Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

商博良誕辰|科學史上的今天:12/23

張瑞棋_96
・2015/12/23 ・1237字 ・閱讀時間約 2 分鐘 ・SR值 525 ・七年級

-----廣告,請繼續往下閱讀-----

1822年九月,三十出頭的商博良興奮地自家中飛奔而出,眼神狂亂,懷中抱著一堆筆記、圖畫,穿越巴黎街道跑進二百公尺外的法蘭西研究院。他直衝哥哥的辦公室,上氣不接下氣的對哥哥喊道:「我找到了!」隨即昏厥過去,不省人事。

尚—法蘭索瓦·商博良。圖/wikimedia

恍惚之中,歷歷往事雜疊出現。小商博良穿梭在由書推成的迷宮中,那是父親在法國大革命那混亂狂暴的時代賣不掉的書。還不識字的小商博良興奮又焦慮,他愛幻想那陌生的文字背後的故事,卻又害怕永遠不懂文字的真義。此時出現哥哥朗讀希臘文的聲音讓他的心穩了下來,他最愛聽大他十二歲的哥哥講述以希臘文書寫的歷史書籍,當他好奇的不斷追問更早之前的歷史,最後來到盡頭古埃及時,已對這遙遠的朝代神往不已。

接著畫面跳到省長辦公室,還是中學生的商博良蒙省長召見,對談埃及的風土民情。很久以後,商博良才知道原來省長是赫赫有名的科學家傅立葉,他也曾隨拿破崙遠征埃及,如今受命編纂埃及紀事,聽聞小商博良埋首相關書籍與歷史文件,對埃及的史地已如數家珍,特地召他來垂詢。傅立葉展示給他看一些從埃及帶回來的文物,那是商博良第一次親眼目睹他魂牽夢縈的埃及文物,他按住內心激動,以顫抖的手指小心翼翼地觸摸陶器與草紙殘片,輕輕撫過一具棺木上的象形文字,決心要解破解這千古以來無人能解之神秘文字。

驀然間,棺木上的象形文字翩翩飛起,最後紛紛落在羅塞塔石碑上。這是1799年商博良九歲時,法國軍隊在埃及亞歷山大附近的小村子羅塞塔發現的石板。上頭是公元前196年所刻的詔告,分別以三種不同文字銘刻;最上面是埃及象形文字,第二段是也失傳已久的埃及草書,最後則是希臘文。這些互相對照的銘文顯然將是破譯象形文字的關鍵,但歷經二十載所有歐洲學者仍無人能解,直到1819年,證明光的波動性的英國學者楊 (Thomas Young) 才有了小小的突破。

-----廣告,請繼續往下閱讀-----

楊認為某個加上橢圓外框的埃及象形文字係作為表音符號,代表「托勒密」國王這個外來統治者的名字(就跟我們中文音譯外國人名一樣)。但他所指認的十三個字母中,後來證明只有六個是對的,加以羅塞塔石碑的上半部已斷損,只剩不完整的14行象形文字,難以據此認出上千個象形文字。對楊而言,這只是智力遊戲,他還有其它廣泛興趣,因此不再費力鑽研。但對商博良而言卻是一生懸命,他繼續焚膏繼晷埋首經卷之中,終於在三年後悟出象形文字本身既是表義符號(例如太陽的符號就代表太陽),也可以當成表音符號,而且同一個音可以用不同的象形文字表示(這點也跟中文一樣),他終於找到破解埃及象形文字的鑰匙,於是趕忙向多年來一直相信他、支持他的哥哥奔告。

五天之後,商博良才悠悠醒來。夢中他似乎還看見一艘名為《羅塞塔號》的太空船在漆黑無邊的太空中,追上一顆彗星。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1032 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
今年跨年該怎麼過?參考一下古埃及人如何慶祝新年
F 編_96
・2024/12/31 ・3339字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

每逢歲末年初,現代人常以煙火、聚餐與跨年派對迎接新一年的到來;然而,放眼千年以前,古埃及人同樣懷抱著對來年的期盼,也有一系列獨特的慶典活動。表面上看來,他們慶祝的初衷與我們類似:感謝神祇、期盼豐收、送禮祝福親友。然而,古埃及文明在地理與文化方面都有獨到之處,使其新年慶祝方式結合了狩獵、宗教崇拜與曆法運作等多元特色。

