分享本文至 E-mail 信箱
學術引用格式
MLA
APA
EndNote(.enw)

湯姆森誕辰|科學史上的今天:12/18

十九世紀末,即使週期表已大致建立、電磁感應已被發現、科學家已能熟練地做電解實驗,但沒有人知道電流是什麼,也仍然不知原子是什麼。原子依然只是理論上的想像之物,代表組成物質的最基本單位,一個無法再切割的概念而已。直到英國物理學家湯姆森出現,才在1897年用巧妙的實驗吹散些許迷霧,揪出電子這個基本粒子。

約瑟夫·湯姆森(J. J. Thomson)。圖片來源:wikimedia

其實湯姆森作此實驗是為了釐清幾十年來的爭論不休:陰極射線究竟是以太波還是帶電的微粒?如果把這爭議簡化成兩派的辯論,大概會是這樣,

以太派:「不是已經證明光是一種波嗎?這螢光當然也是一種波。」
微粒派:「螢光都出現在陽極這一端,可見是帶負電的微粒。」
以太派:「那為什麼施加電場不會造成陰極射線偏折?」
微粒派:「可是我們用靜電計明明有接收到帶負電的粒子。」
以太派:「那可能是陰極射線穿越氣體造成的副產品,而不是陰極射線本身。」
微粒派:「施加磁場會使陰極射線偏折,所以是負電粒子。」
以太派:「陰極射線可以穿透鋁箔,只有波才辦得到。」
……(繼續各執一詞)

最後我們的男主角湯姆森終於跳出來,喊道:「閃開,讓專業的來。」他將靜電計放在有狹縫的金屬圓柱內,用磁場控制陰極射線的偏移,發現唯有射線穿過狹縫時,靜電計才測到負電荷,證明負電荷與陰極射線兩者是一體的,不可能是以太派指稱的副產品。

接著他將真空管內的氣體抽出直到接近真空,果然陰極射線就會受電場影響而偏折。之前的實驗是因為真空管內的氣體太多,抵銷了電場的作用。至此,已經證明了陰極射線是帶負電的粒子無誤。

但湯姆森的雄心不僅於此。他進一步調整磁場與電場強度大小,測量所造成陰極射線偏折的距離,算出陰極射線的電荷與質量的比值(荷質比)竟然超過氫離子的荷質比一千倍,表示陰極射線這種粒子的質量非常小。而且他換了不同金屬材料作為電極,也改變真空管內的氣體種類,結果荷質比都是同樣的數值,跟陰極材料、氣體種類完全無關。湯姆森相信陰極射線就是所有物質都共同具有的帶電粒子,他將它稱為微粒(corpuscles),也就是後來所稱的電子。

就這樣,湯姆森因為發現電子而獲的1906年的諾貝爾物理獎。而且他同時證明了原子並不是最基本的粒子,因為原子是電中性,代表裏頭除了電子之外,還有帶正電的物質。只是湯姆森想像的原子模型是電子均勻分佈在正電荷之海,就像梅子鑲嵌於布丁之中一樣。後來他的學生拉塞福發現原子核後,才證明他這個模型是錯誤的。

有趣的是,湯姆森用實驗證明電子是粒子,他的兒子喬治·湯姆森(G.P. Thomson)後來卻是用實驗證明電子是波,也於1937年獲得諾貝爾物理獎。除了父子倆人都獲得諾貝爾物理獎而在科學史上傳為佳話,湯姆森的學生與兒子都做出與他相左的研究,更是體現了科學只求真理的精神。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。


泛科學院精選線上課程:科學思辨力

無論是自然環境或是社會體制,地球正在發生的改變難以預測是好是壞,但是我們可以確定,每個人都需要 科學思辨力 以迎接來得又快又猛的新時代🧠


泛科學院精選實體課程:兒童冬令營

報名泛科冬令營,幫孩子預約一個充滿科學和歡樂的寒假,從此愛上知識與學習!📚

關於作者

張瑞棋

1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。自小喜愛科學新知,浮沉科技業近二十載後,退休賦閒在家,更成為重度閱讀者。當了中年大叔才成為泛科學專欄作者,著有《科學史上的今天》一書,如今又因翻譯《解事者》,而多了個譯者的身分。

網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策