0

0
0

文字

分享

0
0
0

受保護的內容: 煤炭有幾種?可以洗乾淨嗎?——乾淨的煤?(一)前處理篇

活躍星系核_96
・2010/06/19 ・74字 ・閱讀時間少於 1 分鐘

這篇內容受到密碼保護。如需檢視內容,請於下方欄位輸入密碼:

文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
1

文字

分享

0
0
1
氣候變遷時代,我們還需要林口燃煤電廠嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2018/12/19 ・4995字 ・閱讀時間約 10 分鐘 ・SR值 573 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文/廖英凱

本次的系列文章中,我們討論了燃煤發電的三個重要的階段,包含前處理燃燒過程燃燒後處理。在本文中,就讓我們來認識設置於北台灣,擁有最新超超臨界技術的林口電廠的過去、現在、以及未來吧。

回首來時路:蓋建築前先蓋電廠是常識吧?

蓋建築前先蓋電廠?!圖/Pixabay

1960 年代,伴隨台灣工業起飛的用電需求攀升,台灣電力公司在台北縣林口鄉(現為新北市林口區)下福里的海邊興建了林口發電廠,廠內設置了兩座裝置容量各為 300 MW 的燃煤與燃油機組,為當時單一機組裝置容量最大的發電機組。1970 年代,能源危機使原油價格飆漲且供應不穩,林口電廠將燃油機組改建為燃煤機組以降低發電成本並提升能源穩定。由於燃煤機組不適用於尖峰時期的電力負載調度,1998 年,林口電廠另增設了兩座裝置容量各 150 MW 的天然氣/輕油雙燃料氣渦輪發電機。至 2011 年間,林口電廠可提供 900 MW 的電力,約為當時台電總裝置容量的 2%。

由於機組使用年限已逾 40 年,2005 年起林口電廠「先建後拆」的方式,於廠區空地開始規劃興建兩座裝置容量各 800 MW 的超超臨界燃煤機組;並於 2011 年將林口電廠的既有四部機組開始除役; 2016 年與 2017 年,新的兩部機組開始商轉供電。同時,於原機組拆遷後的空地興建第三座 800 MW 超超臨界燃煤機組,預計於 2019年商轉供電。屆時林口電廠將可提供 2400 MW 的裝置容量(註:中火燃煤為 5780 MW;大潭燃氣為 4984.2 MW)。

-----廣告,請繼續往下閱讀-----

這煤很純,不來一點嗎(?)

煤炭的使用歷史悠久,自人類進入工業化時代,煤炭與工業的發展、與近代文明的進展高度相關。由於礦藏分佈世界各地且儲存容易,而使煤炭價格低廉且供應穩定,特別適合大型工業與發電業使用,在全世界的能源消費中,大約佔了 28%1,2,僅次於石油的消費。在台灣的情境中,台電所屬的燃煤電廠,每年也約消耗了 3000萬公噸的煤炭。

雖然煤炭的主要成分是碳,但仍含有氫硫氧氮等元素,這是由於煤炭是古代植物的化石,經由長時間的生物與地質作用碳化而成。不同地區的煤礦碳化程度不同,依碳化程度由低至高,常分類為為泥煤、褐煤、亞煙煤(次煙煤)、煙煤(生煤)與無煙煤。由於碳化程度越低,雜質也越高,而容易在燃燒後產生氣體污染。例如,煙煤的碳含量大約是在 69% 至 89% 之間3;而無煙煤的碳含量則提高為 86% 至 98% 之間,其餘的雜質則為水、空氣、氫、硫、氮等物質組成。這些雜質導致煙煤的燃燒,比起無煙煤會產生更多的煙、氣體污染,且熱效率也較低。不過值得一提的是,含碳量略低於煙煤的亞煙煤,雖熱值較低,但因硫份也較低而較少污染。