在古埃及,所謂「新年」所對應的詞彙是「Wepet Renpet」,意指「一年的開端」。相較於現代的公曆新年固定在 1 月 1 日,古埃及的新年時間其實並不穩定。最初,他們的曆法訂有 365 天,但卻缺乏閏日或閏年機制;因此,每經過一段時間,新年的日期便會與自然時節(例如:尼羅河氾濫或冬至)產生偏移。這種「非固定新年」使古埃及人有時在一年之中,過好幾個「新年」。

古埃及的曆法制度,讓他們有時一年中有好幾次新年。 圖/unsplash

一年過三次年:埃及人新年的多重起點

位於古埃及南方的埃斯納(Esna)神廟,就保留了一塊引人注目的曆法刻文,上面竟然出現了三個「新年慶典」記載。根據研究者的分析,這三次新年分別對應了三個特殊時刻:

  1. 曆法年第一天
    這是古埃及官方曆法意義上的新年開端,象徵著行政、祭典與民生運作上的「一切歸零」。
  2. 羅馬皇帝生日
    當時古埃及已被羅馬帝國統治,羅馬皇帝的生日被視為具有重大政治與宗教象徵意義,故亦成「新年」之一。
  3. 天狼星(Sirius)再現
    當天狼星於東方地平線再次升起,象徵尼羅河泛濫臨近,而農業豐收之期即將來臨。古埃及人將此星視為蘇普迪特(Sopdet)女神的化身,代表一年生命與富饒的迴歸。

此現象導致在同一年裡,他們分別「跨」了三次年,而每次都會舉行一連串盛典,從祭祀神像到群眾歡慶,再到向親友贈禮,皆展現古埃及對神祇與自然結合的崇高敬意,也反映其曆法與信仰交織的錯綜樣貌。

-----廣告,請繼續往下閱讀-----

陽光中的重生儀式:曝曬神像

相較於現代人舉辦煙火晚會或觀看「水晶球倒數」,古埃及最顯著的慶典之一是將神像搬離廟宇、帶至屋頂或廣闊戶外,讓神像在陽光下「再生」。他們相信,太陽神的能量能賦予這些神像新的生命力,推動一年新的循環。

根據考古學家席蒙·康納(Simon Connor)的研究,名為「Wepet Renpet」的新年節日期間,廟方人員會將主神或其他神祇的像抬到廟頂,迎接太陽光的洗禮。一些神像在這過程中會進行修補、重新上色或替換為新的雕像,象徵帶來更強的神力去保護城市與民眾。此刻,群眾可在下方圍觀或以儀式參與,共同見證「神祇自太陽中重獲能量」的神聖時刻。

金字塔與亡靈信仰

既然新年是「一年的開端」,那麼對古埃及人來說,如何兼顧祖先或亡靈,是慶典中的另一關鍵。在尼羅河西岸、吉薩金字塔群所在地,除了有聲名遠播的法老陵墓,還聚集許多神廟與祭壇。根據學者馬薩希‧富卡亞(Masashi Fukaya)在博士論文及其著作中的描述,古埃及人在新年時也會到吉薩或塞加拉(Saqqara)地區,一方面慶祝新年的到來,一方面緬懷已故親屬,祈求來年的健康與祥和。

對古埃及人來說,對祖先與神靈的祭祀缺一不可,因此吉薩或塞加拉(Saqqara)地區也是他們有時新年會拜訪的地方之一。 圖/unsplash

有些文獻記載在金字塔區會進行小規模的遊行,並伴隨祭品與供品獻予法老墓葬或神廟。這同時也是與祖先對話的方式,期望藉由「新年伊始」的神力,讓亡靈與在世者都能共享陽光恩典。這點在一定程度上與現代人逢年過節會祭拜祖先的傳統,呈現出相似的文化意涵。

