Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

在氣候變遷的影響下,更要聰明的與水一起生活──《科學月刊》

科學月刊_96
・2018/05/19 ・2921字 ・閱讀時間約 6 分鐘 ・SR值 508 ・六年級

  • 范賢娟/科普寫作者

氣候變遷是個讓現代人感受深刻的議題,許多人都為此感到憂心。臺灣大學生物環境系統工程學系童慶斌教授則根據研究表示,我們所面對的是過去不曾見過的現象,很難從經驗中去找答案。然而,只要善用科學知識並具分析與整合的能力,說不定可從中找到發展的新契機,甚至開拓新的產業、聰明生活。

今(2018)年 3 月 24 日,童慶斌在高雄科工館舉辦的《健康科學大師在科工講座》跟聽眾分享「在氣候變遷的影響下,我們如何聰明的用水生活」。演講一開始他針對題目「用水生活」一詞更正,覺得或許用「與水生活」會更好,其中深意請讀者慢慢閱讀體會。

圖/pxhere

臺灣獨特的自然環境

臺灣山多且高,河川短急,降水後很快便流到海洋,雖然這在多人眼中是缺點,但從另外一個角度來思考,萬一淹水時就可以快速地排水恢復。在水資源供給上的缺點卻變成在淹水議題的一個優點,這是臺灣地形一個很有特色的地方。

臺灣的天氣是雨季(5~10月)與乾季(11~4月)明顯,尤其南部地區一年約 2500 公釐的降雨量有 90% 是集中在雨季,乾季僅有 10%。因此正常來講,4 月會是臺灣最缺水的時刻。如果 5、6 月適逢乾梅,7、8 月又少颱風,那就會有更嚴重的缺水問題,因此在水資源管理上會是個考驗,因為大量的雨水很快就流掉了,能收集的很有限。而在全球暖化的影響下,極端旱澇交互出現,這些極端的氣候事件規模越來越大、頻率越來越高,的確增加了風險管理的難度。

-----廣告,請繼續往下閱讀-----

猶記得 2009 年莫拉克颱風來前原本預計會對北部帶來較大的風雨,南部則希望能給極度乾渴的水庫帶點水,原本 8 月 7 日水利單位還召開抗旱會議,沒料到 8 月 8 日南部受到旺盛西南氣流影響帶來大量的雨水,留下許多歷史紀錄。想看看:

一個水庫管理者,從極度乾涸的低水位,看到幾個小時內水庫水位不斷上升,他怎麼知道未來流入的水量是水庫可以容受,還是要即早洩洪?

石門水庫。圖/wikimedia

災難處理雖不完美,但恢復很快

2001 年的納莉颱風曾在 9 月 17 日造成臺北大淹水,當初捷運的擋水閘門以百年回歸頻率洪峰的規模設計,沒想到輕易被超越,大量泥水進入包括臺北火車站的捷運地下空間,雖讓許多機具受損,但也及時成為蓄水池使得地表淹水不至於更嚴重。臺北捷運當時有 10 多個站體空間都淹水,但經過 3 個月的搶修,最後在該年 12 月 15 日全線恢復通車,這樣的復原速度相當快。

童慶斌強調,世界上很少有地區像臺灣一樣雨量那麼大、那麼集中,臺灣的都市防洪設計標準是每個小時排水量大約 70 公釐,不過近年來的降雨常常超過此數字,自然會淹水。不過,國外有些區域時雨量 20 公釐就開始淹水,所以臺灣現有的排水設施絕對比多數地方還好,雖然在面對越來越多的短時大量降水,現有設施還是稍嫌不足。

圖/wikimedia

因此,應思考還能如何進行輔助,而非全然否定掉現有的方式,否則將會越改越糟。童慶斌建議,不要光靠一個中央集中方式來處理,例如可以讓建築物在降水時都可吸收儲存部份的水量。納莉風災時的水淹捷運站雖是個諷刺,代價太昂貴,但也的確可考慮建造人工溼地、蓄水池等方式,這些積少成多的做法,多少可以緩衝大雨來時的傷害。

