0

1
0

文字

分享

0
1
0

何謂雷射掃描共軛焦顯微鏡?

espa.taipei
・2012/03/08 ・1040字 ・閱讀時間約 2 分鐘 ・SR值 564 ・九年級

還記得去年清大江安世教授利用共軛焦顯微鏡建構出果蠅「腦內嗅覺神經網路地圖」,今天小編就簡易的寫一篇何謂雷射掃描共軛焦顯微鏡(Laser Scanning Confocal Microscopy ,簡稱LSCM)

點選看大圖

雷射掃描共軛焦顯微鏡(Laser Scanning Confocal Microscopy ,簡稱LSCM)是近代生物醫學影像儀器的最重要發展之一,它是在螢光顯微雷射掃描裝置,使用紫外光或可見光激發螢光探針,利用電腦進行影像處理,從而得到細胞或組織內部微細結構的螢光影像,以及在亞細胞水平上觀察諸如Ca2+、pH值、膜電位等生理信號及細胞形態的變化。已廣泛應用於細胞生物學、生理學…,有時也被稱為雷射掃描細胞儀(Laser Scanning Cytometer,LSC)是八十年代迅速發展起來的用於分析細胞學的新型儀器。LSCM與普通光學顯微鏡相比優點明顯,分辨率、靈敏度、放大率和螢光檢測信噪比大大提高。對活細胞可以做分層掃描後,進行3D重建和測量分析,對細胞內微細結構的動態變化…

雷射掃描共軛焦顯微鏡的發展

科學研究工作對更高影像分辨率的追求產生了雷射掃描共軛焦顯微鏡。隨著免疫螢光技術在生物學研究領域的廣泛應用,研究人員注意到,螢光顯微顯微鏡使用場光源,因標本鄰近結構(細胞或亞細胞結構)產生的衍射光和散射光的干擾,使標本中細微結構的成像不夠清晰。

一. 組成
倒置或正立螢光顯微鏡、掃描頭(照明針孔、探測針孔、螢光濾片系統、鏡掃描系統和光電倍增管)、掃描頭控制電路、電腦和影像輸出設備

二. 原理
利用放置在光源後的照明針孔和放置在檢測器前的探測針孔實現點照明和點探測,來自光源的光通過照明針孔發射出的光聚焦在樣品焦平面的某個點上,該點所發射的螢光成像在探測針孔上,該點以外的任何發射光均被探測針孔阻擋。照明針孔與探測針孔對被照射點或被探測點來說是共軛的,因此被探測點即共焦點,被探測點所在的平面即共焦平面。電腦以像點的方式將被探測點顯示在電腦螢幕上,為了產生一幅完整的影像,由光路中的掃描系統在樣品焦平面上掃描,從而產生一幅完整的共焦影像。只要載物台沿著Z軸上下移動,將樣品新的一個層面移動到共焦平面上,樣品的新層面又成像在顯示器上,隨著Z軸的不斷移動,就可得到樣品不同層面連續的光切影像。

在共軛焦顯微鏡的價格都是幾百萬台幣以上,因為非常精密所以價格不斐。

前一陣子工研院光電所已經有做出一台簡易式的共軛焦顯微鏡,小編已經測試過囉!當然精密度無法像正常一樣,但用來教學或用於較大型的物體還可堪用,售價小編記得大約在五十萬左右吧!

原文出處:Photomicrography can also be an art!

文章難易度
espa.taipei
12 篇文章 ・ 0 位粉絲
顯微攝影也可以是一門藝術!顯微鏡不是單單的工具而已,其實只要善加利用,也能變成一幅美麗的藝術作品!

0

10
3

文字

分享

0
10
3
什麼是「近場光學顯微術」?為何它是開啟奈米世界大門的關鍵?
科技大觀園_96
・2021/12/01 ・2708字 ・閱讀時間約 5 分鐘

近場光學顯微術可突破繞射極限,使我們看到奈米等級的光學影像。圖/孔瀞慧繪

傳統光學顯微技術發展幾個世紀之後,從 20 世紀後半⾄今,突破光學繞射極限成為顯微技術的重要課題。繞射極限是光波所能聚焦的最⼩尺寸(約為光波長的⼀半,以可⾒光來說約 200-350 nm),仍遠⼤於分⼦和奈米材料。顯微鏡的發明是進入微觀世界的⾥程碑,⽽突破光學繞射極限後就能開啟進入奈米世界的可能性。 