-----廣告,請繼續往下閱讀-----

新年饗宴:美食、美酒和好友,缺一不可

從古埃及墓葬壁畫以及文獻來看,在「Wepet Renpet」的盛大場合裡,美酒佳餚絕不會缺席。和現今的跨年晚宴相似,古埃及人往往會準備麵包、啤酒、果乾、蔬菜和肉類等多樣食材,用於家族或社群聚會。上層階級更是準備精緻的糕點與香料飲品,尤其是當時盛行「啤酒釀製」,不少繪畫顯示人們載歌載舞,舉杯同樂。

在紛擾的宗教儀式之外,這些飲食活動能拉近社群關係,也給人喘息與娛樂的空間。就如同現代人會邀請親友一同跨年聚餐,古埃及人同樣透過共享美食的方式,在新年轉折時刻互致祝福、凝聚情感。

過年送禮:從「新年瓶」到香料油品

或許最能讓現代人感到熟悉的,就是古埃及也盛行「新年送禮」的風俗。在古埃及的考古發現中,有一類出土文物被稱作「新年瓶」(New Year Flask),通常材質是青瓷(faience)或陶器,容量不大,常用於盛裝香油或珍貴液體。瓶身上還會刻有「願你新年快樂」、「祈求神明保佑」等字樣。

其中,紐約大都會博物館(Metropolitan Museum of Art)收藏的一只新年瓶就有詳細的銘文,表示這件器物是為一位名叫亞蒙荷特普(Amenhotep)的祭司所準備,上面祈求蒙圖神與阿蒙-瑞神賜予他新年的平安與幸福。古埃及學者約翰·貝恩斯(John Baines)指出,這些瓶子常含有香油、水或芳香劑,象徵神祇恩典的傳遞。在充滿宗教色彩的古埃及社會,此類贈禮既代表人與人之間的關愛,也包含了對神祇的崇敬。

-----廣告,請繼續往下閱讀-----

曆法與星象:天狼星再升與尼羅河泛濫

天狼星在古埃及曆法中,佔有重要地位。圖/unsplash

對古埃及而言,曆法並不只是一套抽象的時間度量工具,更牽動著農耕、祭祀與民生的大局。最早訂立的 365 天曆法,是以天狼星(Sirius)的升起作為主要觀測指標;當它自東方地平線再度出現時,象徵尼羅河即將泛濫,孕育肥沃的泥土。

然而,正因沒有閏年的修正機制,古埃及人一年又一年地發現,Wepet Renpet逐漸從夏季「漂移」到冬季,甚至後來落在羅馬帝國統治的歲月裡,也與皇帝的誕辰綁定了同樣的節日意義。如此一來,新年的日期顯得流動性極強,導致有時一年內三次不同的慶祝節點,這種現象在古代文明相當罕見,也成為古埃及曆法最富魅力與矛盾的特色之一。

與現在跨年的相比,哪個比較好玩?

綜觀古埃及的新年慶典,既有與現代相似之處:他們會盛裝慶祝、贈送祝福禮物、與親朋好友共享美食,同時也有著不一樣的宗教信仰特色,如將神像迎接至屋頂或室外曬太陽重獲力量、在吉薩金字塔與亡靈共同迎接新年等。這些傳統因曆法飄移而多次上演,不僅熱鬧,也蘊含著對自然周期的敬畏與對神祇的深層依賴。

對我們而言,古埃及的「新年」透露出一則啟示:人們對更新與希望的期待,自古至今都如出一轍;不論曆法精準與否,我們都需要一個象徵式的時刻,去將過去的遺憾與失敗歸結到「舊時身分」,迎來重頭出發的契機。古埃及人將此時刻與太陽、星象、神明與亡靈結合得天衣無縫,也展現了人類社會在理解時間上的無限想像力。

-----廣告,請繼續往下閱讀-----

古埃及的新年慶祝雖已併入千年歷史之中,但通過考古遺跡與歷史文獻,我們依然能感受到那股對於「開始」的熱情與慎重。金字塔區的祭典煙塵、神廟頂樓的太陽洗禮、親友間互相贈與的祝福小瓶,都在訴說著古人對新一年勝利與豐收的希冀。或許,對古埃及人而言,新年不光是一個日曆換頁的動作,更是一個宇宙、神人合一的神聖時刻——在那瞬間,人與神、陽光與星宿、生者與死者,全都迎來了嶄新的生命循環。

