0

0
0

文字

分享

0
0
0

沒看過顏色的色彩科學家瑪麗——《詩性的宇宙》

PanSci_96
・2017/11/21 ・5618字 ・閱讀時間約 11 分鐘 ・SR值 563 ・九年級

-----廣告,請繼續往下閱讀-----

意識超越了物理世界

地球上的生命歷經了一連串劇烈相變。自我複製生物體、細胞核、多細胞生命、攀爬上陸地、語言的起源——這一切全都展現出生命的新本領,改變了它們力能所及的範圍。意識的出現,稱得上是最有趣的相變,也是物質展現自組織新方法,以及行為表現新方式的起點。原子不只是能自行組織成複雜的自我維持模式,而且那些模式還能養成自我察覺,以及思考自己在宇宙間所占地位的能力。

生命的誕生需要經過激烈的巨變,圖/by NASA, ESA, J. Hester and A. Loll (Arizona State University)@wikipedia commons。

除非還有更為深遠的作用。哲學家托馬斯.內格爾(Thomas Nagel)便曾說過:「意識的存在似乎意味著⋯⋯自然秩序遠非物理學和化學能解釋萬象的情況那般嚴謹。」(對某件事物「是什麼樣子」的感受,就是完整理論應該能解釋的事項,真正強調這觀點的人是內格爾。他的著名實例是,我們不可能知道身為一隻蝙蝠的感覺,不過這裡的重點還更廣)。根據這項觀點,我們不該期望能單純從核心理論的量子場之物理行為層面來解釋意識經驗,因為意識超越了物理世界。

我們不難理解為什麼會有人這樣覺得。好吧,這種想法繼續發展,我可以接受宇宙存在,服膺於自然律,毋須訴諸外界任何事物。我完全相信,生命是種種互鎖化學反應的複雜網絡,也認同它是自發性地開始,並且在幾十億年期間當中經歷天擇演化而出現。不過,我肯定不只是在重力和電磁力影響下彼此互撞的一堆原子。我能感知,我有感覺——有什麼讓我成為我,那是某種個人經驗上的獨特事項,一種豐富的內在生活,完全不可能以不做思考的運動物質來做解釋,不論你把多少原子凝聚在一起都一樣。

這個課題如今已冠上身心問題的稱號;我們怎麼能期望只以物理概念來說明心理現實?

-----廣告,請繼續往下閱讀-----

就如生命的起源和宇宙的起源,我們沒辦法聲稱自己能完全理解意識的本質。有關我們如何思考和感覺的研究,目前仍處於較初階的發軔期,至於如何思考我們本質身分的課題,就更別提了。神經科學家暨哲學家派翠西亞.邱奇蘭(Patricia Churchland)便曾說道:「我們是前牛頓、前克卜勒。我們依然在猜想木星也許有衛星繞行。」

不過就我們對意識的認識方面,應該沒有任何事物會促使我們懷疑自然主義派的尋常世界概念,畢竟那在其他背景脈絡向來十分成功。就眼前而言,應該沒有哪項因素可以促使我們認為物理定律需要更新、修訂或增補。

體驗紅色是什麼意思?

就如「生命」一般,意識也不太算是種統一概念,而比較像是某種屬性和現象的群集。我們都能意識到自己,且和外在世界是有區別的。我們可以思忖種種不同未來。我們能體驗感覺。我們可以做抽象和符號推理。我們能感受情緒。我們能喚醒記憶,說故事,有時還會撒謊。這所有層面的同時運作,共同對滋生意識做出貢獻,其中有些層面比其他層面更容易以純物理術語來解釋。

想想紅色。那是種有用的概念,而且是能普遍客觀被認出的概念,起碼就擁有視力且不因色盲影響而見不到紅色的人來說是這樣。操作性指令「燈轉紅就停止」清楚分明,毫不含糊。不過仍有個著名的潛藏問題:當我們看到某件紅色的東西時,你和我看的是同一個東西嗎?那就是現象性意識(phenomenal consciousness)問題——體驗紅色是什麼意思?