-----廣告,請繼續往下閱讀-----

然而,實際執行會遭遇許多困難,例如若利用建築短暫的滯留降雨,就牽涉到建築法規的修改,故需要跨層級、跨領域、跨部會的溝通,這在現行體制下很不容易完成。童慶斌還建議大家心態上不要奢求大雨時完全不淹水,要達到這樣的成本太大;反之該抱持著如果雨量太大太急就能接受淹水事件,但要有良好的預警系統保護人命安全,而災後也可快速復原。

圖/flickr

善用知識與資訊,防災更聰明

這些應變策略不該只是憑著個人經驗來思考,童慶斌建議要參考現在各部門既有的各項資料,然後根據「政府間氣候變化專門委員會(Intergovernmental Panel on Climate Change, IPCC)」對氣候變遷風險的架構考慮三個面向作系統性的分析:一是危害(hazard),例如強降雨、乾旱等;二是脆弱度(vulnerability)用來表示我們所關心人事物的本身特質,例如在強降雨下是否容易淹水或坡地崩塌等;三是暴露(exposure),指的是在空間上的分布,也就是所關心的人事物是否會於該處出現。

藉由指標分析與空間分布,可呈現氣候變遷下的熱點區域及各地區可能遭受特定災害的風險程度。藉由風險圖的等級區分及展示,了解風險區位相對分布,即可提供政府單位決策者參考。

圖說:IPCC氣候變遷風險。(IPCC第五次評估報告)圖/永續發展研究室

在童慶斌的分析架構當中,這不光是政府的事情,也要邀請利害關係人(包括決策者、科學家、民眾等)針對關鍵議題來討論,公私協力一起製作出危害地圖與風險地圖,進一步擬定策略。目前政府各單位已經建置許多資訊雲,但如何讓這些既有的「雲」凝結成「雨」降落下來,使其功用發揮,則似乎仍有段距離。或許從政府角度來說要思考該如何做不容易,但可以考慮放手讓資訊公開透明且正確,鼓勵有興趣的軟體開發者想辦法去開發相關的資訊服務應用,這說不定是最容易水到渠成的事情。

-----廣告,請繼續往下閱讀-----

而這些應用也不光用在防災,也可讓我們擁有更好的生活。例如你想去哪邊旅遊後,帶點名產回家烹煮,有個 APP 參考當地氣象、農產菜價之後,能提供一些建議。這些訊息的整合,可以讓我們更積極地迎向知天、順天、樂天的生活。然而,也有人會擔心有些資訊公開後會有重大影響,譬如知道哪些地段常淹水,說不定水災風險高的地方房價低靡,造成現行屋主抱怨。

不過換個角度來看,過去汐止常淹水,房價曾經低靡許久,但後來政府意識到淹水嚴重性,推動員山子分洪道工程,2005 年完工之後多次啟用分洪,汐止淹水的問題就徹底解決,房價也水漲船高。因此,不須過度擔心資訊公開後短暫的衝擊,而該放長時間去看這樣才有助於讓大家正視問題,一起尋求解法。

哪些區域在那些情況下可能會淹水,這些都應該可以運用資訊來表明。圖/wikimedia

順應自然、掌握知識運用創意

童慶斌不斷提醒大家,臺灣特殊的環境讓我們所面臨的危機比其他地區還大,而國人在其中應變調適很快,恢復能力很強,因此在國際上跟別人分享臺灣經驗是很有價值的。未來就看國人在順應自然的時候,能不能掌握知識並用更富有創意的眼光去設想未來情景,結合臺灣產業在軟體、製造業的專長,譬如說設想水下生活、城市梯田等方式,用系統的方法與知識服務來支援發展調適路徑,以達成有品質的永續未來。

 

〈本文選自《科學月刊》2018年5月號〉

-----廣告,請繼續往下閱讀-----

什麼?!你還不知道《科學月刊》,我們48歲囉!