-----廣告,請繼續往下閱讀-----
F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

3

6
3

文字

分享

3
6
3
天有多大?古埃及人用「駱駝」推算地球周長——天文學中的距離(一)
ntucase_96
・2021/10/01 ・2946字 ・閱讀時間約 6 分鐘

  • 撰文|許世穎

本文轉載自 CASE 科學報天有多大?天文學中的距離(1)—從地球到太陽

天文學中要怎麼量測長度或距離呢?地球上常用的直尺、捲尺、雷射測距儀等恐怕不是那麼適合。比較近的天體還有辦法直接量測,遠距離的只好仰賴一些間接的推斷。我們先從古埃及利用井、尖塔、駱駝推算出地球的周長出發,進而介紹利用雷達天文學等方法量測太陽系中月球、行星距離的方法。

地球周長:井、尖塔、駱駝

平常我們怎麼量測長度或距離呢?如果是桌上的小東西,我們可以用直尺;如果稍微遠一些,可以利用捲尺;再更遠一點的話可以利用雷射測距儀。這些都是地球上常見、常使用的距離量測工具。那當距離更遠的時候要怎麼辦呢?我們該怎麼量測地球的周長呢?月球、太陽有多遠呢?更遙遠的天體該怎麼辦呢?

我們不能一步登天。要先從比較近的開始直接量測,接著再想辦法間接推敲出遙遠天體的距離。就讓我們先從最近的「地球周長」開始吧!其實早在古希臘,畢達哥拉斯就已經提出了地球是「球」的想法。埃及學者埃拉托斯特尼(Eratosthenes)在公元前 240 年,就估計出一個地球周長的數值。這個算法很有趣,讓我們搭配圖 1 一起來看看。

圖1:埃拉托斯特尼的地球周長量測方法。來源/Eratosthenes | Biography, Discoveries, Sieve, & Facts | Britannica [2]

首先,他知道在夏至那天,可以從埃及城市「賽伊尼(Syene,即現在的Aswan)」的一座井中,看到太陽從正上方來的倒影。也就是說,夏至這一天太陽光會剛好直曬賽伊尼。他進一步量測,在夏至這一天,亞歷山大城(Alexandria)方尖石塔的影子長度。從這個影子長度和方尖石塔的高度,可以計算出太陽的天頂角 α。而因為三角形相似形的關係,這個天頂角 α 同時也會是賽伊尼與亞歷山大城在地球上的夾角。這個天頂角 α  約為 7.2°,因為7.2°佔了整個圓 360° 的 50 分之 1,所以將距離乘以 50,就是地球的圓周長。

-----廣告,請繼續往下閱讀-----

也就是說,只要找到賽伊尼與亞歷山大城之間的距離,再乘上 50,就是地球的圓周長…但是兩座城市之間的距離要怎麼知道呢?他從商隊那裏問到,這兩座城市要讓駱駝走 50 天,在經過一些計算即換算後,他得到地球的圓周長大約是 252000「stadia」(當時埃及的距離單位)。雖然他所用的單位「stadia」與現代長度單位的換算已經無法考證,但現代科學家認為他所量測出的這個數字約為 39,690 公里到 46,620 公里之間,與現代的公認值差異只有 1%-15% 左右而已![3]

月球距離:月食、雷射、反射鏡

有了地球的大小以後,再來讓我們來量月球吧!先從量測月球地球距離開始,其中一個方法是利用「月食」。這個方法可以追溯至希臘天文學家阿里斯塔克斯(Aristarkhos,310-230 B.C.)。他其實是紀載中最早提出日心說的人,可惜並沒有受到非常廣泛的認可。月食就是月亮進入了地球的影子。將地球影子的大小除上月食發生的時間就是月球移動的速度。而將月球移動的速度乘上月球繞一圈的時間(28 天左右),就可以得到月球繞地球的圓周長、半徑。