-----廣告,請繼續往下閱讀-----
為什麼我們可以體驗紅色?圖/by Pezibear@pixabay。

感質這個詞(qualia,quale之複數詞)有時用來指稱某種事物在我們看來呈現什麼相貌的主觀經驗。「紅」是個顏色,是在物理上客觀存在的光波波長,或者其合宜組合;不過「關於紅色的體驗」則是我們想在完整意識認識當中說明的一種感質。

澳洲哲學家大衛.查默斯(David Chalmers)提出一項著名的觀點,彰顯出他所稱意識的「簡單問題」(Easy Problem)和「困難問題」(Hard Problem)之差別。「簡單問題」具有多種形式——解釋醒覺和睡眠之間的差異,還有我們如何感知、儲存並整合資訊,以及我們如何能夠回憶過去並預測未來。「困難問題」則是解釋感質——即經驗的主觀特性。這可以設想成意識中不可化約之第一人稱層面;我們的私人感受,而不是世界其餘部分所見,以及我們如何表現舉止並做出反應。「簡單問題」關乎運作;「困難問題」則關乎體驗。

「困難問題」對純世界的物理性認識,提出了一項明顯的挑戰。「簡單問題」並不簡單,它們完全位於傳統科學研究的駕駛室內。當我們端詳一條魚時,光子如何照射我們的視網膜,最後還在我們腦中喚出了「魚」的概念,關於這方面的認識,我們還沒有最後定論。不過從神經科學來看,通往那裡的路徑看來相當直截了當。相較而言,「困難問題」就完全像另一缸魚了。我們可以隨心所欲在腦中任意翻攪,不過我們究竟指望什麼,那樣做如何能幫助我們認識我們內在完全主觀的經驗?一批依循核心理論演化成形的量子場群集,到底是怎麼擁有「內在經驗」的?

你心中所認定最重要的核心事項,其實根本就不是個問題,圖/by 3dman_eu@pixabay。

許多意識專家依循彼得.漢金斯(Peter Hankins)的說法,把這兩類議題想成「(其實很難的)簡單問題和(難如登天的)困難問題)」。不過有些人認為,「困難問題」不只相當容易;事實上還根本不是問題——完全就是概念混淆的問題。兩陣營間的討論讓人氣餒;再也沒有比這個更令人沮喪的了:有人告訴你,你心中所認定最重要的核心事項,其實根本就不是個問題。

-----廣告,請繼續往下閱讀-----

這基本上就是身為詩性自然主義派的人士要做的事。意識的屬性,包括我們的感質和內在主觀經驗,都是有用的談論方式,適合用來描述我們所稱人類之原子群集所表現的實際行為。意識不是種錯覺,不過它也沒有指出,有任何事情背離了目前所知的物理定律。

「困難問題」有多困難?

好幾種臆想實驗都嘗試闡明「困難問題」實際上有多困難。「色彩科學家瑪麗」(Mary the Color Scientist)就是個著名案例,這是說明我們所稱知識論證(knowledge argument)的一個(實實在在)富有色彩的實例。這是澳洲哲學家弗朗克.傑克森(Frank Jackson)在 1980 年代提出的實驗,目標是要表明,世上除了物理事實之外,肯定還有其他事項。它和希爾勒的中文房間比肩同列最著名的臆想實驗,而且實驗中哲學家都把人鎖進古怪房間裡,以此來闡述意識的某種屬性。

瑪麗是個出色的科學家,她在一種怪誕環境下長大。她一輩子都待在一個房間裡,從不曾離開,而且那房間完全沒有色彩。房間裡的所有東西都是黑白或明暗灰階。她的皮膚被漆成白色,她的衣服全是黑的。更怪異的是,儘管環境如此,瑪麗長大後卻變成精研色彩的科學家。她能取得她想要的一切設備,還有色彩學科的完整科學文獻。所有色彩插圖都經化約為灰階影像。

當瑪麗第一次看見色彩會發生什麼事?圖/by Pexels@pixabay。

從物理學觀點來看,瑪麗知道關於色彩一切的知識。她知道光的物理學,也知道眼睛如何傳遞信號到腦的神經科學。她讀遍藝術史、色彩理論,以及涉及如何種出一種全紅番茄的農耕專業技術。但她從未見過紅色。傑克森問道,當瑪麗決定離開她的房間,第一次真正看見色彩時會發生什麼事?特別是,她會不會學到任何新鮮事?他主張會。

-----廣告,請繼續往下閱讀-----

當瑪麗走出她的黑白房間,或者拿到一台彩色監視器時,會發生什麼事?她會不會學到任何東西?看來道理清楚分明,她會學到關於世界以及我們對世界相關視覺經驗的某些事項。不過話說回來,她先前的知識肯定不完整,然而她擁有所有的物理學資訊。所以在這之外還有其他知識,而物理主義是錯誤的。

瑪麗知道關於色彩的所有物理事實,不過她仍有不知道的事項;也就是體驗紅色「是什麼」。因此世上不只存有物理性事實,還有其他類型的事項。這種論述不只是在講,我們還不知道如何解釋瑪麗在物理上的新經驗;而是在講,根本不可能有這樣的解釋。

source:Ruslan Burlaka

就像文中房間實驗,瑪麗的困境取決於一種臆想實驗配置,這種安排看來相當無害,實際上卻是不合理至極。「關於色彩的所有物理事實」是多得不得了的事實。以下就是一個關於色彩的物理事實:上週我切洋蔥時割傷手指,我的血是紅的。瑪麗知不知道上週我切洋蔥時割傷我的手指?她知不知道全宇宙可見光的所有光子的位置、動量和頻率?還有宇宙的過去和未來呢?就像「全知全能、全善的存在」這樣的措詞般,「關於色彩的所有物理事實」這句話,也在我們心中喚出了某種含糊的印象,然而這詞句卻完全不能清楚對應任何定義明確的概念。