入不惑之年還是可以當個科青

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3754 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
1

文字

分享

0
3
1
氣候變遷讓缺水、淹水更嚴重,臺灣做好準備了嗎?——專訪水利署賴建信署長
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/31 ・3262字 ・閱讀時間約 6 分鐘

本文由 經濟部水利署 委託,泛科學企劃執行。

「30年後,我們將面對更嚴峻的缺水考驗。」水利署署長賴建信接受我們採訪時坦承地說。

水利署署長賴建信

近年,全臺西部地區都曾遇過「供五停二」的停水措施,,缺水問題更早已是全球問題。根據 2021 年發表在 Nature Communication 上的論文,2016 年全球有 9.33 億的城市人口面臨缺水問題,約為總人口的 12 %;依據過往趨勢推測,至 2050 年,全球將有 16.93-23.73 億的城市人口面臨缺水問題,相當於 2050 年總人口的 17%-24%。

為什麼全球缺水問題會如此嚴重呢?賴建信署長認為首要是「氣候變遷」改變了降雨強度與頻率,並舉生活中的經驗來說明氣候變遷:

「生活在臺灣地區的我們,會感覺到最近好像很久都不會下雨,然後不下雨的時候很熱,但一下雨,雨滴大到打在身上都會痛。」而近期紐約暴雨造成地鐵淹水癱瘓,也是氣候變遷造成的。

-----廣告,請繼續往下閱讀-----

氣候變遷讓降雨更加極端

賴署長說:「可以說以後的降雨會非常集中在特定某幾天。就像剛剛講的,就是突然暴雨,然後接下來一個大乾旱。 」

無論是缺水還是淹水,氣候變遷造成的影響都不容忽視,賴署長表示,不只是降雨頻率會更低,降雨地區也會更加不平均,降雨的強度也會有所提升。

依照聯合國政府間氣候變化專門委員會最糟糕的預測(SSP5-8.5),到了這個世紀中,臺灣暴雨強度會比世紀初提升 20%,世紀末會提升 40%,即便是最優預測(SSP1-2.6),也會在世紀中提升 15.7%。

據上所述,氣候變遷讓全人類無法迴避「降雨不均造成的地區性缺水」,以及「降雨強度提升造成的地區性水災」這兩個問題。雖然個人、企業與政府都為了減緩氣候變遷有所作為,但賴署長也表示,我們該「從科學擁抱殘酷現實,對未來做最壞打算」。

簡單來說,若所有締約國都遵守聯合國氣候變遷大會(COP)的決議完成減碳工作,那氣候變遷也只是不再加劇,並不會立刻恢復到過去的型態,而只要有其中幾項沒有達成,那全世界就得面對更嚴峻的情況。

-----廣告,請繼續往下閱讀-----

回到開頭賴署長所說的 30 年,我們還有時間做好基礎建設,降低氣候變遷對人民造成的影響。「從2016年開始,我們就思考這些問題,思考說臺灣未來面對的自然環境,我們應該如何因應、構築一個怎麼樣的未來。所以當時我們就開始思考包括區域調度、多元水源等相關計畫。」

賴署長提到的「區域調度」相關計畫,即是目前正在進行的「珍珠串計畫」。

地區性缺水解決方案—「珍珠串計畫」

「珍珠串計畫」預計把台灣西部像珍珠一樣珍貴的水源,用聯通管線串聯起來,讓珍貴的水資源可以妥為應用。

臺灣降雨時間和空間差異極大,桃園至屏東等西部地區,在 5 月至 10 月是豐水期,11 月到隔年 4 月是枯水期,然而北北基與宜蘭等東北地區,卻是完全相反,10 月至隔年 4 月有東北季風帶來的豐沛雨量,此時若能將東北地區的水調度至西部地區,將能緩解西部地區缺水。而未來面對更加極端的降雨情況,也能提供一定的支援。

