0

1
0

文字

分享

0
1
0

在桃莉羊之後:複製猴,生日快樂!

PanSci_96
・2018/01/25 ・2454字 ・閱讀時間約 5 分鐘 ・SR值 572 ・九年級

「中中」和「華華」。source:原始論文

今天(2018/1/25)《細胞》期刊封面故事,兩隻複製猴「中中」、「華華」去年底在中國上海的中國科學院神經科學研究所,誕生啦!

這是首次使用體細胞核轉移技術(somatic cell nuclear transfer, SCNT)成功複製出的靈長類動物,這兩隻長尾獼猴(Macaca fascicularis)擁有完全一致的基因組,分別出生於 2017 年 11 月 27 日與 12 月 5 日。

體細胞核轉移技術的改良

中中與華華其實並非首次被複製成功的靈長類動物:1999 年科學家也曾成功複製了普通獼猴,但使用的技術較接近於自然狀態下產生同卵雙胞胎的機制。在這次的研究中,科學家使用發展了二十多年的「體細胞核轉移(somatic cell nuclear transfer, SCNT)技術,最出名的例子便是 1996 年出生的桃莉羊。科學家移除未受精的卵細胞之細胞核,再以另一個體細胞的細胞核取而代之;然後刺激該細胞發育為胚胎,再植入代理孕母的體內。

圖/原始論文

當初製造桃莉羊的科學團隊,在後續幾年也製造出了四隻相同的綿羊。體細胞核轉移技術在後續的研究中被應用在二十種不同的動物身上,包括青蛙、小鼠、大鼠、豬、牛甚至是狗。

-----廣告,請繼續往下閱讀-----

「(這項技術)在非人類的靈長類物種上曾經嘗試過非常多次,但都失敗了。」論文共同作者、中科院上海神經科學研究所蒲慕明說。科學家長期認為猴子的基因有些因素讓此項技術無法成功,團隊本次的成功建立在很多實驗的改良上。

由中國科學院孫強研究員率領博士後研究員劉真為首的團隊調整了很多技術細節,從細胞核轉移到細胞融合內容。團隊花了三年完成這些調整,其中一個最主要的成功要素在於團隊使用了胚胎細胞核而非成體細胞核。其他調整內容還包括在胚胎早期階段注入經處理的 Kdm4d mRNA 並且使用組蛋白脫乙醯酶抑制劑(histone deacetylase inhibitor)trichostatin A 處理胚胎細胞,這些處理可以大幅增加懷孕的成功率。

圖/原始論文

團隊在研究中分別使用了體細胞以及胚胎纖維母細胞(fetal fibroblast)的細胞核。但成功率還是有限的:來自體細胞的胚胎分別植入了 42 個代理孕母體內,22 例成功懷孕,有 2 隻出生但很快就夭折了;來自胚胎纖維母細胞的胚胎則植入了 21隻代理孕母體內,6 例成功懷孕,而成功出生的 2 隻小猴子就是「中中」和「華華」。

華華與中中目前分別為六週和八週大,由人工飼養長大,目前看起來發育生理上沒有任何問題。預計這幾個月將有更多小猴子出生。

-----廣告,請繼續往下閱讀-----

「這兩隻小猴子非常活潑而且健康,他們就像人類的小孩一樣成長得很快。」論文通訊作者孫強說:「牠們看起來越長越活潑,而且沒有任何不正常。」

其他科學家怎麼看?

其他科學家表示有限的成功率代表了還需要更多的實驗,弗朗西斯 · 克里克研究所(Francis Crick Institute)胚胎發育與幹細胞研究部門的 Robin Lovell-Badge 說:「即使他們成功獲得了複製猴,但目前的數量太少,不足以達成任何結論,實驗效率仍然很低而不順利。」

「的確必須找到這(低生育率)相關的規則證據,」科羅拉多州立大學生生物醫學系助理教授 Jennifer Barfield 說,她從事的研究嘗試在美國野牛保育上做一樣的事情,她認為這項工作相當有趣且重要:「尤其是對於靈長類來說,成功並非隨手可得。」

「值得恭喜,我知道這件事有多難。」奧勒岡健康與科學大學的複製專家 Shoukhrat Mitalipov ,曾在 2000 年左右使用了超過 15,000 個猴子卵細胞嘗試進行複製,但沒能成功生出任何小猴子。

-----廣告,請繼續往下閱讀-----

那麼,之後呢?

