Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

首度發現超新星|科學史上的今天:12/7

張瑞棋_96
・2015/12/07 ・838字 ・閱讀時間約 1 分鐘 ・SR值 597 ・九年級

在恆星演化的末期,可以提供核融合的元素逐漸耗盡後,恆星將因本身的重力向內塌陷。超過一定質量(約太陽的十倍)的恆星最後將爆炸而釋放出極為強烈的輻射能量,其電磁輻射足以照亮整個星系,持續數週到幾個月。在這段期間觀測星空,單憑肉眼就會注意到天空出現一顆原本不存在的超級明亮的新星,因此稱之為超新星(Supernova)。

超新星SN 1994D。圖片來源:NASA/ESA@wikimedia

那麼人類最早何時發現超新星?答案可能會出乎你意料之外:人類史上最早留下超新星的觀測紀錄的是將近一千九百年前的中國人。《後漢書·天文志》記載:「中平二年十月癸亥,客星出南門中,大如半筵,五色喜怒稍小,至後年六月消。」東漢的天文學家於公元185年12月7日,在圓規座與半人馬座之間的南門二附近,所看到的這顆「客星」,正是編號SN185(代表於公元185年出現)的超新星,它在天空閃耀達八個月之久。

之所以能確定它是超新星,除了所描述的特徵吻合外,最重要的是後來天文學家在它的方位附近發現超新星的殘骸。他們根據殘骸的大小與爆炸時的脫離速度反推它形成的時間,恰約是在兩千年前,符合史書記載的時間。不過也有學者認為這只是彗星,並非超新星。

公元393年,東晉的天文學家又觀測到一顆超新星SN393──它的遺骸也有找到。其它在公元369年、386年、437年、827年、902年也都有疑似超新星的觀測紀錄,但因尚未發現相對應的殘骸,仍無法確定。西方國家要等到公元1000年以後才有類似的紀錄。天文觀測又是一個中國原本領先,後來卻遠遠落後的例子,實在令人嘆息!

-----廣告,請繼續往下閱讀-----
宋朝天文學家於公元1054年觀測到超新星SN 1054的紀錄。圖片來源:wikimedia

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
5

文字

分享

0
7
5
宇宙「新」光──新星、超新星與千級新星
全國大學天文社聯盟
・2022/03/30 ・4272字 ・閱讀時間約 8 分鐘

  • 文/語星葉,與一隻米克斯黑狗簡單地生活在新竹,正在努力成為天文學家。

看星星,是大多數人接觸天文的契機。現今,看見滿天星斗對於被光害荼毒的都市人而言是一種奢侈,相較於古時夜無燈火,總有許多靜謐無光的夜晚,能讓人們一同仰望星空,思索空中的奧秘。多數星星安靜地閃爍,被人類賦予神話故事,成了現在為人所知的「星座」。另外,有少數幾顆不安分地移動著,它們的移動方式看似有規則,有時候卻會逆行,這些在天空中漫遊的星星,我們就稱之為「行星」 。

在極少數的情況,我們會發現過去未曾注意到的星點,猶如初來乍到的旅客,古時中國稱之為「客星」 [註一]。現在我們知道,這些看似新生的星,實則氣數已盡。利用強大的各波段望遠鏡,人類偵測到大量「新」光,並提出多種機制來解釋星光快速且劇烈改變的現象。

本文將介紹 3+1 種天文現象,分別為「新星(Nova)」、「超新星(Supernova)」和「極亮超新星(Superluminous supernova / Hypernova)」,以及「千級新星(Kilonova)」。前兩者的觀測歷史源遠流長,後兩者則歸功於現代發達的觀測技術,才讓我們得以一探究竟。

蟹狀星雲,古時中國稱之為天關客星,為西元 1054 年的超新星爆炸殘骸。圖/NASA, ESA, J. Hester and A. Loll (Arizona State University)

新星:我可一點都不年輕!

新星(Nova)來自拉丁文,有 「new」 之意。過去,人們仰望寧靜無波(一成不變)的星空時,若是偶然發現從未見過的星星,便稱之為「新星」。但如今我們知道,新星其實不是剛誕生的星,而是古老的小質量恆星,會在它們的生命終章──白矮星時期,突然變得異常明亮。

-----廣告,請繼續往下閱讀-----

白矮星是小質量恆星死亡後的產物,緻密、溫度高,但亮度低,平常不易觀測。一般而言,白矮星是非常穩定的天體,但如果身邊有個伴,情況就不同了。若是白矮星和伴星互繞的距離過近,使得伴星的氫被吸向白矮星表面,並在其表面點燃核融合反應,產生劇烈的光度變化,讓白矮星成為用肉眼可見的「新星」。

近年,天文學家發現,新星的出現經常伴隨強烈的伽瑪射線,推測是來自新星爆發時產生的衝擊波。後續研究指出,新星的高光度也是以衝擊波作用為主,而不是來自表面的核融合反應,打破了以往既有的觀點。

藝術家繪製的假想圖。右側的白矮星吸走左側伴星的氫,成為亮度極高的新星。圖/NASA/M.Weiss

超新星──宇宙中的燦爛花火

超新星(Supernova)顧名思義是新星的 Super 版,比「新星」更亮的星星──天文名詞總是取得如此淺顯易懂。超新星的光度遠超越新星,其形成機制也有所不同。

目前科學界認為超新星有兩種不同的形成機制,分別為「熱核超新星(Thermonuclear supernova)」與「核心塌縮超新星(Core-collapse supernova)」。