「知識」和「經驗」的定義

當我們引述瑪麗的案例,來證明宇宙存在不純粹為物理性的屬性時,就會發現物理事實含糊不清。不過,這還不是最大的問題所在。真正的問題出在「知識」和「經驗」的定義游移不定。

-----廣告,請繼續往下閱讀-----

讓我們從詩性自然主義的角度來設想瑪麗的困境。眼前的世界已有某些基本描述,或秉持演化的量子波函數,也或許以更深邃的事項為本。我們提到的概念如「房間」和「紅」,都屬於能提供有用近似模型的語彙,而那種模型可代表該基底現實在某合宜適用範圍內的特定層面。舉例來說,我們發明了「人」的概念,並以特定方式來映射於基底現實——那種方式就原則上或許很難明確定義,不過實務上很容易辨識。

我們很難定義「知識」,圖/by Lunaphoto@pixabay。

「人」擁有許多不同的屬性,好比年齡和身高。這當中有一種屬性是「知識」。倘若一個人(多少)能正確回答關於某件事的一些問題,或是能有效執行與之相關的某些活動,則那人對該事就具有相關知識。倘若有個可靠人士告訴我們:「琳達知道如何換車胎」,我們對這段話就應該賦予高度信任度,認為那個號稱「琳達」的人,能回答許多問題並執行若干活動,包括在我們的汽車爆胎時幫忙換上車胎。一個人擁有知識,就相當於那人的腦中神經元間存有特定的突觸連結網絡。

所以我們聽說有個人名叫「瑪麗」,她擁有某項知識——關於色彩的完整物理事實。那麼當她走出房間頭一次體驗色彩時,是否也算「獲得新知」?

這就取決於你指的是什麼。倘若瑪麗知道關於色彩的所有物理事實,這就等於她在大腦層級擁有正確的突觸連結,能正確回答我們就色彩方面向她提出的物理事實相關問題。她是否真的看過紅色,則對應於她視覺皮質的特定神經元放電,接著這會長出其他的突觸連結,形成「見過紅色的記憶」。根據該臆想實驗的設計,這還沒有真正發生在瑪麗身上——合宜神經元群集的放電現象,從未發生在她身上。

-----廣告,請繼續往下閱讀-----
瑪麗是否有「學到新東西」的經驗?圖/by geralt@pixabay。

當她走出她的房間,而那些神經元也終於放電,瑪麗是否「學到新東西」?就某層意義來說,當然是的——這時她已具有她先前不曾擁有的記憶。所謂知識,和我們回答問題和進行某些事情的能力有關,瑪麗這時就能做出她先前無法進行的事項:憑藉視力來辨認紅色的東西。

這是否在講,宇宙比它的物理層面涵括得更廣?當然不是。我們只是引進兩種突觸連結群集的一種人為差異。「一種是經由閱讀文獻並進行黑白科學實驗誘發」、「另一種則是經由觀看紅光子並刺激視覺皮質來誘發」,這是區辨我們的宇宙知識的一種可能劃分方式,但不是必要做法。差別在於知識如何進入你的腦中,而不在於那是哪種知識。這可不是說,我們該依循這項論據,開始為我們的自然界成功模型增添全新的概念範疇。

瑪麗大有機會體驗紅色。她大可以製作出一件探針,插入自己的頭顱,由此向她的視覺皮質直接發送合宜的電化學信號,精確觸發我們心中認定「看見紅色」的那種經驗(畢竟,瑪麗的角色設定是一位出色的科學家)。我們可以選擇不讓她做這種事,不納入她「學習關於色彩的所有物理事實」的環節——不過那是我們的武斷限縮決定,而非洞悉現實結構的真知灼見。

大腦讓我們分析:我的紅色跟你的紅色一樣嗎?圖/by geralt@pixabay。

瑪麗的處境和這句陳腔濫調相關:「我的紅色和你的紅色一樣嗎?」這不是指波長,而是指紅的體驗。意思是,你的體驗和我的體驗一樣嗎?從某種嚴謹意義來講是不同的;我的紅色經驗是談論在我腦中傳播的某種電化學信號的方式,而你的則是談論在你腦中傳播的電化學信號之方式,這兩邊不可能完全相同,而且說明文字還非常無聊,如同這段敘述:「我的鉛筆和你的鉛筆不同,就算兩支鉛筆看來一模一樣,但這支是我的。」不過我關於紅色的經驗或許和你的很相似,這純粹是因為我們的腦很相像。這樣想很有趣,卻也不完全是什麼混亂渦流,所以我們不該因此就拒絕把核心理論當成這整個情況的基底描述。

