Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

在桃莉羊之後:複製猴,生日快樂!

PanSci_96
・2018/01/25 ・2454字 ・閱讀時間約 5 分鐘 ・SR值 572 ・九年級

「中中」和「華華」。source:原始論文

今天(2018/1/25)《細胞》期刊封面故事,兩隻複製猴「中中」、「華華」去年底在中國上海的中國科學院神經科學研究所,誕生啦!

這是首次使用體細胞核轉移技術(somatic cell nuclear transfer, SCNT)成功複製出的靈長類動物,這兩隻長尾獼猴(Macaca fascicularis)擁有完全一致的基因組,分別出生於 2017 年 11 月 27 日與 12 月 5 日。

體細胞核轉移技術的改良

中中與華華其實並非首次被複製成功的靈長類動物:1999 年科學家也曾成功複製了普通獼猴,但使用的技術較接近於自然狀態下產生同卵雙胞胎的機制。在這次的研究中,科學家使用發展了二十多年的「體細胞核轉移(somatic cell nuclear transfer, SCNT)技術,最出名的例子便是 1996 年出生的桃莉羊。科學家移除未受精的卵細胞之細胞核,再以另一個體細胞的細胞核取而代之;然後刺激該細胞發育為胚胎,再植入代理孕母的體內。

圖/原始論文

當初製造桃莉羊的科學團隊,在後續幾年也製造出了四隻相同的綿羊。體細胞核轉移技術在後續的研究中被應用在二十種不同的動物身上,包括青蛙、小鼠、大鼠、豬、牛甚至是狗。

-----廣告,請繼續往下閱讀-----

「(這項技術)在非人類的靈長類物種上曾經嘗試過非常多次,但都失敗了。」論文共同作者、中科院上海神經科學研究所蒲慕明說。科學家長期認為猴子的基因有些因素讓此項技術無法成功,團隊本次的成功建立在很多實驗的改良上。

由中國科學院孫強研究員率領博士後研究員劉真為首的團隊調整了很多技術細節,從細胞核轉移到細胞融合內容。團隊花了三年完成這些調整,其中一個最主要的成功要素在於團隊使用了胚胎細胞核而非成體細胞核。其他調整內容還包括在胚胎早期階段注入經處理的 Kdm4d mRNA 並且使用組蛋白脫乙醯酶抑制劑(histone deacetylase inhibitor)trichostatin A 處理胚胎細胞,這些處理可以大幅增加懷孕的成功率。

圖/原始論文

團隊在研究中分別使用了體細胞以及胚胎纖維母細胞(fetal fibroblast)的細胞核。但成功率還是有限的:來自體細胞的胚胎分別植入了 42 個代理孕母體內,22 例成功懷孕,有 2 隻出生但很快就夭折了;來自胚胎纖維母細胞的胚胎則植入了 21隻代理孕母體內,6 例成功懷孕,而成功出生的 2 隻小猴子就是「中中」和「華華」。

華華與中中目前分別為六週和八週大,由人工飼養長大,目前看起來發育生理上沒有任何問題。預計這幾個月將有更多小猴子出生。

-----廣告,請繼續往下閱讀-----

「這兩隻小猴子非常活潑而且健康,他們就像人類的小孩一樣成長得很快。」論文通訊作者孫強說:「牠們看起來越長越活潑,而且沒有任何不正常。」

其他科學家怎麼看?

其他科學家表示有限的成功率代表了還需要更多的實驗,弗朗西斯 · 克里克研究所(Francis Crick Institute)胚胎發育與幹細胞研究部門的 Robin Lovell-Badge 說:「即使他們成功獲得了複製猴,但目前的數量太少,不足以達成任何結論,實驗效率仍然很低而不順利。」

「的確必須找到這(低生育率)相關的規則證據,」科羅拉多州立大學生生物醫學系助理教授 Jennifer Barfield 說,她從事的研究嘗試在美國野牛保育上做一樣的事情,她認為這項工作相當有趣且重要:「尤其是對於靈長類來說,成功並非隨手可得。」

「值得恭喜,我知道這件事有多難。」奧勒岡健康與科學大學的複製專家 Shoukhrat Mitalipov ,曾在 2000 年左右使用了超過 15,000 個猴子卵細胞嘗試進行複製,但沒能成功生出任何小猴子。

-----廣告,請繼續往下閱讀-----

那麼,之後呢?