因此,近幾年有部分地方縣市政府,試圖制定禁燒生煤條例或停止核發「生煤許可」,就是希望能避免燃燒雜質較高的煙煤,而加劇空氣污染的程度。只是由於越高品質的煤炭成本也會隨之提高,產量也較少,實務上燃煤電廠仍多使用亞煙煤與煙煤作為燃料,而高品質的無煙煤則較常見於家用燃料或暖氣,應用在無法裝設過濾與環保設施,且與人類生活更為接近的使用方式。

林口電廠實際所使用的煤炭,肉眼可見到煤炭上仍有少量磚紅色的雜質。攝影/廖英凱。

-----廣告,請繼續往下閱讀-----

一約既定,山海難阻

由於煤炭需全部仰賴進口,煤炭的供需除須兼顧供給穩定與經濟效益以外,進口煤炭也應考量煤炭的成份以降低污染或提升效率。台電目前進口煤炭的國際合約,主要為印尼與澳洲,占總進口量的八成以上,其餘少部分則進口自俄羅斯、美國與哥倫比亞等。採購的種類則為亞煙煤與煙煤,並針對煤炭的熱值、水份、灰份與硫份訂定品質標準。

以主要進口國印尼和澳洲為例,印尼煤的熱值較澳洲煤低,代表電廠燃燒印尼煤的的發電效率較低,但澳洲煤的灰份與硫份卻比印尼煤高,使燃燒廢氣的污染較為嚴重,因此實務上當煤炭送進煤倉存放後,還會根據不同產地、批次的成分差異,以適當的比例混用入鍋爐燃燒,以同時達到燃燒效率與污染控制。

台灣進口煤炭種類與相關數值資料。
AD, Air Dry Basis:空氣乾燥基,與空氣濕度達到平衡的煤炭做為比較基準。
Gar, Gross Calorific Value:一公斤燃料完全燃燒時所釋放的全部熱量。
資料整理/廖英凱。圖表/泛科學製作。

仰賴海運進口的煤炭,也需要有港口疏運的配合。雖然自 2015 年起,林口電廠已設置了專屬的卸煤碼頭接收來自各產煤國的煤炭。但如果行經林口電廠附近,會發現仍有部分閒置的鐵軌與鐵路設備。這條已停用的「桃林鐵路」,是 1968 年,為搭配林口電廠新建而設立的專屬運煤鐵路,連接林口電廠與桃園火車站以銜接西部縱貫鐵路,而能載運來自台中港的煤炭,至 2012 年底鐵路停用為止,提供了每年 160 萬噸,3000 車次的 40 餘年運煤歷史。

-----廣告,請繼續往下閱讀-----

林口運煤火車。圖/台電提供。

2012 年底桃林鐵路停用後,林口電廠並未停止營運,而是改以台北港接收煤炭後,再以濱海公路的卡車運輸進廠。然而火車每車次運量約 500 噸,但卡車僅有 23 噸。使公路運輸期間,每天須從台北港轉運 200-250 車次的卡車,才能滿足一台新機組每日 4600-5750 噸的燃料需求。對於規劃中最終將有三部機組,預計每年最高可至 630 萬噸的用煤量來說,公路運輸除交通上完全無法負荷以外,也會增加煤塵溢散的空汙問題與運輸轉運的能源消耗。因此,專屬的卸煤碼頭與密閉式的輸送系統,正可以確保輸送的穩定、效率與避免污染。

台灣還需要林口電廠嗎?

儘管污染防制與管理的技術與思維可以不斷精進與投入,但相較起眾多發電方式,燃煤電廠對於環境的影響仍相對較大。對於燃煤電廠新建或營運的顧慮,在可預期的未來也必然存在,然而所有的工程開發本為權衡輕重後的選擇。因此,有必要來簡略盤點對於當代台灣,我們還有哪些需要林口電廠的理由。