突破光學繞射極限的超⾼解析度顯微技術⼤致上可以分為遠場(far field)與近場(near field)兩⼤類,這兩者的差別在於是否利⽤探針在靠近樣品距離遠⼩於⼀個波長(約數⼗奈米)處進⾏量測,若有則為近場,其餘則屬於遠場。⽽遠場顯微技術若要達到奈米級別的超⾼解析度, 需要以特殊螢光標定加上大量電腦計算來輔助。 

中央研究院應⽤科學研究中⼼研究員陳祺,專攻近場光學顯微術,屬於探針掃描顯微術(Scanning probe microscopy, SPM)中與光學相結合的分⽀。 

探針掃描顯微術,家族成員眾多 

探針掃描顯微術泛指使⽤探針來掃描樣品的顯微技術,依照原理的差別再細分成多個類別。在整個探針掃描顯微術家族中,最早的成員為 1981 年問世的掃描穿隧顯微鏡(Scanning tunneling microscope, STM),其主要機制是偵測探針與待測物表⾯間的量⼦穿隧電流(註1),作為回饋訊號來控制針尖與待測物的距離,⽽得到待測物表⾯次原⼦級別的高低起伏。1986 年發明的原⼦⼒顯微鏡(Atomic force microscope, AFM)則是⽬前最廣為應⽤的探針顯微技術,其以針尖接觸(contact)或輕敲(tapping)物體,藉由偵測針尖和物體表⾯間之凡得瓦⼒,得知物體表⾯的高低起伏。 

探針掃描顯微術(SPM)家族。僅示意,並未包含所有的成員。圖/劉馨香製圖,資料來源:陳祺

在探針掃描顯微術中,控制針尖與物體的相對距離是重要的課題,STM 可控制距離在一奈米以下,AFM 則可在一奈米到數十奈米間變化。此外,要在奈米世界「移動」並不是⼀件簡單的事。因為⼀般以機械⽅式的「移動」,其尺度都會在微米級別以上,這就像是我們沒有辦法要求⼤象邁出螞蟻的⼀⼩步⼀樣。所幸 1880 年居禮兄弟發現壓電材料會因為外加電場,⽽導致晶格長度的伸長或者收縮,即可造成奈米級別的「移動」。⽬前所有的探針顯微術都是以壓電效應達成對針尖或樣品「移動」的控制。 

近場光學顯微術,探針加上光 

依 STM/AFM 控制針尖的技術基礎,外加光源於針尖上,即為近場光學顯微術(Scanning near-field optical microscopy, SNOM),依照光源形式的不同可區分為兩⼤類: 

1. 微孔式近場光學顯微術(aperture SNOM,簡稱 a-SNOM) 
2. 散射式近場光學顯微術(scattering SNOM,簡稱 s-SNOM)

a-SNOM 是利用透明的 AFM 針尖,先鍍上⼀層⾦屬薄膜,並打上⼩洞,讓光從⼤約 50-100nm 左右的⼩洞穿出,得到⼩於光學繞射極限的光訊號。s-SNOM 則是外加雷射光源聚焦於針尖上,並量測散射後的光訊號。其中,針尖增強拉曼散射光譜顯微鏡(Tip-enhanced Raman spectroscopy, TERS)是屬於 s-SNOM 的⼀種特殊近場光學模式,主要為量測拉曼散射光譜,即可識別分⼦鍵結的種類。由於拉曼訊號相對微弱,透過探針鍍上⾦屬薄膜,即可利⽤針尖端局域電場的放⼤效果,來增強待測物的拉曼訊號,並利用針尖的移動來得到奈米級空間解析度的拉曼成像。 

(左)a-SNOM 所使用的探針,針尖上有微孔。(中)a-SNOM 原理:綠色箭頭表示光從上方經微孔射入樣品,紅色箭頭表示偵測器接收光訊號。(右)s-SNOM 原理:綠色箭頭表示光聚焦於針尖,紅色箭頭表示偵測器接收光訊號。光源與偵測器的位置可互換。圖/陳祺提供

陳祺的研究歷程與觀點

在陳祺就讀博士期間,其研究領域主要為結合低溫超高真空 STM 的單分子光學量測,需要極度精進探針掃描顯微鏡的穩定與解析度。畢業之後將⽬標轉向室溫室壓下的探針掃描顯微術與光學的結合,用以量測更多種類和不導電樣品。