-----廣告,請繼續往下閱讀-----

傑克森本人後來否決了知識論證的原始結論。就像多數哲學家,現在他也接受意識產生自純物理歷程的說法:「儘管我一度與多數人相違,現在我不再抗拒了」,他寫道。傑克森認為,色彩科學家瑪麗協助凸顯出,我們關於意識經驗為何不能是純物理性的直覺,不過那項論證恐怕還不足以讓人信服,並據以歸出那樣的結論。這裡的有趣使命是表明我們的直覺如何引導我們走錯了方向——因為科學不斷提醒我們,直覺經常出現這種狀況。

  • 本篇選自本書第 40 章

 

本文摘自泛科學2017年11月選書《詩性的宇宙:一位物理學家尋找生命起源、宇宙與意義的旅程》,八旗文化出版。

文章難易度
PanSci_96
1225 篇文章 ・ 2319 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
0

文字

分享

0
2
0
藝術與科學的詩性相遇:《匯聚:從自然到社會的藝術探索》國際交流展
PanSci_96
・2024/06/04 ・3873字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

本文由策展人紀柏豪提供

想享受一場同時兼具科技與藝術的饗宴嗎?來《匯聚:從自然到社會的藝術探索》國際交流展看看吧!

在當代社會中,藝術的角色正持續演進——它創造了一種新的美學,與社會、科學以及技術變革緊密相連。當社會面臨的挑戰因其複雜性而難以僅靠單一學科解決時,藝術研究因其跨越、融合不同知識領域的能力而具有新的意義。今日,許多創作者和機構採用跨學科方法,將藝術與自然、科學與感性、想像力與現實結合,創造嶄新的經驗、知識和美學。

在藝術與科學這兩個看似迥異的領域中,存在著一個共通的追求——深入理解我們所處的世界。這一追求不僅體現了人類對知識渴望的本能,也反映了我們對於更高層次的自我認知和宇宙認識的探索。藝術家透過創作,探索人類經驗的多樣性和情感的複雜性,用畫筆、雕塑、數位媒介來表達對世界的主觀理解。這種理解可能源於個人感受,也可能反映了廣泛的社會和文化現象。

藝術提供了一種通過感知和情感來接觸和理解世界的方式,使我們能夠透過個別經驗來抵達普遍的真理。科學則通過觀察、實驗和分析來探究自然界的法則和現象,尋求對世界的客觀理解。科學方法使我們能夠系統地收集資料、建立理論並驗證假設,從而深化對物理世界的認識。不僅解答了關於自然界的問題,也幫助我們理解了人類自身在這個宇宙中的位置和作用。

-----廣告,請繼續往下閱讀-----

儘管藝術和科學在方法和目的上有所不同,但它們都反映了人類對於更加全面和深刻理解世界的共同願望。藝術讓我們透過感受和想像來擴展對世界的認識,而科學則通過理性和證據來揭示秩序和結構。由國科會指導、國家實驗研究院主辦的《匯聚:從自然到社會的藝術探索》國際交流展,邀請觀眾一同探索藝術與科學的交會,體驗它們如何共同塑造我們對世界的認識和感知,並反思這一過程如何豐富我們的文化與知識視野。

展覽單元介紹

宇宙共生 —— 科技與宇宙的多維依存

當你仰望星空,有沒有想過我們與宇宙的關係?「宇宙共生」單元展示了科技如何將人類感性延伸至浩瀚的宇宙空間。麻省理工學院媒體實驗室的太空探索倡議小組(MIT Media Lab Space Exploration Initiative)帶來了在極端環境下的實地太空模擬,研究生存策略和科技應用。與之並置的《與細菌混了三千年》(3000 Years Among Microbes)則從微生物的角度重新審視太空探索中的殖民語言,帶來全新的太空想像。藝術家利用極端地貌與顯微影像並置,模糊人與微生物的分野,探討共生體概念在星際生態系中的應用。

感官賦能 ——透過科技重塑環境感知

「感官賦能」單元探索藝術家如何通過科技媒介重塑我們對環境的感知。兩位智利藝術家妮可·拉希利耶(Nicole L’Huillier)與派翠西亞·多明格斯(Patricia Domínguez)的《全像乳糜》(Leche Holográfica)是一場冥想式祈願,透過與不同元素的共鳴和諧,讓我們得以在螺旋時空中構想未來。