回到燃煤發電的本質,若未來沒有更為嚴苛的碳稅等政策工具的制定,則燃煤電廠仍因燃料取得容易,而擁有價格低廉與較天然氣相對穩定的誘因。從燃料的運送與儲存角度來看,煤相比起石油、天然氣、核燃料來得更容易儲存及運送,林口電廠目前規劃的煤倉,就能提供電廠 30 天以上的安全存量,相比起天然氣安全存量在 2019 年僅有 7 天,預計至 2027 年才提升至 14 天。此外煤炭也沒有天然氣供應鏈中的外洩問題4。因此,雖然燃煤欠缺負載調度的能力,但其低廉與穩定的特性,對於在選擇基載發電廠時,燃煤絕對具有相當大的誘因。

-----廣告,請繼續往下閱讀-----

若回到台灣各區電力供需的狀況來看。長期以來北區均處於供不應求,而須仰賴中區的電力調度至北區。預估在 2025 年時,北區的電力需求為 14-15 GW(註:1 GW = 1000 MW),約為全台的 40%,而電力供給僅能提供 34% – 35%,而有約 5% 的電力缺口需從中南區調度。林口電廠 2.4 GW 的裝置容量,則可提供了 16% 的北區用電需求,在供需不平衡的狀況下,更顯其價值。

再以各區的電廠發電形式來考量 2025 年的情境,北區的燃煤電廠,屆時有花蓮和平電廠(1.3 GW)與林口電廠(2.4 GW)共計 3.7 GW 的裝置容量;中區的燃煤電廠則為台中電廠的燃煤機組(扣除4部機轉為備用機組之容量後,全廠縮減為 3.3 GW)與麥寮電廠(1.8 GW)共計 5.1 GW 的裝置容量;而南區的燃煤電廠則為興達電廠的燃煤機組( 2.1 GW)與大林電廠的燃煤機組(1.6 GW)共計 3.7 GW 的裝置容量。北中南三區的燃煤發電裝置容量比為 3:4:3 尚稱分配均勻,也意味者三分區的電力結構中,都仍保有相對低廉穩定的燃煤作為基載電力。

台灣電廠電網分布圖。圖/台電官網

從電力調度傳輸的風險和能量耗損來看,長途電力調度有主幹電網、變電所故障的風險,故需投資額外線路或設備以降低風險;長途電力傳輸也會有 4.5% – 4.6% 的線路耗損。因此,若有鄰近於重要工業區與人口密集區的大型電廠,則可以減少電力傳輸與電壓所造成的能量消耗。

-----廣告,請繼續往下閱讀-----

最後考慮未來太陽光電與風力發電占比大幅提高的情境,在此情境中電力系統應有更高度的調度靈活性,而需大量仰賴燃氣機組與電池調度,但國際能源署在「World Energy Outlook 2018」的執行摘要中,亦指出傳統電廠仍是保持電力系統靈活性的主力,並應搭配新的電網互聯、儲電和需量反應技術做為支持,以確保電力系統的穩定5

綜上所述,對於當代台灣的電力結構、區域發展與經濟考量,林口電廠等燃煤發電,確實有值得存在的理由,但也需要對污染防治持續性地投入與關注。

從此只有眼前路,煤有身後身

儘管燃燒廢氣中的重金屬、硫化物與微粒等污染,可仰賴環保技術的投入而能有效抑制。但在對空汙品質越發重視與擔憂的社會來說,燃煤的空汙狀況,仍是其先天的劣勢。更重要的,是使用煤炭等化石燃料過程中產生的二氧化碳,與其導致的氣候變遷、極端天氣,更是全體人類在未來數年亟需解決的難題。

從國際趨勢來看,國際能源署在「World Energy Outlook 2018」中,利用不同時期發電技術成本與電力系統價值的變化的估計,認為「幾乎在所有地方」太陽光電雖難以在沒有政策支持的情況下取代既存的燃煤電廠,但已比新建燃煤電廠更有競爭優勢。