中國科學院神經科學研究所的團隊將會繼續優化體細胞核轉移的技術,並持續觀察中中與華華未來的生理與心理發育狀況。他們在發表的論文中表明希望他們的研究最終可以應用於了解人類疾病,如能加入現在的基因剪輯技術複製疾病的狀況等。希望能夠將複製猴應用於遺傳疾病的研究,如帕金森氏症、阿斯海默與亨丁氏症等。

「非人類的靈長類對於生醫領域的研究非常重要,」James Bourne ,澳洲蒙納許大學助理教授,國家健康與醫療研究顧問的資深成員說,「複製猴作為基因上與人類很相近的物種,可以成為醫學研究的重要工具。」

如果可以有效率提供擁有相同基因的實驗猴,預期將能應用於像是生醫、藥學領域。有些科學家認為能夠複製靈長類動物,對於研究人類疾病將有極大的幫助,在過去的實驗環境中,我們難以排除結果是由於實驗處理、或是個體的基因差異,而如果能使用複製動物進行醫學與藥理的實驗,便能更快速得到結果。

避免不了的倫理議題討論

圖/中國科學院新聞稿

這兩隻小複製猴的誕生也激起了相關的倫理爭論。人類也是靈長類的成員,科學家打破了複製靈長類的技術障礙,理論上也代表我們離複製人又更近了一步。論文的作者聲明他們無意複製人類,但他們也相信這項實驗會再度引出對於複製生物研究的規範討論。

-----廣告,請繼續往下閱讀-----

英國肯特大學基因學的教授 Darren Griffin 說:「該是時候謹慎思考此類基因實驗『容許』及『應當』如何操作的倫理框架了。」他指出,將有批評湧出:「這項實驗結果將可以滑坡推演出我們距離複製人類又更近了一步。」但無論如何,Griffin 認為這項實驗的益處相當明確:「我個人對於此項研究的結果相當審慎樂觀,這是個非常令人印象深刻的技術突破。」

 

原始論文:

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2413 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
豬隻器官移植新突破:CRISPR技術攻破了「豬內源病毒」的瑪利亞之牆!
寒波_96
・2017/10/11 ・2824字 ・閱讀時間約 5 分鐘 ・SR值 558 ・八年級

-----廣告,請繼續往下閱讀-----

現代醫學研發出器官移植的技術,但是材料卻遠不足夠,等待捐贈器官的病患大排長龍,大多數人一生都等不到。人類是動物,器官是肉做的,其他動物也是,那麼何不借其他動物的器官一用?

「借」我的器官用?哼!圖/取自《Science》新聞〈CRISPR slices virus genes out of pigs, but will it make organ transplants to humans safer?

缺乏移植器官,借豬的一用

將其他生物的組織、器官,移植到人類身上,有個酷炫的名詞「Xenotransplantation」,翻譯作「異種器官移植」。豬是已知各種動物中,最適合作為人類器官的來源,然而要將豬的器官,如心臟移植進人體,仍有重重難關有待克服,目前還沒有成功案例。

異種器官移植至少有三大潛在問題。第一,免疫排斥。以豬舉例,儘管豬已經是最適合的移植對象,但畢竟人豬殊途;將豬的器官移植進人體後,人類免疫系統會將其視為外來者(也真的是外來者)攻打,導致手術失敗。第二,生理不相容。也就是豬的器官,無法在人體順利運轉。[1]

-----廣告,請繼續往下閱讀-----

靠著基因改造豬與藥物控制,以上兩個問題,都已達到相當程度的改善。而最近發表在《Science》期刊的論文,則是針對另一個問題,有了令人振奮的進展。異種器官移植的第三個潛在問題是:豬病毒感染。[2]

用 CRISPR-Cas9 成功消滅豬的內源反轉錄病毒,培育出基因改造豬,上了當期《Science》封面。圖/取自《Science》封面

住在基因組中的古老病毒

等等,這問題很好解決吧!假如豬帶有病毒,那麼只要讓等待供應器官的豬,從胚胎開始就養在無菌環境中,不就能避免牠們長大以後,將病毒傳染給人類嗎?

問題當然沒有這麼簡單,別誤會,這裡的「豬病毒」不是住在豬身體內的病毒,而是躲在豬的基因組中,以 DNA 序列方式存在的內源性反轉錄病毒(porcine endogenous retrovirus,縮寫為 PERV)。這些病毒就是豬本身的遺傳序列,不可能直接外加藥物消滅。

-----廣告,請繼續往下閱讀-----

事實上,人類跟豬一樣,基因組中也存在不少這類病毒。在人類的演化歷史上,基因組不斷更替,曾有許許多多外來的轉位子(transposon)插入我們祖先的 DNA 序列,也順便引進不少病毒,後來成為基因組的一部份。(人類基因組廣義看來,共超過 40% 是由各式轉位子所引進,來自病毒的只占相對比例,很低的一小部分)

經過長期的演化淘汰,能在基因組中留存下來的病毒,都成為「內源性」的病毒,屬於跟隨細胞正常複製程序的固定成員,絕大部分時候安份守己。我們的免疫系統,除了抵抗外來的入侵者以外,另一重要任務,正是防範這些原本的病毒遺傳物質,哪時候又掙脫枷鎖,跑出來作亂。

人的基因組中,有人的內源性反轉錄病毒,我們的遺傳與免疫體系可以壓制它們。豬的基因組中也有豬的內源病毒,它們在豬的體內受豬控制,當然對豬不成問題,然而,假如把豬的器官移植給人類,豬的病毒在陌生的人體環境中,很可能成為擺脫拘束器的殺人狂魔。(反過來說,把人類器官移植給豬,應該也會發生類似的事,不過此一狀況大概沒有機會上演)