珍珠串計畫的聯通管線預計將在 2028 年全數完成,而在 2021 年旱災中搶先開通的「桃園—新竹備援管線」,從桃園每日調度 20 萬噸的水給新竹,在旱災期間總計調度 2300 萬噸,約是 0.6 座寶山第二水庫的蓄水量,不僅讓新竹地區免於限水所苦,也讓新竹科學園區的科技業能維持生產。

-----廣告,請繼續往下閱讀-----
寶山第二水庫。圖/Wikipedia

不僅管線串聯,更要開創「多元水源」

有了聯通管串聯,就能解決缺水問題嗎?賴署長給出否定答案:「如果只有一種供水方式,突然有意外就完了。當然要有多股水源,多條管線。」

過往開發新水源,直覺想到的是蓋水庫,不過蓋水庫不僅要謹慎評估該地是否有充足水源,考慮安全性及經濟性是否合理,更要謹慎評估對環境生態的影響,通常一座水庫從規劃到興建完成,需耗時數十年的時間。

為了因應氣候變遷與逐步增加的用水量,水利署目前已朝「多元水源」的方式來尋找新水源,像是南化與寶山第二水庫藉由「溢流堰加高」擴增蓄水量,臺中水楠經貿園區淨化污水再利用的「再生水」,以及以及高屏溪的「伏流水」與新竹的「海淡水」,這些多元水源將與水庫水、川流水及地下水等傳統水源共同支撐起全臺用水。

此外,水利署也正想辦法讓洪水資源化,臺灣山高水急,大雨過後的洪水大部分都流向大海,只有少部分可被水庫收集,像是「河槽人工湖」就能增加收集水量,來供應日常使用,或補注超抽的地下水。

地區性強降雨解決方案—從「不淹水」轉變為「耐災韌性」

受氣候變遷影響,近年臺灣短延時強降雨頻率提高,低窪地區或排水系統也時常發生淹水,顯現目前臺灣防洪工程的不足。

-----廣告,請繼續往下閱讀-----

過去臺灣由於預算有限,治水策略多以建護岸、堤防或下水道為主,然而這種作法有其極限,即便已完成防洪工程的區域,也未必能面對未來極端降雨的情況,為此,水利署改變過往治水策略,從「不淹水」轉變為「耐災韌性、與水共生」,而在多年來中央與地方政府的聯合推動下,各地開始邁向「逕流分攤」的方式來治理水患。

「逕流」是指下雨時地表土壤無法吸收的水份,在地表形成的水流。「逕流分攤」是在淹水較為嚴重的河段,於新建(或改建)公共設施時,以不妨礙設施功能,建設洪水期間可收集逕流的滯洪池。此外,為提升土地耐淹能力,「出流管制」政策也要求開發單位,必須提升建築物的透水、保水與滯洪能力。

以日本東京鶴見川為例,由於東京市的發展,導致土地保水、滲透能力降低,洪水尖峰流量增加,更容易發生淹水。為此日本將橫濱日產體育館建置成兼具滯洪功能的公共設施,來應對鶴見川的洪峰流量,館場下方的滯洪池高度高達五公尺,平日則作為停車場使用。

橫濱日產體育館。圖/Wikipedia

「我們希望所有的土地都能更有效地利用,例如我們學校的操場,如果下面是一個蓄水池,那大雨下來是不是就不容易淹水了?」賴署長表示,近期開工的鹿港洛津國小的地下停車場兼滯洪池工程,正是「逕流分攤」的案例。

風暴將至,我們能做好準備嗎?