-----廣告,請繼續往下閱讀-----

政府間氣候變化專門委員會(IPCC)在 2018 年 10 月的「IPCC全球升溫 1.5ºC特別報告(SR15)」中指出,若要維持地球環境的適居性, 2030 年時的二氧化碳排放量需比 2010 年時減少 45%,並在 2050 年時實現零碳排。對於煤炭的使用,則應在 2050 年時降至所有一次能源的 1% – 7 %,且大部分燃煤,應搭配碳捕捉與封存(CCS)技術使用,以實現零碳排放6。為能有效減少二氧化碳排放,對於部分積極面對氣候變遷提出減碳作為的歐洲國家,如法國預計在 2021 年;英國與義大利預計在 2025 年;荷蘭、丹麥與葡萄牙則預計在 2030 年,即關閉所有燃煤電廠7

2017歐洲各國預計未來減碳排放狀況8。圖/The European Power Sector in 2017

回顧台灣的情境,2018 年中華民國全國性公民投票第八案「您是否同意:確立「停止新建、擴建任何燃煤發電廠或發電機組(包括深澳電廠擴建)」之能源政策?」,公投結果以 38.46% 的「有效同意票數對投票權人數百分比」通過。有投票的人數中,有  76.41% 的投票者支持此項公投。在科學研究結果、國際趨勢與國內民意展現相互吻合的情況下,燃煤電廠在台灣幾無新建或擴建的機會。不過,台灣大概也難以如歐盟諸國,有相對優勢的環境或豐沛的資源能積極放棄燃煤發電。但燃煤電廠若能憑藉其低廉成本,投入更多資源強化煤炭的採購過程與標準制定;更節能與減污的運輸與儲存設施;提升燃燒效率的燃料加工與鍋爐技術;以及燃燒過程對廢氣品質的持續監測;燃燒後的集塵等環保技術。既存的燃煤電廠,仍可以保有其競爭優勢,又能盡可能減少對環境的衝擊。

在可預期的未來,面對氣候變遷帶來的衝擊,台灣要再興建下一座燃煤電廠自有其高難度。若既有的燃煤機組沒有延役或或提早退役的的計畫,則尚有一機組興建中、且各項技術新穎的林口電廠,將以末代燃煤電廠之姿,佇立於國門,持續肩負降低發電成本與支持電力穩定的重責大任。

-----廣告,請繼續往下閱讀-----

延伸閱讀

參考資料

    1. BP-Statistical Review of World Energy
    2. International Energy Agency-Data & Publications-Coal Information 2018
    3. Indiana Center for Coal Technology Research-COAL CHARACTERISTICS 2008
    4. 泛科學:供應鏈中的甲烷外洩,抵銷了天然氣的減碳效益
    5. International Energy Agency-World Energy Outlook-Executive Summary 2018
    6. Intergovernmental Panel on Climate Change-Global Warming of 1.5 °C
    7. CarbonBrief-The EU got less electricity from coal than renewables in 2017
    8. Sandbag-The European Power Sector in 2017

本文由台灣電力公司委託/廣告,泛科學企劃執行

0

1
2

文字

分享

0
1
2
超超臨界是什麼?如何增加火力發電的效率?──煤的旅程(二)燃燒過程篇
鳥苷三磷酸 (PanSci Promo)_96
・2018/11/16 ・3285字 ・閱讀時間約 6 分鐘 ・SR值 546 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/陳柏宇

上一篇我們討論了使用煤炭的前置處理,歡迎來到第二道程序「燃燒過程」。燃燒的過程,怎麼變「乾淨」?