中國科學院神經科學研究所的團隊將會繼續優化體細胞核轉移的技術,並持續觀察中中與華華未來的生理與心理發育狀況。他們在發表的論文中表明希望他們的研究最終可以應用於了解人類疾病,如能加入現在的基因剪輯技術複製疾病的狀況等。希望能夠將複製猴應用於遺傳疾病的研究,如帕金森氏症、阿斯海默與亨丁氏症等。

「非人類的靈長類對於生醫領域的研究非常重要,」James Bourne ,澳洲蒙納許大學助理教授,國家健康與醫療研究顧問的資深成員說,「複製猴作為基因上與人類很相近的物種,可以成為醫學研究的重要工具。」

如果可以有效率提供擁有相同基因的實驗猴,預期將能應用於像是生醫、藥學領域。有些科學家認為能夠複製靈長類動物,對於研究人類疾病將有極大的幫助,在過去的實驗環境中,我們難以排除結果是由於實驗處理、或是個體的基因差異,而如果能使用複製動物進行醫學與藥理的實驗,便能更快速得到結果。

避免不了的倫理議題討論

圖/中國科學院新聞稿

這兩隻小複製猴的誕生也激起了相關的倫理爭論。人類也是靈長類的成員,科學家打破了複製靈長類的技術障礙,理論上也代表我們離複製人又更近了一步。論文的作者聲明他們無意複製人類,但他們也相信這項實驗會再度引出對於複製生物研究的規範討論。

-----廣告,請繼續往下閱讀-----

英國肯特大學基因學的教授 Darren Griffin 說:「該是時候謹慎思考此類基因實驗『容許』及『應當』如何操作的倫理框架了。」他指出,將有批評湧出:「這項實驗結果將可以滑坡推演出我們距離複製人類又更近了一步。」但無論如何,Griffin 認為這項實驗的益處相當明確:「我個人對於此項研究的結果相當審慎樂觀,這是個非常令人印象深刻的技術突破。」

 

原始論文:

參考資料:

文章難易度
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
豬隻器官移植新突破:CRISPR技術攻破了「豬內源病毒」的瑪利亞之牆!
寒波_96
・2017/10/11 ・2824字 ・閱讀時間約 5 分鐘 ・SR值 558 ・八年級

-----廣告,請繼續往下閱讀-----

現代醫學研發出器官移植的技術,但是材料卻遠不足夠,等待捐贈器官的病患大排長龍,大多數人一生都等不到。人類是動物,器官是肉做的,其他動物也是,那麼何不借其他動物的器官一用?

「借」我的器官用?哼!圖/取自《Science》新聞〈CRISPR slices virus genes out of pigs, but will it make organ transplants to humans safer?

缺乏移植器官,借豬的一用

將其他生物的組織、器官,移植到人類身上,有個酷炫的名詞「Xenotransplantation」,翻譯作「異種器官移植」。豬是已知各種動物中,最適合作為人類器官的來源,然而要將豬的器官,如心臟移植進人體,仍有重重難關有待克服,目前還沒有成功案例。

異種器官移植至少有三大潛在問題。第一,免疫排斥。以豬舉例,儘管豬已經是最適合的移植對象,但畢竟人豬殊途;將豬的器官移植進人體後,人類免疫系統會將其視為外來者(也真的是外來者)攻打,導致手術失敗。第二,生理不相容。也就是豬的器官,無法在人體順利運轉。[1]

-----廣告,請繼續往下閱讀-----

靠著基因改造豬與藥物控制,以上兩個問題,都已達到相當程度的改善。而最近發表在《Science》期刊的論文,則是針對另一個問題,有了令人振奮的進展。異種器官移植的第三個潛在問題是:豬病毒感染。[2]

用 CRISPR-Cas9 成功消滅豬的內源反轉錄病毒,培育出基因改造豬,上了當期《Science》封面。圖/取自《Science》封面

住在基因組中的古老病毒

等等,這問題很好解決吧!假如豬帶有病毒,那麼只要讓等待供應器官的豬,從胚胎開始就養在無菌環境中,不就能避免牠們長大以後,將病毒傳染給人類嗎?

問題當然沒有這麼簡單,別誤會,這裡的「豬病毒」不是住在豬身體內的病毒,而是躲在豬的基因組中,以 DNA 序列方式存在的內源性反轉錄病毒(porcine endogenous retrovirus,縮寫為 PERV)。這些病毒就是豬本身的遺傳序列,不可能直接外加藥物消滅。

-----廣告,請繼續往下閱讀-----

事實上,人類跟豬一樣,基因組中也存在不少這類病毒。在人類的演化歷史上,基因組不斷更替,曾有許許多多外來的轉位子(transposon)插入我們祖先的 DNA 序列,也順便引進不少病毒,後來成為基因組的一部份。(人類基因組廣義看來,共超過 40% 是由各式轉位子所引進,來自病毒的只占相對比例,很低的一小部分)

經過長期的演化淘汰,能在基因組中留存下來的病毒,都成為「內源性」的病毒,屬於跟隨細胞正常複製程序的固定成員,絕大部分時候安份守己。我們的免疫系統,除了抵抗外來的入侵者以外,另一重要任務,正是防範這些原本的病毒遺傳物質,哪時候又掙脫枷鎖,跑出來作亂。

人的基因組中,有人的內源性反轉錄病毒,我們的遺傳與免疫體系可以壓制它們。豬的基因組中也有豬的內源病毒,它們在豬的體內受豬控制,當然對豬不成問題,然而,假如把豬的器官移植給人類,豬的病毒在陌生的人體環境中,很可能成為擺脫拘束器的殺人狂魔。(反過來說,把人類器官移植給豬,應該也會發生類似的事,不過此一狀況大概沒有機會上演)