賴署長略為嚴肅地說:「我不期待氣候型態會回到 30 年前。」並重提了在 IPCC 的最優預測(SSP1-2.6)下,臺灣仍必須在 2050 年面對暴雨強度提高 15.7% 的情況。

-----廣告,請繼續往下閱讀-----

無論我們怎麼做,風暴已確定到來,那麼我們能事先做好準備嗎?賴署長說:「我認為我們能做到的,是使用適當的方法趨吉避凶。」隨著科學進步,模擬變得越來越精準,但終究還是預測,存在不確定性,雖然 2050 年最優預測是暴雨強度提高 15.7%,但上限呢?真的就只有前面提到的 20% 嗎?賴署長提醒我們要面對氣候變遷的現實,並在面臨風暴來臨之前做好準備,這個準備不只要能面對預估強度,更要有足夠的韌性,來面對超越預期的情況。

最後,賴署長說:「每個巨大的改變,一定是從一個微小的生活習慣,比如說開始固定運動,或是固定減少能源浪費。」也許現在看來微不足道的小動作,都將是未來的「重要一步」,就像蝴蝶效應一樣。

相信科學數據,擁抱不確定性,積極做出因應,這不僅是賴署長個人的想法,也是水利署全體的信念,唯有如此,才能在超乎預期的「風暴」來臨之前,做出最好的選擇。

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
227 篇文章 ・ 315 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
在氣候變遷的影響下,更要聰明的與水一起生活──《科學月刊》
科學月刊_96
・2018/05/19 ・2921字 ・閱讀時間約 6 分鐘 ・SR值 508 ・六年級

-----廣告,請繼續往下閱讀-----

  • 范賢娟/科普寫作者

氣候變遷是個讓現代人感受深刻的議題,許多人都為此感到憂心。臺灣大學生物環境系統工程學系童慶斌教授則根據研究表示,我們所面對的是過去不曾見過的現象,很難從經驗中去找答案。然而,只要善用科學知識並具分析與整合的能力,說不定可從中找到發展的新契機,甚至開拓新的產業、聰明生活。

今(2018)年 3 月 24 日,童慶斌在高雄科工館舉辦的《健康科學大師在科工講座》跟聽眾分享「在氣候變遷的影響下,我們如何聰明的用水生活」。演講一開始他針對題目「用水生活」一詞更正,覺得或許用「與水生活」會更好,其中深意請讀者慢慢閱讀體會。

圖/pxhere

臺灣獨特的自然環境

臺灣山多且高,河川短急,降水後很快便流到海洋,雖然這在多人眼中是缺點,但從另外一個角度來思考,萬一淹水時就可以快速地排水恢復。在水資源供給上的缺點卻變成在淹水議題的一個優點,這是臺灣地形一個很有特色的地方。

-----廣告,請繼續往下閱讀-----

臺灣的天氣是雨季(5~10月)與乾季(11~4月)明顯,尤其南部地區一年約 2500 公釐的降雨量有 90% 是集中在雨季,乾季僅有 10%。因此正常來講,4 月會是臺灣最缺水的時刻。如果 5、6 月適逢乾梅,7、8 月又少颱風,那就會有更嚴重的缺水問題,因此在水資源管理上會是個考驗,因為大量的雨水很快就流掉了,能收集的很有限。而在全球暖化的影響下,極端旱澇交互出現,這些極端的氣候事件規模越來越大、頻率越來越高,的確增加了風險管理的難度。

猶記得 2009 年莫拉克颱風來前原本預計會對北部帶來較大的風雨,南部則希望能給極度乾渴的水庫帶點水,原本 8 月 7 日水利單位還召開抗旱會議,沒料到 8 月 8 日南部受到旺盛西南氣流影響帶來大量的雨水,留下許多歷史紀錄。想看看:

一個水庫管理者,從極度乾涸的低水位,看到幾個小時內水庫水位不斷上升,他怎麼知道未來流入的水量是水庫可以容受,還是要即早洩洪?