燃燒的過程,怎麼變「乾淨」?圖/pixabay

讓煤在燃燒過程中比較「乾淨」的方法,有三個主要的方向:

1. 讓煤或固體燃料燃燒得更完全。
2. 提高能源轉換效率、讓生產單位電力所使用的燃料減少。
3. 完全改變原本的燃燒方法。

粉煤機讓煤變小,比較好混

第一個讓燃燒過程更「乾淨」的方法,增加燃煤燃燒效率

可以開始想像一下國中理化或是國小自然教的內容:當反應面積增大的時候,反應可以比較完全。因此在燃燒前,我們會將煤炭送進粉煤機變成粉煤(pulverized coal ),除了燃燒效率提升外,黑煙或是廢氣的產生也可以減少許多。如前文提到的,不同煤種會有不同燃燒特性,也是在這個階段進行「配煤」,搭配出最適合的比例。

-----廣告,請繼續往下閱讀-----

新技術流體化床讓固體變流體,燃燒更完全

上頭講到的讓粉煤進入鍋爐內燃燒,燃燒可以比較完全沒錯。但大家應該知道粉塵這種東西易燃易爆炸,會導致鍋爐裡的溫度非常高,長期下來對於鍋爐影響甚鉅,爐壁甚至會有結渣問題,氮氧化物也會偏高,真的很麻煩。

因此,讓我們用完全不一樣的流體化床fluidized bed)概念取代傳統像燒金紙那樣通通丟進一個桶子裡開始燒的運作方式,在  1970 年代左右,流體化床fluidized bed)的應用逐漸成形。

流體化一詞是用來描述固體與流體接觸時的一種運動狀態。將固體放在有氣孔的容器中,當有氣體透過孔洞噴吹快速進入容器中、速度逐漸加快時,固體顆粒將會開始懸浮、分離,並且可以自由的運動或轉動(可以想像成吹麵粉裡的乒乓球),這時這些固體的性質開始接近濃稠的液體。繼續講原理可能還要一萬字,所以就先在這裡打住囉。

說到流體化,目前最能體現這項技術的大概只有貓星人了!Image credits: guremike

-----廣告,請繼續往下閱讀-----

這樣一來有甚麼好處呢?

相比傳統鍋爐(固定式),流體化床的固體顆粒可以均勻分布於爐內、氣體與固體間的熱質傳較高、一次燃燒的總物量相對較大、操作溫度不高比較穩定等等。破碎後的煤中加入生質物料、甚至是破碎廢棄物混燒等,流體化床都相對會是個比較好的選擇。

除了燃燒效率之外,流體化床對於污染也有幫助。例如對於高含量硫份的物質,例如前兩年都吵很兇的生煤、石油焦,可以在燃燒時就先加入石灰石,讓他們一起激情翻騰燃燒,大幅減少硫氧化物的排放量。另外,流體化床爐溫較傳統的燃燒爐低,製造出的氮氧化物的濃度也就相對較低。

目前這樣的爐體在台灣並不多,除了永豐紙業、以及台汽電外,還有台塑真的拿來燒石油焦。國際間規模也因為爐體設計上的問題,使流化床鍋爐的功率(目前最大 460 MW)仍略小於傳統鍋爐(600 MW以上)。未來如果往循環經濟的方向前進,這是必須進步的技術。

-----廣告,請繼續往下閱讀-----

提升發電效率:「超超臨界」到底是甚麼?

大家現在對於「超超臨界」這個名詞大概不陌生,但要知道超超臨界是甚麼,我們需要先來簡單了解一下火力發電的運行,整個過程可不只是燒煤而已喔。簡單來說就是蒸汽機的原理:用煤火燒水變成水蒸汽,透過水蒸汽的高壓推動渦輪機再帶動發電機,出力完畢的水蒸汽冷凝後再加熱進入新的循環。

細節版在這裡:
1. 工作流體(多數為水)先被壓縮,在壓力下成為高壓流體,溫度也跟著上升。

2. 高壓流體來到鍋爐進行加熱,高壓流體吸收了外部熱源成為過熱蒸汽。

3. 過熱蒸汽膨脹後,推動渦輪機發電;蒸汽的溫度和壓力降低,成為濕蒸汽。

4. 濕蒸汽然後進入冷凝器,被冷凝成為飽和液體,並重覆回到第一步驟。

恭喜你,已經看完了工學院都知道的「郎肯循環」(Rankine Cycle)。那超超臨界到底是甚麼啦?先來看一張圖,這是水的三相圖,就是水有三態,固態、液態和汽態的意思。