值得一提的是,藝術家妮可·拉希利耶與派翠西亞·多明格斯曾透過智利與歐盟的合作,在歐洲核子研究組織(CERN)進行藝術駐村計畫,並在那裡發展她們的作品。CERN 以其在粒子物理學上的重大科研成果而聞名,但即使是最前沿的科學研究,也需要藝術家的啟發。這樣的跨域合作不僅揭示了科學現象的美麗與複雜,更為科學研究注入了新的靈感和視角。藝術家的創意與想像力,能夠以不同於科學的方法來詮釋數據與實驗結果,從而開拓更廣泛的理解和應用。

-----廣告,請繼續往下閱讀-----

拉脫維亞藝術家羅莎‧史密特(Rasa Smite)和萊提斯‧史密茨(Raitis Smits)的《深度感知》(Deep Sensing),通過拉脫維亞伊爾本(Irbene) RT-32電波望遠鏡的歷史敘事,象徵性地橋接了技術的過去與現在,探問「為何擁有地球還不足以滿足人類?」該望遠鏡被前蘇聯遺棄,而藝術家們重返此地,探索這個巨大天線在當代的價值。虛擬點雲天線追蹤從太陽到地球的宇宙粒子流動,創造出沉浸式的視覺和聲音景觀,讓觀眾更易於理解氣候變遷的影響。

羅莎‧史密特和萊提斯‧史密茨是里加RIXC新媒體文化中心的共同創辦人,他們的作品結合科學數據、聲音化和視覺化、人工智慧和擴增實境技術,創造出前瞻性的網絡藝術。他們的作品曾在威尼斯建築雙年展、拉脫維亞國家藝術博物館等地展出,並獲得多項國際獎項。

網絡交織 —— 科技與社會的複雜關係

「網絡交織」單元深入探討科技如何影響我們的社會結構和人際關係。瑪麗莎·莫蘭·賈恩(Marisa Morán Jahn)的《銅色景觀》(Copperscapes)展示了銅在全球化勞動中的角色,揭示了這一自然元素如何影響我們的日常生活。她的作品以銅色眼睛作為見證,表現出礦區社區所承受的「身體負擔」,並在影片《銅的私處史》中探討礦物經濟的複雜性,突顯採礦活動對身體及地球主權的影響。

瑪麗莎·莫蘭·賈恩是具有厄瓜多和中國血統的藝術家,其作品致力於重新分配權力,展示藝術作為社會實踐的可能性。她的作品曾在歐巴馬時期的白宮、威尼斯建築雙年展、古根漢美術館等地展出,並獲得聖丹斯電影節和創意資本等獎項。

-----廣告,請繼續往下閱讀-----

李紫彤與孫詠怡的《岔經濟》(Forkonomy)利用區塊鏈技術,重新構想財產與國家之間的連結,探討擁有權背後的政治意義。這個藝術與社會運動計畫,通過工作坊和數位契約,探討如何購買或擁有一毫升的南海,並質疑現有的性別勞動分工和所有權制度。

李紫彤是台灣的藝術家兼策展人,作品結合人類學研究與政治行動,曾在國內外多個知名展覽中展出。孫詠怡是出生於香港的藝術家和程式撰寫者,專注於數位基礎設施的文化意義及廣泛權力的不對等問題,作品曾獲得林茲電子藝術節金尼卡獎等多項國際獎項。

印度藝術家艾蒂·桑德爾(Aarti Sunder)的《深海節點故事》(Nodal Narratives of the Deep Sea)將海底電纜這一隱藏基礎設施帶入視野,探討其與現代化項目、資本主義擴張及殖民主義的關聯。她的作品通過繪畫、物件和影片,展示了數據傳輸的路徑及其對生態系統的影響。

艾蒂·桑德爾的創作涉及影像、寫作與繪畫,專注於探討科技政治和基礎設施相關議題。她的作品曾在柏林藝術學院、新加坡雙年展、世界文化之家等國際場所展出。

-----廣告,請繼續往下閱讀-----

科藝匯聚 —— 跨學科的創新邊界

「科藝匯聚」單元彰顯了藝術與科學共同探索未知領域的力量。國家太空中心的《來自遙遠的訊息》管絃樂曲選粹、麻省理工學院前衛視覺研究中心(CAVS)的歷史檔案,以及臺灣共演化研究隊的「邊界測繪學」年度計畫成果,展示了藝術家與科學家跨域合作的豐富成果和未來潛能。

跨域交流與活動

在展覽期間,策展團隊與台灣致力於促進科學家與藝術家合作的「共演化研究隊」規劃了一系列精彩的跨域交流活動,讓大家能近距離與藝術家、科學家們交流,體驗科技與藝術如何共同作用於當代社會。