將豬與人的細胞株共同培養,豬的 PERV 會轉移到人類的細胞株,而且愈久愈嚴重。圖/取自 ref 2

-----廣告,請繼續往下閱讀-----

豬的內源病毒會傳染給人

怎麼解決?既然病毒就是豬基因組的一部份,不可能以外加藥物處理,那麼只能直接編輯豬的基因組,先把 PERV 序列消滅。

不過,目前仍缺乏將豬器官移植給人的資訊,豬的病毒在人體作亂,想來儘管嚴重,卻純屬假說,真的值得大費周章去改造 DNA 培養基改豬嗎?新發表的論文,首先進行了一系列實驗,證實 PERV 的病毒危機並非危言聳聽。

豬的內源性反轉錄病毒可分為三種:PERV-A、PERV-B、PERV-C,在豬的基因組中合計有 62 個之多。將源自豬的 PK15 細胞株,與來自人類的 HEK293T 細胞株一起培養,過了很多代以後,人類細胞的基因組中也能偵測到 PERV(有 A 有 B,沒有 C),而且數目隨代數增加愈來愈多,證實 PERV 確實有能力由豬的細胞向人入侵。

將帶有 PERV 的人類細胞株,與未接觸過豬細胞株的人類細胞共同培養,PERV 能夠轉移到新的人類細胞。圖/取自 ref 2

-----廣告,請繼續往下閱讀-----

為了測試 PERV 在人體的轉移能力,實驗團隊接著將受到 PERV 感染的人類細胞株,與新的人類細胞株共同培養。結果是,即使從未接觸過豬的細胞,只要樣本中存在來自豬的 PERV,它仍然能傳播給新的人類細胞。

儘管以上只是非常簡單的體外測試,與免疫系統存在、複雜的人體環境大不相同,不過仍足以證明跨物種的豬病毒感染,是器官移植時不可忽視的風險。畢竟,移植時為了降低排斥反應,勢必會先用藥物抑制人體的免疫作用,這正是病毒轉移的良機。

用 CRISPR-Cas9 改造豬的胚胎纖維母細胞,消滅基因組上頭的一大堆 PERV,創造出不會表現 PERV 產物的改造豬細胞。圖/取自 ref 1

器官移植新希望-沒有內源病毒的豬寶寶

靠著近來當紅的基因編輯工具 CRISPR-Cas9,研究團隊之前已經成功消滅過豬細胞株的 PERV 序列 [3]。不過,假如目的是器官移植,那麼就要改造豬的初級胚胎纖維母細胞(primary procine fetal fibroblast,這邊用的型號稱作 FFF3),才能培育長大後用於移植的個體。

-----廣告,請繼續往下閱讀-----

FFF3 細胞的基因組上,共有 25 處活躍的 PERV,都是需要以 Cas9 精準打擊、根除的目標。兩款 gRNA 被用於導引 Cas9 前往攻擊,然而初步結果顯示,戰況非常慘烈;看起來,大規模同時攻擊基因組上的許多部位,會使得自我毀滅機制啟動,細胞被改造成功,然後它就死掉了。

把經改造後失去 PERV 感染性的胚胎細胞,植入孕母母豬,生下沒有 PERV,有望用於器官移植的小豬。圖/取自 ref 1

像最後一戰(Halo)士官長般如此強悍,經歷全身改造後仍活跳跳的細胞,畢竟極為少數。為了克服此一問題,研究者調配了「雞尾酒」一起餵食細胞,也就是在基因改造同時,再加上p53 inhibitor、pifithrin alpha (PFTa)、basic fibroblast growth factor (bFGF),讓受到劇烈衝擊的細胞能繼續活著,不要想不開自殺。

修正後的作法非常成功,研究團隊終於獲得基因組不含 PERV 的乾淨 FFF3。靠著千辛萬苦後得到的細胞,如今已經培育出 15 位不會表現 PERV 的健康小豬寶寶,直到論文發表之際,最老的已長到 4 個月大。

-----廣告,請繼續往下閱讀-----

將豬的器官移植給人,目前離那一天仍為時尚早。不過這回的基因改造豬仍是又一大突破,讓我們離目標更進一步,也讓學界有了更多信心。[4]另一方面論文也指出,採用 CRISPR-Cas9 進行基因改造的同時,搭配這回的反自殺雞尾酒配方,能十分有效地強化編輯效率,增加成功率,未來或許有很寬廣的發展空間。

參考文獻

  1. Advances in organ transplant from pigs

  2. Niu, D., Wei, H. J., Lin, L., George, H., Wang, T., Lee, I. H., … & Lesha, E. (2017). Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science, 357(6357), 1303-1307.

  3. Yang, L., Güell, M., Niu, D., George, H., Lesha, E., Grishin, D., … & Cortazio, R. (2015). Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 350(6264), 1101-1104.4.
  4. Scientists grow bullish on pig-to-human transplants

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1066 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。