水的三相圖。(圖:泛科學重製)

以上為一般的循環,而如果把水加壓加壓再加壓 (250 bar 以上)、加溫加溫再加溫(600℃ 以上),它就會突破我們稱之為臨界點的境界(上圖的粉紅色點點)。從此時起,變成具有液態、汽態特性的流體。然後把上面講的郎肯循環拿來解釋一下,如下圖。

-----廣告,請繼續往下閱讀-----

左圖為普通機組的郎肯循環,右圖為與超臨界機組郎肯循環示意圖。(圖:泛科學重製)

左邊是原來亞臨界樣子,右邊是超臨界的樣子,因為上邊界明顯上移,中間圍起來的部分變多了,而中間的範圍其實就發電機轉換出電能的部分;所以超超臨界重點就在於在循環中提高輸出的效率。根據台電月刊提供的數據,主蒸汽壓力每提高 1 MPa,機組的熱效率可提升 0.13 ∼ 0.15 %;主蒸汽溫度每提高攝氏 10 度,機組的熱效率可提升 0.25 ∼ 0.30 %。效率更高、生產單位電力所使用的用煤量較少,也是減少污染重要方法。

這就是國際間目前講求的高效低排放(HELE)燃燒技術,概念上大概一百年前就存在了,只是礙於材料技術的發展,大約 70 年前才出現第一座超臨界機組(規模不大);大約十年前,才有第一座超超臨界。超超臨界機組整體發電效率比起亞臨界多上 6~10 %,整體的發電成本也相對減少。國際上,近幾年火力電廠的機組翻新,之前熱議的深澳電廠,也都採用這種方法。

而以目前的林口發電廠為例,該廠舊機組於 2014 年除役,1、2 號機改以超超臨界機組運轉,與其過往亞臨界機組相較,發電效率由 38% 提升為 45%,亦即在發電量相同的情況下,每年可減少 20% 排放,遠低於法規標準值(如下表),這也是為甚麼會有排放水準接近燃氣的說法出現。

-----廣告,請繼續往下閱讀-----

台灣各燃煤機組氮氧化物106年平均排放濃度圖。(資料來源:台灣電力公司)

台灣各燃煤機組氮氧化物106年平均排放濃度圖。(資料來源:台灣電力公司)

106年林口電廠排放現況。(資料來源:台灣電力公司)

從上圖來看,已經更新的林口電廠相較於台中或是興達電廠的排放有相當的區別,與燃氣電廠的標準也相當接近。另外,不僅止於發電效率高以及低排放量,因為工作流體的單相特性,鍋爐在飼水部分可以快速的做調節。也因此,升降載比傳統鍋爐也可以更加快速,打破了我們對於煤電的「基載」想像,或是配合空氣污染做及時的降載調節。

-----廣告,請繼續往下閱讀-----

林口發電舊機組於 2014 年除役,1、2 號機改以超超臨界機組運轉,發電效率由 38% 提升為 45%。圖/Wikimedia

至此,我們還算順利的結束了第二道關卡「燃燒」。除了上面介紹較為成熟應用的技術以外,仍有許多讓燃煤更有效率的技術正在發展中,在未來幾年能源市場仍由煤炭主導的情況下,希望能讓燃煤發電朝更環保並保有競爭力的方向進展。

但是還沒結束喔,如果燃燒完後就直接排出,造成的污染還是很可怕。所以目前有哪些技術在處理燃燒後的廢氣呢?讓我們準備一起邁向下一關:燃燒後處理(post-combustion)啦。

參考資料:

  1. Power Technology:Lean and clean: why modern coal-fired power plants are better by design
  2. 蔡孟原(2010年6月)。循環式流體化床鍋爐。科學發展月刊,450期,pp.26-32。

本文由台灣電力公司委託/廣告,泛科學企劃執行

-----廣告,請繼續往下閱讀-----