活動包括圓桌論壇、藝術家講座和放映會,涵蓋了多個有趣且深入的主題。例如,在「宇宙共生」週末,觀眾可以參與討論極地科學與藝術實踐的圓桌論壇,聆聽來自麻省理工學院媒體實驗室「太空探索倡議」的成員分享他們在極端地貌探索的經驗。另一活動是國家太空中心委託製作的管弦樂曲《來自遙遠的訊息》放映會,由作曲家趙菁文進行演前導聆,帶領觀眾進入一場視覺與聽覺的雙重盛宴。

在「網絡交織」週末,藝術家李紫彤與孫詠怡將帶來一場關於區塊鏈技術應用於南海議題的討論,這場圓桌論壇將探討技術如何影響社會結構和資源分配。印度藝術家艾蒂·桑德爾則會在線上分享她對於海洋及網路基礎設施的研究與創作,揭示隱藏在我們日常生活背後的複雜科技網絡。

-----廣告,請繼續往下閱讀-----

「感官賦能」週末將邀請拉脫維亞藝術家羅莎‧史密特和萊提斯‧史密茨現場分享他們的作品《深度感知》,並探討電波望遠鏡的技術敘事,展示如何通過藝術手段使抽象的科學數據變得可以感知。這不僅讓觀眾更易於理解氣候變遷的影響,也體現了藝術在科學溝通中的重要角色。他們將分享長期研究「自然廣播」的概念,以及每年舉辦「藝術科學節」的經驗。

在「科藝匯聚」週末,觀眾可以參與科學家與藝術家的提案室,直接感受跨領域合作的火花。這些活動將展示跨學科合作如何激發創新,促進我們對世界更深層次的理解。此外,拍攝麻省理工學院前衛視覺研究中心創始人故事的紀錄片將在台灣首映,導演並將與觀眾進行映後座談,分享創作背後的故事和啟發。

藝術與科學的相互啟發,不僅僅是知識和美學的結合,更是對創新與理解的共同追求。在這個亟需跨學科解決方案的時代,這樣的合作顯得尤為重要,為我們探索未知領域提供了無限可能。這次展覽通過多樣的跨域交流活動,讓觀眾能夠親身體驗並參與其中,進一步體會到藝術與科學融合所帶來的豐富成果和未來潛力。

展覽資訊

  • 展覽名稱:《匯聚:從自然到社會的藝術探索 | 國際交流展》
  • 日期:2024/5/10 至 2024/8/10
  • 時間:週一至週五 09:00-18:00(國定假日休)
  • 地點:科技大樓一樓大廳(臺北市大安區和平東路二段106號)
  • 指導單位:國家科學及技術委員會
  • 主辦單位:國家實驗研究院
  • 策展人:紀柏豪
  • 執行單位:融聲創意
  • 協力單位:共演化研究隊

討論功能關閉中。

PanSci_96
1225 篇文章 ・ 2319 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

3

3
7

文字

分享

3
3
7
「意識」是什麼?人們已經找到答案了嗎?
PanSci_96
・2023/11/26 ・6000字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

「意識」是什麼?

直到現在,仍是宗教、哲學、心理學、神經科學都還無法解答的難題。

但是今年, 2023 年,一場來自神經學家與哲學家對於「意識」解釋的賭注,在經過長達 25 年的研究後,終於要畫下句點了嗎?到底是誰贏了?對自己頭上頂著的大腦,我們又了解多少了?

25 年前,一場圍繞「意識」之謎的賭局

1998 年,神經科學家克里斯托夫・科赫(Christof Koch)和哲學家戴維・查爾莫斯(David John Chalmers)打賭一箱葡萄酒,如果 25 年後,人們已經能清楚地解釋意識背後的神經機制,那麼就是科赫贏了。反之,如果還是未能解答意識之謎,就是查爾莫斯贏了。

-----廣告,請繼續往下閱讀-----

但在揭曉勝者之前,我們要先來談談一個最基本的問題,「意識」到底是什麼?首先我們要先定義清楚,因為在中文中,意識指的可能是一個人的清醒狀態、也可以是對內在自我的一種感知、又或是包含感知、情緒、思考等等的一種總和、又甚至可以是指在精神分析理論中與前意識和潛意識的比較。

若要深入探討意識定義的發展以及不同的哲學論點,那真的不做個三十集做不完,在這集的時間內,就讓我們把重點放在感質(Qualia)的相關概念。感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。我們感知世界的方式、感受事物的質感、觸覺、視覺、聽覺、嗅覺等等都是屬於感質。

感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。圖/wikipedia

舉一個例子。若是把一顆紅蘋果放在大家面前,詢問蘋果這是什麼顏色,相信大家應該都會說這是紅色。然而,雖然科學能解釋紅色是因為有波長約 620 到 750 奈米的光,刺激到視網膜的錐細胞,產生一連串的神經反應,最後形成大腦的表徵,但卻無法解釋我們對紅色的主觀感受是怎麼形成的。

哲學家們也常思考,你看到的紅色,和我看到的紅色究竟是否一樣,是否有可能我眼中的紅其實是你眼中的綠。

-----廣告,請繼續往下閱讀-----

舉另一個例子,這件數年前爆紅的衣服,你覺得是藍色與黑色相間,還是白色與金色相間呢?