將豬與人的細胞株共同培養,豬的 PERV 會轉移到人類的細胞株,而且愈久愈嚴重。圖/取自 ref 2

-----廣告,請繼續往下閱讀-----

豬的內源病毒會傳染給人

怎麼解決?既然病毒就是豬基因組的一部份,不可能以外加藥物處理,那麼只能直接編輯豬的基因組,先把 PERV 序列消滅。

不過,目前仍缺乏將豬器官移植給人的資訊,豬的病毒在人體作亂,想來儘管嚴重,卻純屬假說,真的值得大費周章去改造 DNA 培養基改豬嗎?新發表的論文,首先進行了一系列實驗,證實 PERV 的病毒危機並非危言聳聽。

豬的內源性反轉錄病毒可分為三種:PERV-A、PERV-B、PERV-C,在豬的基因組中合計有 62 個之多。將源自豬的 PK15 細胞株,與來自人類的 HEK293T 細胞株一起培養,過了很多代以後,人類細胞的基因組中也能偵測到 PERV(有 A 有 B,沒有 C),而且數目隨代數增加愈來愈多,證實 PERV 確實有能力由豬的細胞向人入侵。

將帶有 PERV 的人類細胞株,與未接觸過豬細胞株的人類細胞共同培養,PERV 能夠轉移到新的人類細胞。圖/取自 ref 2

-----廣告,請繼續往下閱讀-----

為了測試 PERV 在人體的轉移能力,實驗團隊接著將受到 PERV 感染的人類細胞株,與新的人類細胞株共同培養。結果是,即使從未接觸過豬的細胞,只要樣本中存在來自豬的 PERV,它仍然能傳播給新的人類細胞。

儘管以上只是非常簡單的體外測試,與免疫系統存在、複雜的人體環境大不相同,不過仍足以證明跨物種的豬病毒感染,是器官移植時不可忽視的風險。畢竟,移植時為了降低排斥反應,勢必會先用藥物抑制人體的免疫作用,這正是病毒轉移的良機。

用 CRISPR-Cas9 改造豬的胚胎纖維母細胞,消滅基因組上頭的一大堆 PERV,創造出不會表現 PERV 產物的改造豬細胞。圖/取自 ref 1

器官移植新希望-沒有內源病毒的豬寶寶

靠著近來當紅的基因編輯工具 CRISPR-Cas9,研究團隊之前已經成功消滅過豬細胞株的 PERV 序列 [3]。不過,假如目的是器官移植,那麼就要改造豬的初級胚胎纖維母細胞(primary procine fetal fibroblast,這邊用的型號稱作 FFF3),才能培育長大後用於移植的個體。

-----廣告,請繼續往下閱讀-----

FFF3 細胞的基因組上,共有 25 處活躍的 PERV,都是需要以 Cas9 精準打擊、根除的目標。兩款 gRNA 被用於導引 Cas9 前往攻擊,然而初步結果顯示,戰況非常慘烈;看起來,大規模同時攻擊基因組上的許多部位,會使得自我毀滅機制啟動,細胞被改造成功,然後它就死掉了。

把經改造後失去 PERV 感染性的胚胎細胞,植入孕母母豬,生下沒有 PERV,有望用於器官移植的小豬。圖/取自 ref 1

像最後一戰(Halo)士官長般如此強悍,經歷全身改造後仍活跳跳的細胞,畢竟極為少數。為了克服此一問題,研究者調配了「雞尾酒」一起餵食細胞,也就是在基因改造同時,再加上p53 inhibitor、pifithrin alpha (PFTa)、basic fibroblast growth factor (bFGF),讓受到劇烈衝擊的細胞能繼續活著,不要想不開自殺。

修正後的作法非常成功,研究團隊終於獲得基因組不含 PERV 的乾淨 FFF3。靠著千辛萬苦後得到的細胞,如今已經培育出 15 位不會表現 PERV 的健康小豬寶寶,直到論文發表之際,最老的已長到 4 個月大。

-----廣告,請繼續往下閱讀-----

將豬的器官移植給人,目前離那一天仍為時尚早。不過這回的基因改造豬仍是又一大突破,讓我們離目標更進一步,也讓學界有了更多信心。[4]另一方面論文也指出,採用 CRISPR-Cas9 進行基因改造的同時,搭配這回的反自殺雞尾酒配方,能十分有效地強化編輯效率,增加成功率,未來或許有很寬廣的發展空間。

參考文獻

  1. Advances in organ transplant from pigs

  2. Niu, D., Wei, H. J., Lin, L., George, H., Wang, T., Lee, I. H., … & Lesha, E. (2017). Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science, 357(6357), 1303-1307.

  3. Yang, L., Güell, M., Niu, D., George, H., Lesha, E., Grishin, D., … & Cortazio, R. (2015). Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 350(6264), 1101-1104.4.
  4. Scientists grow bullish on pig-to-human transplants

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。