像蝴蝶效應一樣。

相信科學數據,擁抱不確定性,積極做出因應,這不僅是賴署長個人的想法,也是水利署全體的信念,唯有如此,才能在超乎預期的「風暴」來臨之前,做出最好的選擇。

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
223 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

1
0

文字

分享

1
1
0
有施打 mRNA疫苗,住院與死亡風險較低
台灣科技媒體中心_96
・2022/05/08 ・1007字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

圖/envato elements

2022 年 03 月 16 日,國際期刊《刺胳針》(Lancet)刊登一篇研究「Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study」,主要是想透過英國衛生安全局(UKHSA)的 COVID-19 國內確診數據,分別從就診、住院和死亡的數據上比較相對風險,了解 Omicron 相較於 Delta 的嚴重程度。

這篇研究,是由英國劍橋大學的湯米・尼伯格教授(Tommy Nyberg)團隊,收集 2021 年 11 月至 2022 年 1 月間,英國國內監測 COVID-19 感染後的確診數據,並比較 Omicron 和 Delta 對不同年齡階段、不同免疫狀態的人群感染的嚴重程度,包括就診、住院治療及死亡風險的變化。

mRNA 疫苗保護力強?

圖/envato elements

其中在比較 mRNA 疫苗施打的結果上,研究發現,施打 mRNA 疫苗加強免疫系統,對防止 Omicron 的住院和死亡,具有高度保護作用。

數據顯示,「有施打 mRNA 疫苗」發生住院與死亡的風險比值(HR)是「未施打疫苗」的 22%。(HR for hospital admission 8–11 weeks post-booster vs unvaccinated: 0·22 [0·20–0·24])也就是與「未施打疫苗」相比,「施打 mRNA 疫苗」的 8 到 11 週後,發生住院的風險下降了約 78%。

-----廣告,請繼續往下閱讀-----

解讀時,要注意!

該研究是在比較「施打 mRNA 疫苗」與「未施打疫苗」發生住院與死亡風險,使用的是風險比(Hazard Ratio, HR),是指在相同時間裡兩個風險率的比值。

針對 mRNA 疫苗的數據,解讀上需小心。圖/envato elements

如同前面提到,在 Omicron 的研究結果中,「有施打 mRNA 疫苗」會發生住院與死亡的風險,是「未施打疫苗」的 22%。意思是與「未施打疫苗」相比,「有施打 mRNA 疫苗」發生住院的風險下降了約78%。

這邊的 22%,是來自「有施打 mRNA 疫苗」 vs. 「未施打疫苗」兩個群體,發生住院狀況的風險比值,而不是指「未施打疫苗者」發生重症與死亡的發生率。也就是說:「400 萬人未施打疫苗,其中會有將近 80 萬人重症或死亡。」這是錯誤的歸納且與該研究觀察結果無關。

此外,我們也無法透過上述的風險比較,回推「未施打疫苗」群體,發生重症或死亡的比例。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
台灣科技媒體中心_96
46 篇文章 ・ 328 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。