陳祺在博⼠後期間的⼯作以 TERS 為主,曾發表解析度⾼達 2 奈米以下的成果,維基百科的 TERS 條⽬,也引⽤了陳祺當時發表在《Nature Communication》的論⽂。回國進入中研院之後,陳祺也開始 a-SNOM 的研究。

無論 TERS 或 a-SNOM,兩者的實驗設計都是建構在 AFM 上,因此陳祺會⾃⾏架設更精準的 AFM,以達成近場光學顯微術更佳的穩定性。 

近場光學實驗操作上的困難除了針尖的製作之外,穩定的 AFM 掃描其實也相當不容易,是維持針尖品質的關鍵。傳統上 a-SNOM 都是以接觸式(contact mode)的 AFM 方式掃描,以防止輕敲式(tapping mode)起伏會干擾光訊號,代價就是 AFM 的解析度極差。陳祺將⾃架的近場光學實驗放進⼿套箱裡,能讓針尖在輕敲式時維持極⼩的振幅(在⼀個奈米以下),可以大幅提高 AFM 的形貌解析度,也幾乎不損傷針尖。由於陳祺有非常豐富⾃架儀器的經驗,才能很⼤程度突破⼀般商⽤儀器的限制。 

不同的顯微影像比較。樣品為一種二維材料異質結構,左為結構示意圖,中為 AFM 影像,右為 a-SNOM 影像。AFM 能精確解析樣品的高低起伏,然而 a-SNOM 可解析樣品的光學特性。圖/陳祺提供

⼀般認為 TERS 有較佳的解析度,但由於 TERS 在散射訊號影像上有很大程度的不確定性,經常導致假訊號或假解析度的發生。近年來陳祺反⽽把研究的主軸轉向 a-SNOM,因為她更看重是否能由 AFM 得到的材料結構和高度,來解釋近場光學所量測的結果,以期研究材料背後的物理或化學現象。

另外,陳祺近期最重要的突破是在⽔中完成 a-SNOM 的量測,將針尖與光學元件整合在自製的腔體(cage system)之中,得以在保持生物樣品的活性之下得到超高解析度的影像,這將是開啟利用近場光學研究⽣物課題的重要⾥程碑。

最後,⾝為擁有兩個孩⼦的女性研究員,「如何兼顧⼯作與家庭」或許是⼀般新聞媒體會問的問題。然⽽,陳祺分享⾃⼰的⼼得:「是不可能兼顧的啦!先集中精神做好⼀件事,等另⼀件要爆掉的時候再去救它。」可能坦承⾃⼰沒有辦法做好每件事, 反⽽讓陳祺在實驗上永遠能找到促使⾃⼰改進的動⼒。 

註解

註 1:量⼦穿隧電流:在量⼦世界中,物質同時具有波動和粒⼦的特性。因具有波動的性質, 當電⼦撞擊⼀層很薄的障礙物時,有不為零的機率穿過去,並產⽣穿隧電流(tunneling current )。穿隧電流與障礙物厚度成指數函數遞減,因此可藉由量測穿隧電流強度計算出待測物表⾯極微⼩的⾼低起伏。

科技大觀園_96
82 篇文章 ・ 1120 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

5
2

文字

分享

0
5
2
你的視網膜,如何調整腦中影像的明暗對比?——《眼見為憑》
時報出版_96
・2021/06/10 ・2248字 ・閱讀時間約 4 分鐘

  • 作者|理查.馬斯蘭(Richard Masland)
  • 譯者|鄧子衿

一個男人彎腰抱著吉他
修剪草木的人,那天是綠色的。
世人說:你有一把藍色吉他
你彈奏得不像樣。
他回答:曲子就是那樣
在藍色的吉他上彈才變樣。——華萊士.史蒂文斯

強化真實世界影像

視網膜細胞一開始處理的另一件重要的事,是強化輸出影像的邊緣。請注意開啟細胞和關閉細胞並沒有改變視覺影像,只是告訴腦接收到的是明亮或是黑暗。邊緣強化是另一回事,因為從這裡開始,原始的影像就沒有忠實地傳遞到腦部了。就腦部那邊來看,影像已經受到強化了,也就是邊緣受到處理,具備了最多的資訊。