石門水庫。圖/wikimedia

災難處理雖不完美,但恢復很快

2001 年的納莉颱風曾在 9 月 17 日造成臺北大淹水,當初捷運的擋水閘門以百年回歸頻率洪峰的規模設計,沒想到輕易被超越,大量泥水進入包括臺北火車站的捷運地下空間,雖讓許多機具受損,但也及時成為蓄水池使得地表淹水不至於更嚴重。臺北捷運當時有 10 多個站體空間都淹水,但經過 3 個月的搶修,最後在該年 12 月 15 日全線恢復通車,這樣的復原速度相當快。

-----廣告,請繼續往下閱讀-----

童慶斌強調,世界上很少有地區像臺灣一樣雨量那麼大、那麼集中,臺灣的都市防洪設計標準是每個小時排水量大約 70 公釐,不過近年來的降雨常常超過此數字,自然會淹水。不過,國外有些區域時雨量 20 公釐就開始淹水,所以臺灣現有的排水設施絕對比多數地方還好,雖然在面對越來越多的短時大量降水,現有設施還是稍嫌不足。

圖/wikimedia

因此,應思考還能如何進行輔助,而非全然否定掉現有的方式,否則將會越改越糟。童慶斌建議,不要光靠一個中央集中方式來處理,例如可以讓建築物在降水時都可吸收儲存部份的水量。納莉風災時的水淹捷運站雖是個諷刺,代價太昂貴,但也的確可考慮建造人工溼地、蓄水池等方式,這些積少成多的做法,多少可以緩衝大雨來時的傷害。

然而,實際執行會遭遇許多困難,例如若利用建築短暫的滯留降雨,就牽涉到建築法規的修改,故需要跨層級、跨領域、跨部會的溝通,這在現行體制下很不容易完成。童慶斌還建議大家心態上不要奢求大雨時完全不淹水,要達到這樣的成本太大;反之該抱持著如果雨量太大太急就能接受淹水事件,但要有良好的預警系統保護人命安全,而災後也可快速復原。

-----廣告,請繼續往下閱讀-----

圖/flickr

善用知識與資訊,防災更聰明

這些應變策略不該只是憑著個人經驗來思考,童慶斌建議要參考現在各部門既有的各項資料,然後根據「政府間氣候變化專門委員會(Intergovernmental Panel on Climate Change, IPCC)」對氣候變遷風險的架構考慮三個面向作系統性的分析:一是危害(hazard),例如強降雨、乾旱等;二是脆弱度(vulnerability)用來表示我們所關心人事物的本身特質,例如在強降雨下是否容易淹水或坡地崩塌等;三是暴露(exposure),指的是在空間上的分布,也就是所關心的人事物是否會於該處出現。

藉由指標分析與空間分布,可呈現氣候變遷下的熱點區域及各地區可能遭受特定災害的風險程度。藉由風險圖的等級區分及展示,了解風險區位相對分布,即可提供政府單位決策者參考。

圖說:IPCC氣候變遷風險。(IPCC第五次評估報告)圖/永續發展研究室

-----廣告,請繼續往下閱讀-----

在童慶斌的分析架構當中,這不光是政府的事情,也要邀請利害關係人(包括決策者、科學家、民眾等)針對關鍵議題來討論,公私協力一起製作出危害地圖與風險地圖,進一步擬定策略。目前政府各單位已經建置許多資訊雲,但如何讓這些既有的「雲」凝結成「雨」降落下來,使其功用發揮,則似乎仍有段距離。或許從政府角度來說要思考該如何做不容易,但可以考慮放手讓資訊公開透明且正確,鼓勵有興趣的軟體開發者想辦法去開發相關的資訊服務應用,這說不定是最容易水到渠成的事情。

而這些應用也不光用在防災,也可讓我們擁有更好的生活。例如你想去哪邊旅遊後,帶點名產回家烹煮,有個 APP 參考當地氣象、農產菜價之後,能提供一些建議。這些訊息的整合,可以讓我們更積極地迎向知天、順天、樂天的生活。然而,也有人會擔心有些資訊公開後會有重大影響,譬如知道哪些地段常淹水,說不定水災風險高的地方房價低靡,造成現行屋主抱怨。