另外,像是這張圖究竟是兔子還是鴨子?

圖/wikipedia

這張圖究竟是狗還是小女孩?

明明有張客觀的圖片存在,每個人的主觀感受卻有不同的答案。

-----廣告,請繼續往下閱讀-----

「困難問題」(Hard problem of consciousness)是找不到答案的問題?

在意識賭局中的哲學家戴維・查爾莫斯,就提出感質以及主觀經驗為什麼(why)存在以及如何(how)產生是所謂的困難問題(Hard problem of consciousness),相較於簡單的問題是討論意識相關的功能和行為,困難問題涉及意識的經驗(現象、主觀),是沒辦法客觀觀察測量。也就是這個問題,是沒有答案的。

舉一個屬於困難問題的例子,明明都只是大腦的神經在放電,為何某些神經放電後會導致飢餓感而不是其他感覺,譬如口渴?他認為即使沒有飢餓這種「感覺」,飢餓衍伸出的行為,例如進食,也可以發生。因此這些產生的感覺,無法單純簡化由大腦等物理系統解釋。

圖/giphy

然而,困難問題的說法其實也存在爭論。根據 2020 年哲學期刊文章的互動式學術資料庫 PhilPapers 的調查, 29.72% 的受訪哲學家認為難題不存在,而 62.42% 的受訪哲學家認為難題是一個真正的問題。

也有一群神經科學家們雖然接受困難問題的存在,卻也認為困難問題未來可以被解決,又或是被證明這不是一個真正的問題。並開啟了他們對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。

-----廣告,請繼續往下閱讀-----
精神科學家開啟對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。圖/PanSci YouTube

但 NCC 的研究被認為最多只能找到神經反應與意識的相關性,解決的仍然只是簡單問題而非困難問題。為了突破 NCC 本身的限制,人們又開始轉往重視意識理論(theories of consciousness (ToCs))的發展。希望透過意識理論來超越以 NCC 為基礎的方法論,轉向提供更具解釋性見解的意識模型。

在意識模型這邊還在爭論不休,讓我們先把鏡頭換到神經學家這一邊。

研究科技進步,為意識研究帶來哪些幫助?

面對意識這個艱難的大哉問,克里斯托夫・科赫當初怎麼那麼有自信,敢發起這個看起來勝算就不大的挑戰呢?有那麼愛喝嗎?

1998 年,年輕有為的克里斯托夫・科赫已經是加州理工學院的助理教授,並和生命科學領域大咖中的大咖弗朗西斯・克里克,合作研究意識這個主題。沒錯,就是和華生一同發現 DNA 是雙股螺旋結構的克里克。除此之外,克里斯托夫還擁有物理的碩士學位,擁有跨領域的知識,讓他更加相信透過實證的方式,能找到意識的神經機制。

-----廣告,請繼續往下閱讀-----
克里斯托夫・科赫合作研究意識的對象便是與華生一同發現 DNA 是雙股螺旋結構的弗朗西斯・克里克。圖/PanSci YouTube

當時有許多大腦研究的技術蓬勃發展,像是功能性磁振造影(fMRI)已經獲得廣泛使用,使得科學家們能在對象進行活動或是受外界刺激時,同步從大腦血氧濃度的變化來推斷神經反應。

此外,光學遺傳學(optogenetics)技術也在那個時期開始萌芽,這讓研究者能用極佳的時間解析度來調控特定的大腦神經元,並藉此解碼大腦的秘密。舉例來說,現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞,並在小鼠頭上裝上 LED 光纖,只要開啟 LED 的光刺激,那些特定神經細胞就會興奮或抑制。藉由觀察小鼠行為的變化,就能了解不同行為表現是由哪些神經元所調控。

現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞。圖/PanSci YouTube

厲害的是,在 1979 年光學遺傳學的技術還未誕生前,克里克就認為如果想要了解大腦的運作,精準控制大腦中一種類型的所有細胞是非常重要的,而若想要有極佳的時間和空間精細度,必須使用光的技術,這與後來光學遺傳學的發明不謀而合。

有了這些科技加持,長達 25 年對於意識的賭注也即將來到結局。

-----廣告,請繼續往下閱讀-----

所以,誰贏了賭注?