邊緣的重要性看起來非常明顯,但是其中包含了一個掌握了視覺非常多面向的核心原理。自然世界呈現出來的像素絕對不是隨機的,自然的影像世界中具有結構:線條、角度、曲線、表面。也就是說,有些像素的出現會受到周遭影像內容的影響。真正的隨機影像世界像是只收到雜訊的電視螢幕。人類的視覺系統能夠加以整理,強化發生改變的結構,並且削弱缺乏變化的區域,例如天空的中央,單一顏色區塊的內部。

天空的中央,單一顏色區塊的內部。圖/Pexels

視網膜產生讓影像邊緣強化的機制是「側邊抑制」(lateral inhibition),這是視網膜所進行的基本程序之一,也是電腦影像生成的基本程序。這時我們再一次去看剛才那個簡單的圖案,那個全黑和全白的區域中沒有什麼資訊,產生變化的點(也就是邊緣)才有最多的資訊。側邊抑制會使得靠近邊緣的節細胞的反應增強。也因為邊緣抑制,腦部接收到的黑色邊緣和白色邊緣的訊息最為強烈。這是視網膜選擇影像世界中重要特徵傳遞給腦部的根本例子。

在行動電話和電腦中也有相同的數位邊緣強化程式。你大概知道數位影像通常都可以用「促進對比」或「邊緣強化」修改。修改後影像會變得更為銳利。當然,天下沒有白吃的午餐,影像中的灰色調往往犧牲了,但是有的時候這個犧牲是值得的。

看到的都是修改過的影像

側邊抑制這個機制普遍存在於感覺系統中,視覺、觸覺和聽覺有,嗅覺和味覺可能也有。所有哺乳動物和許多脊椎動物都具備側邊抑制,這個系統可能很有用,在動物演化初期便出現了,是大自然最早的影像處理技巧。側邊抑制(邊緣強化)為什麼這麼好用呢?

要回答這個問題,我們得把側邊抑制當成視網膜上所有視網膜節細胞所送出訊息的特性。下面這張圖指出了落在視網膜表面上的正確影像(由桿細胞和錐細胞所偵測),在經由幾個步驟的修改之後,由視網膜節細胞送往腦部。

落在視網膜表面上的正確影像,在經由幾個步驟的修改之後,由視網膜節細胞送往腦部。圖/《眼見為憑》

上面那條線代表視覺影像,影像的一半是黑色的,另一半是白色的。中間的那條線代表了由一片視網膜節細胞看到的影像。最下面的那條線代表了節細胞送往腦部的訊息強度。請注意在邊緣地區,由每個節細胞傳遞的訊息是經過強化的,在亮的區域那邊增強了,而在暗的那邊節細胞的反應減弱了。從腦來說,這個機制產生的效果是亮和暗之間的差異(定義出邊緣的訊號)增加了。

為了讓說明簡單,我在這裡用只含有開啟細胞的視網膜當例子,其實另一半的關閉節細胞也有發揮作用,方式是和開啟細胞相反,但是效果相同:增加邊緣附近訊號的差異。我在這裡不會囉嗦說明每個步驟,他們其實就像是開啟細胞,只是行為反過來而已。

為了好玩,我們可以思考一個有趣的事情:如果造成刺激區域的黑色是最黑的黑色,白色則是完全的純白色,那麼黑色的邊緣會看起來更黑、白色的邊緣會看起來更白嗎?如果造成刺激的黑色是純黑,白色是純白,那麼就定義上來說,由開啟細胞組成的系統和關閉細胞組成的系統應該會受到限制,因為他們的反應不可能在零之下,也不會超過百分之百。但是在現實世界中,一個影像的所有部位都會當成是在零與百分之百之間,會比較亮或比較暗,但不會是絕對的亮與暗。當視覺系統遇到從亮到暗的轉變區域時,側邊抑制會用同樣的方式強化訊號,讓我們對於對比的感知更為強烈。這個機制造成了著名的視覺錯覺「馬赫帶」(Mach bands):深淺不同的兩條色帶並在一起時,我們會覺得交界處旁邊深色的區域的顏色要比較深、淺色區域的顏色要比較淺。

馬赫帶。圖/Wikipedia

總而言之,視網膜上的視網膜節細胞有四種基本形式:暫時開啟、持續開啟、暫時關閉、持續關閉,每一種都會受到側邊抑制的影響,所以對於邊緣附近區域產生的反應要比中央沒有變化的區域來得強烈。我們在第四章中還會看到,視網膜其實更為複雜,就如同一篇論文的標題中所說的,「比科學家所想得還要聰明」。但是我們可能要一段時間才發現到有多聰明。在此同時,科技進展讓我們能夠更仔細腦部處理來自視網膜資訊的方式。