較為現代、更為直接的方法就是「雷射測距」,原理就跟雷射測距儀差不多。從地球上發射雷射光到月球上,藉由量測反射光,可以知道光來回所需要的時間,再乘上光速,就可以得到月球的距離囉。這個時間約為 2.5 秒,換算後的月地距離約為 38 萬公里。

圖2:阿波羅 14 號所放置的反射鏡。來源/NASA [4]

為了擁有更好的雷射光反射效果,人類還在月球上擺放了 5 個反射器,分別在 5 次人類登陸月球的任務中放置(3 次美國、2 次蘇聯,見圖 2)。這些反射器讓月地距離的精密度提升到了毫米等級。美國著名生活喜劇影集《The Big Bang Theory》裡面就有進行這個實驗的片段,讀者不妨去看看:Learn English with The Big Bang Theory: Blowing up the Moon(有字幕、英文教學版本)。

-----廣告,請繼續往下閱讀-----

精確的月地距離量測也帶給我們有趣的發現。比方說發現或量測出:月球每年以 3.8 公分的速率離地球愈來愈遠;月球內部可能有著月球半徑 5 分之 1 大小的液態核心;月球除了原先的運動以外,還有著額外的晃動,稱為「天平動(libration)」…等 [5]

行星距離:雷達

量測行星距離的方法類似量測月球距離的方法,只是行星的距離通常太過遙遠,使用一般的雷射光的話效果不好,必須改使用微波的波段,這個學門稱為「雷達天文學(radar astronomy)」。雷達天文學所使用的設備必須要能夠向宇宙發射高功率的微波,過去常用的天文台包含「阿雷西博天文台」(Arecibo Observatory)與「戈德斯通天文台(Goldstone Observatory,見圖 3)」

(延伸閱讀:再見了:阿雷西博天文台!

圖 3:戈德斯通天文台(Goldstone Observatory)。來源/JPL [6]

雷達天文學被運用太陽系內天體的研究,畢竟再更遠的話反射的訊號會太弱。在過去,雷達天文學除了幫助我們量測行星的距離,還可以拿來觀測天體的表面狀況 [7]

-----廣告,請繼續往下閱讀-----

太陽的距離:金星凌日

地球與太陽的平均距離稱為 1 個「天文單位(Astronomical Unit,簡稱 AU 或 au)」。要量測日地距離的話,總沒辦法用雷射測距了,太陽自己的光線太強、也沒辦法反射雷射光或微波,更不可能讓人上去裝設反射鏡。那該怎麼辦呢?我們可以利用「金星凌日」來幫忙!

圖 4:金星凌日。後面的黃色大球是太陽,黑色的小球則是金星,每隔一段時間拍攝一張相片疊在一起的結果。來源/NASA/SDO, HMI [8]

金星凌日是指從地球上看出去,金星從太陽前面經過的現象(圖 4)」。而這也是太陽、金星、地球接近一直線的時候。就好像是我們用手遮住陽光時,太陽、手、我們的眼睛會排列成一直線一樣。

根據克卜勒定律,我們可以計算出金星的軌道半徑為 0.72 天文單位。地球軌道半徑則是 1 天文單位。當太陽、金星、地球排成一直線時,可以得到金星與地球的距離是 0.28 天文單位。這時候只要量測出金星的距離,就可以換算出 1 天文單位的大小!

然而這個狀態下,在金星後面的太陽會嚴重干擾訊號,因此無法使用雷達來量測金星的距離。得靠別的方法來找出距離,這個方法稱為「視差(parallax)」。至於視差要怎麼使用,又怎麼讓丹麥天文學家、第谷使用正確的數據、正確的儀器、正確的推論、得到完全錯誤的結果,則是另一段故事了。

-----廣告,請繼續往下閱讀-----

(待續)

  1. Free Images / Bedouin watching a caravan passing by near the pyramids of Giza
  2. Eratosthenes | Biography, Discoveries, Sieve, & Facts | Britannica
  3. wiki / Eratosthenes
  4. The New York Times / How Do You Solve a Moon Mystery? Fire a Laser at It
  5. wiki / Lunar Laser Ranging experiment
  6. wiki / Goldstone Deep Space Communications Complex
  7. wiki / Radar astronomy
  8. SPACE / Venus Crosses the Sun for Last Time Until 2117, Skywatchers Rejoice