2023 年 6 月 23 日,在科學意識研究協會的年會上,揭曉了這長達 25 年的賭局。神經科學家克里斯托夫・科赫(Christof Koch)最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒(1978 Madeira)給哲學家戴維・查爾莫斯(David John Chalmers)實現諾言。

克里斯托夫・科赫最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒給戴維・查爾莫斯。圖/PanSci YouTube

當然,這不是說意識的來源永遠沒有解答,只是當初賭局設下的 25 年時限到了。實際上到了 2018 年,他們兩位根本都忘了這場賭局,直到一位科學記者佩爾・斯納普魯德重新提及這個話題,才讓大家重新想起。

恰巧那個時間點,克里斯托夫・科赫和戴維・查爾莫斯都參與了鄧普頓世界慈善基金會支持加速意識研究的大型項目。該計畫建立一系列意識理論的「對抗性」實驗,希望透過讓兩個或多個持相反觀點的競爭對手共同合作研究,來挑戰各種意識假設。

意識理論的百家爭鳴

而其中包含兩個著名的意識理論,全局工作空間理論(Global Workspace Theory (GWT))和整合資訊理論(Integrated Information Theory (IIT))。

-----廣告,請繼續往下閱讀-----
全局工作空間理論(Global Workspace Theory (GWT))。圖/PanSci YouTube

全局工作空間理論(Global Workspace Theory (GWT))的概念,最早是由認知科學家伯納德・巴爾斯和斯坦・富蘭克林在 1980 年代晚期提出。他們認為意識的產生就像是劇場聚光燈一樣,當這個意識劇場透過名為選擇性注意的聚光燈在舞台上照出內容,我們就會產生意識情境。這聚光燈的投射也代表著全局工作空間,只有當感官輸入、記憶或內在表徵受到注意時,它們才有機會整合成為全局工作空間的一部分,被我們主觀意識到。而我們的行為決策,也是透過這個全局工作空間整合訊息,並分配到其他系統所產生。目前認為全局工作是發生於大腦前方的前額葉區域。

整合資訊理論(Integrated Information Theory (IIT))。圖/PanSci YouTube

與全局工作空間理論打對臺的,是整合資訊理論(Integrated Information Theory (IIT)),最早由朱利奧・托諾尼(Giulio Tononi)在 2004 年提出。這理論認為,意識背後是有數學以及物理為基礎的因果關係。應該先肯定意識的存在,再回推尋找其背後的物質基礎,並認為主觀意識是由客觀的感覺經驗產生的。克里斯托夫・科赫就是此理論的擁護者,他進一步認為,意識背後的那個神經機制,就存在於大腦後方後皮質熱區(Posterior cortical hot zone),包括頂葉、顳葉和枕葉的感覺皮質區域。

讓我們稍微總結一下兩者差異:

全局工作空間理論——

  • 意識只能透過訊息投射到一個稱做「全局工作空間」之後才能呈現
  • 訊息本身不會形成意識
  • 訊息要被注意到才會產生意識

整合資訊理論——

  • 意識存在
  • 產生的關鍵是需要將大腦處理感覺的皮質區域訊息整合

然而,經過六個獨立實驗室的研究,雖然有較多的證據支持整合資訊理論,但兩個理論都存在缺陷和質疑,直到目前都尚未有明確解答能解釋意識的神經機制,這也讓克里斯托夫・科赫大方承認自己輸掉了這 25 年的賭局。

隨著科學測量技術的演進以及越來越多的研究進展,有一些神經科學家認為意識理論即將崛起,目前的狀態只不過是一種研究過渡期。科學哲學家托馬斯・庫恩(Thomas Kuhn)將這種過渡期以「前典範式」(preparadigmatic science)來形容,認為一門不成熟的科學在成熟前,會面臨相互競爭的思想流派並各說各話。就像是當初達爾文提出演化論的物競天擇前有拉馬克主義、災變論與均變論來試圖解釋物種起源一樣。

下一場賭約?

雖然這次的打賭由戴維・查爾莫斯獲得一勝,但克里斯托夫・科赫在今年加倍賭注,認為下一個 25 年他一定會贏。到時候克里斯托夫已經 91 歲,戴維 82 歲了。

大家別擔心,這一集是會員共同選出來的題目, 25 年之後,我們也會再為各位泛糰做一集討論賭局的結果。

最後也想問問大家, 25 年之後,你賭這場對決會是誰贏呢?

  1. 我壓在克里斯托夫・科赫身上,我們一定能解開意識之謎
  2. 我賭戴維・查爾莫斯,意識這個問題,可能很難用科學來解釋
  3. 在那之前, AI 可能都已經有意識了,直接問 AI 還比較快

趕快來留言吧,記得 25 年後要回來看啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 3