時報出版_96
174 篇文章 ・ 34 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

4

31
3

文字

分享

4
31
3
一窺生物分子私底下在幹嘛!低溫電子顯微技術原子等級突破
linjunJR_96
・2020/12/08 ・1462字 ・閱讀時間約 3 分鐘 ・SR值 530 ・七年級

生物體中的蛋白質分子通常長得非常複雜,不是幾行化學式能解決的。如果想把它的分子結構鉅細靡遺的描繪出來,你有幾種選擇。

讓人類發現 DNA 雙股螺旋的 X 光晶體學

其中一個是 X 光晶體學,也就是讓許多蛋白質分子一同排列成整齊的晶體,接著將 X 光打進去,用繞射圖案進行分析。從 1950 年代以來,科學家便常常使用這種技術來探索分子結構。DNA 的雙股螺旋結構便是透過 X 光晶體學被發現。

圖 1/著名的 51 號照片 (Photograph 51)。葛斯林 (Raymond Gosling) 和富蘭克林 (Rosalind Franklin) 拍到了DNA晶體所繞射出的X型圖樣,帶領了華生與克里克等人提出了雙股螺旋的模型。圖/Raymond Gosling, King’s College London

不過這種方法有其根本上的限制。X 光晶體繞射後的強度很弱,必須藉由晶體內多個重複且整齊的晶格,進行同步繞射來增強訊號,因此沒辦法處理太大的蛋白質分子(單位體積內重複晶格太少),或是結構複雜的蛋白質(像是核糖體是由兩個次單元組成的),而且因為 X 光晶體學仰賴的是晶體結構的繞射,那些無法好好結晶的蛋白質,便不在它的防守範圍內,而細胞中許多的蛋白質都很難形成整齊的晶體。

另外,就算可以成功的結晶,被結晶的蛋白質分子也無法呈現出平常運作時的多種風貌,產生的影像也無法捕捉關於分子的任何動態資訊。

不斷跨越解析度門檻的低溫電子顯微技術

於是我們有另一個選項:低溫電子顯微技術 (cryo–electron microscopy) 。待觀察的分子被凍結在超低溫環境中,而研究人員用電子束轟炸分子,透過電子留下的影像來還原分子的立體結構。這種技術不需要蛋白質進行結晶,不過解析度普遍較差,最後的影像往往只能看出幾個模糊的團塊,因此通常只會用在大的蛋白質分子。

近年來,低溫電子顯微的解析度有明顯的進步。左方為 2013 前的解析度,右方為 2013 年後。 圖/Martin Högbom, The Royal Swedish Academy of Sciences

隨著相關領域人員的持續努力,低溫電子顯微的解析度已經大有進展。2017 年的諾貝爾化學獎便是頒給三位科學家在高解析度低溫電子顯微技術方面的突破。前一陣子的紀錄保持者是日本團隊對缺鐵基蛋白 (apoferritin) 的研究,解析度到達 1.53 埃。不過如果想要清楚的呈現個別原子,解析度差不多需要到達 1.5 埃,還差了一些。

在今年十月 Nature 期刊的一篇最新研究中,一個跨國研究團隊利用改良過的電子束與分析軟體,成功達到了 1.25 埃以上的解析率,足以清楚標示出每顆原子的位置。

聽起來很厲害,不過這代表的是什麼?

低溫電子顯微技術的突破,有助於人類了解複雜蛋白質是如何運作的。圖/giphy

由於生物分子可以在行動中被降溫並「定格」,我們現在能夠清楚的看見蛋白質這類複雜的分子機械如何運作,清楚到每顆原子的動態都盡收眼底。毫無疑問地,這樣的技術將為分子與結構生物學帶來重要的進展。

目前,原子等級的解析度只適用於結構較堅硬的蛋白質分子。做為下一階段的目標,研究團隊希望能將同樣的技術運用在一般柔軟的大型蛋白質結構,並達到一樣好的解析度。在結構生物學的領域中,使用低溫電子顯微鏡的研究人口逐年成長,而這次的技術突破有望繼續加速這個趨勢。

參考資料

  1. Yip, K.M., Fischer, N., Paknia, E. et al. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020).
  2. Cryo–electron microscopy breaks the atomic resolution barrier at last
  3. X-光晶體繞射學與結構生物學
所有討論 4
linjunJR_96
33 篇文章 ・ 769 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。