不過換個角度來看,過去汐止常淹水,房價曾經低靡許久,但後來政府意識到淹水嚴重性,推動員山子分洪道工程,2005 年完工之後多次啟用分洪,汐止淹水的問題就徹底解決,房價也水漲船高。因此,不須過度擔心資訊公開後短暫的衝擊,而該放長時間去看這樣才有助於讓大家正視問題,一起尋求解法。

哪些區域在那些情況下可能會淹水,這些都應該可以運用資訊來表明。圖/wikimedia

-----廣告,請繼續往下閱讀-----

順應自然、掌握知識運用創意

童慶斌不斷提醒大家,臺灣特殊的環境讓我們所面臨的危機比其他地區還大,而國人在其中應變調適很快,恢復能力很強,因此在國際上跟別人分享臺灣經驗是很有價值的。未來就看國人在順應自然的時候,能不能掌握知識並用更富有創意的眼光去設想未來情景,結合臺灣產業在軟體、製造業的專長,譬如說設想水下生活、城市梯田等方式,用系統的方法與知識服務來支援發展調適路徑,以達成有品質的永續未來。

 

〈本文選自《科學月刊》2018年5月號〉

什麼?!你還不知道《科學月刊》,我們48歲囉!

入不惑之年還是可以當個科青

-----廣告,請繼續往下閱讀-----

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3754 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

1
0

文字

分享

1
1
0
有施打 mRNA疫苗,住院與死亡風險較低
台灣科技媒體中心_96
・2022/05/08 ・1007字 ・閱讀時間約 2 分鐘

圖/envato elements

2022 年 03 月 16 日,國際期刊《刺胳針》(Lancet)刊登一篇研究「Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study」,主要是想透過英國衛生安全局(UKHSA)的 COVID-19 國內確診數據,分別從就診、住院和死亡的數據上比較相對風險,了解 Omicron 相較於 Delta 的嚴重程度。

這篇研究,是由英國劍橋大學的湯米・尼伯格教授(Tommy Nyberg)團隊,收集 2021 年 11 月至 2022 年 1 月間,英國國內監測 COVID-19 感染後的確診數據,並比較 Omicron 和 Delta 對不同年齡階段、不同免疫狀態的人群感染的嚴重程度,包括就診、住院治療及死亡風險的變化。

mRNA 疫苗保護力強?

圖/envato elements

其中在比較 mRNA 疫苗施打的結果上,研究發現,施打 mRNA 疫苗加強免疫系統,對防止 Omicron 的住院和死亡,具有高度保護作用。

數據顯示,「有施打 mRNA 疫苗」發生住院與死亡的風險比值(HR)是「未施打疫苗」的 22%。(HR for hospital admission 8–11 weeks post-booster vs unvaccinated: 0·22 [0·20–0·24])也就是與「未施打疫苗」相比,「施打 mRNA 疫苗」的 8 到 11 週後,發生住院的風險下降了約 78%。

-----廣告,請繼續往下閱讀-----

解讀時,要注意!

該研究是在比較「施打 mRNA 疫苗」與「未施打疫苗」發生住院與死亡風險,使用的是風險比(Hazard Ratio, HR),是指在相同時間裡兩個風險率的比值。

針對 mRNA 疫苗的數據,解讀上需小心。圖/envato elements

如同前面提到,在 Omicron 的研究結果中,「有施打 mRNA 疫苗」會發生住院與死亡的風險,是「未施打疫苗」的 22%。意思是與「未施打疫苗」相比,「有施打 mRNA 疫苗」發生住院的風險下降了約78%。

這邊的 22%,是來自「有施打 mRNA 疫苗」 vs. 「未施打疫苗」兩個群體,發生住院狀況的風險比值,而不是指「未施打疫苗者」發生重症與死亡的發生率。也就是說:「400 萬人未施打疫苗,其中會有將近 80 萬人重症或死亡。」這是錯誤的歸納且與該研究觀察結果無關。

此外,我們也無法透過上述的風險比較,回推「未施打疫苗」群體,發生重症或死亡的比例。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
台灣科技媒體中心_96
46 篇文章 ・ 328 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。