本系列其它文章
天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

-----廣告,請繼續往下閱讀-----
所有討論 3
ntucase_96
30 篇文章 ・ 1488 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

0

0
0

文字

分享

0
0
0
商博良誕辰|科學史上的今天:12/23
張瑞棋_96
・2015/12/23 ・1237字 ・閱讀時間約 2 分鐘 ・SR值 525 ・七年級

1822年九月,三十出頭的商博良興奮地自家中飛奔而出,眼神狂亂,懷中抱著一堆筆記、圖畫,穿越巴黎街道跑進二百公尺外的法蘭西研究院。他直衝哥哥的辦公室,上氣不接下氣的對哥哥喊道:「我找到了!」隨即昏厥過去,不省人事。

尚—法蘭索瓦·商博良。圖/wikimedia

恍惚之中,歷歷往事雜疊出現。小商博良穿梭在由書推成的迷宮中,那是父親在法國大革命那混亂狂暴的時代賣不掉的書。還不識字的小商博良興奮又焦慮,他愛幻想那陌生的文字背後的故事,卻又害怕永遠不懂文字的真義。此時出現哥哥朗讀希臘文的聲音讓他的心穩了下來,他最愛聽大他十二歲的哥哥講述以希臘文書寫的歷史書籍,當他好奇的不斷追問更早之前的歷史,最後來到盡頭古埃及時,已對這遙遠的朝代神往不已。

接著畫面跳到省長辦公室,還是中學生的商博良蒙省長召見,對談埃及的風土民情。很久以後,商博良才知道原來省長是赫赫有名的科學家傅立葉,他也曾隨拿破崙遠征埃及,如今受命編纂埃及紀事,聽聞小商博良埋首相關書籍與歷史文件,對埃及的史地已如數家珍,特地召他來垂詢。傅立葉展示給他看一些從埃及帶回來的文物,那是商博良第一次親眼目睹他魂牽夢縈的埃及文物,他按住內心激動,以顫抖的手指小心翼翼地觸摸陶器與草紙殘片,輕輕撫過一具棺木上的象形文字,決心要解破解這千古以來無人能解之神秘文字。

-----廣告,請繼續往下閱讀-----

驀然間,棺木上的象形文字翩翩飛起,最後紛紛落在羅塞塔石碑上。這是1799年商博良九歲時,法國軍隊在埃及亞歷山大附近的小村子羅塞塔發現的石板。上頭是公元前196年所刻的詔告,分別以三種不同文字銘刻;最上面是埃及象形文字,第二段是也失傳已久的埃及草書,最後則是希臘文。這些互相對照的銘文顯然將是破譯象形文字的關鍵,但歷經二十載所有歐洲學者仍無人能解,直到1819年,證明光的波動性的英國學者楊 (Thomas Young) 才有了小小的突破。

楊認為某個加上橢圓外框的埃及象形文字係作為表音符號,代表「托勒密」國王這個外來統治者的名字(就跟我們中文音譯外國人名一樣)。但他所指認的十三個字母中,後來證明只有六個是對的,加以羅塞塔石碑的上半部已斷損,只剩不完整的14行象形文字,難以據此認出上千個象形文字。對楊而言,這只是智力遊戲,他還有其它廣泛興趣,因此不再費力鑽研。但對商博良而言卻是一生懸命,他繼續焚膏繼晷埋首經卷之中,終於在三年後悟出象形文字本身既是表義符號(例如太陽的符號就代表太陽),也可以當成表音符號,而且同一個音可以用不同的象形文字表示(這點也跟中文一樣),他終於找到破解埃及象形文字的鑰匙,於是趕忙向多年來一直相信他、支持他的哥哥奔告。

五天之後,商博良才悠悠醒來。夢中他似乎還看見一艘名為《羅塞塔號》的太空船在漆黑無邊的太空中,追上一顆彗星。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1032 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。