「熱核超新星(Thermonuclear supernova)」前身和新星一樣是白矮星,差別在於熱核超新星爆炸極具毀滅性。當白矮星的質量增加到「錢德拉賽卡極限(Chanfrasekhar limit)」,也就是臨界值時,引爆其核心的碳元素將劇烈爆炸,將使白矮星灰飛湮滅。質量增加是因為白矮星身邊有個伴,可能是兩個白矮星白頭偕老、最終合併,也可能和新星一樣是老少配,然後白矮星吸走年輕伴星的表面物質。但究竟是哪種配對導致熱核超新星爆炸,天文學家還在熱議。

-----廣告,請繼續往下閱讀-----

「核心塌縮超新星(Core-collapse supernova)」則來自大質量恆星核心塌縮後造成的熱壓爆炸。當大質量恆星的核心燃料用罄,無法支撐極強的重力而塌縮時,就會產生巨量的熱能,並向外爆發。整個過程僅以秒計。爆發後,周圍形成漂亮的超新星殘骸,核心則塌縮成中子星或黑洞。

值得一提的是,超新星是少數能夠串聯古今天文學的研究領域。歷史上數個著名的超新星爆發事件,在世界各地的文明史料中皆能發現記錄。目前推測人類文明見過最亮的超新星事件是 SN1006(西元 1006 年),最亮時甚至比啟明更亮 [註二],即使在白天仍可用肉眼看見,而且持續長達數星期。著名的梅西爾天體 M1(蟹狀星雲)也是超新星爆炸後的殘骸,自 1054 年的超新星爆發中產生,相關記錄散見史冊,而且至今仍是天文界炙手可熱的研究對象。

蟹狀星雲之心。 圖/NASA and ESA

+1 的部分:極亮超新星

現代觀測技術的進步使超新星事件變得常見,有多部自動望遠鏡凝視著宇宙虛空,在星際間搜尋著超新星的亮光,這類計畫稱為巡天(Survey)計畫。在眾多的觀測數據中,天文學家注意到一類特別明亮的「極亮超新星」(令人不禁想吐槽天文學家如此單純的命名邏輯),這些超新星比一般情況亮了 2 個數量級以上,並且非常罕見。

到 2017 年止,人類僅觀測到約 100 顆極亮超新星。由於數據過少,天文學家對其形成機制的想像可謂瞎子摸象、暫無定論,目前仍歸類為超新星。那麼,極亮超新星究竟是超新星的超級版,抑或是來自不同的形成機制,唯有持續探向更遙遠無垠的古老宇宙,才有機會揭發這個謎團了。

-----廣告,請繼續往下閱讀-----

千級新星──看見宇宙之音

「千級新星」是非常新的天文研究領域,研究過程也極具戲劇性。故事得從科學家研究重力波開始說起。

重力波是重力作用產生的時空漣漪。百年前,愛因斯坦的理論便預測其存在,但重力波非常微弱,連愛因斯坦本人都不相信人類有朝一日能偵測到重力波。直到 2015 年,人類才首次「聽」到兩顆黑洞合併產生的重力波 [註三]。不過,重力波的訊號指向性不佳,難以「聽音辨位」,也就是用重力波訊號回推事件發生地點。若我們能同時「看」到電磁輻射訊號(該事件發出的電磁波),便可蒐集更多更精確的數據,以了解究竟是在宇宙何處發生了什麼事。

令人難過的是,兩顆黑洞合併幾乎不會產生電磁輻射,因此無法用上述的方法獲得更多資訊。

後來,科學家發現,當兩顆中子星合併、或一顆中子星與一顆黑洞合併時,發出的重力波訊號雖較兩顆黑洞合併更弱、也更難偵測,但這兩種事件不只會產生重力波,也會發出電磁輻射,因此是重力波干涉儀的重要偵測目標。2010 年,天文物理學家探討了這兩種合併事件可能的電磁輻射樣態,得出的結論是和新星事件一樣會有劇烈的光度改變,而且最大亮度約是新星的千倍,於是命名為「千級新星(Kilonova)」。

藝術家以動畫展示兩顆中子星通過重力波合併,然後爆炸成千級新星的過程。影/ESO/L. Calçada.

千級新星的發光機制和超新星不同:超新星的光度主要來自爆炸產生的放射性鎳元素衰變,而千級新星則主要來自兩顆中子星,或中子星與黑洞碰撞合併時,大量發生的核反應——「中子捕獲作用」,此類核反應僅在極端物理環境下產生,是形成金、銀、鉛等重元素的重要機制。過去科學家認為宇宙中重元素的生產者是超新星,然而超新星爆炸的觀測數據卻發現,超新星事件發生的中子捕獲作用的「產能」並不足以支撐現有的重金屬比例,因此千級新星便躍上研究舞台,被認為是重元素的主要產地。

-----廣告,請繼續往下閱讀-----

2017 年,LIGO 及 VIRGO 重力波干涉儀共同偵測到人類史上第一場雙中子星合併事件 GW170817。當時,世界各地的望遠鏡幾乎都暫時放下常規任務,爭相投入這場觀測馬拉松。最終的成果令人振奮,不但同時偵測到重力波與相應的電磁波源,分析結果也與千級新星理論預測的訊號相符,這代表我們首次觀測到了千級新星!

重力波 GW170817的可見光訊號。圖/Soares-Santos et al. and DES Collaboration

這場盛會更昭示了「多信使天文學」時代的來臨 [註四]。重力波探測與多波段電磁觀測的結合,替人類的宇宙探索之旅翻開嶄新的一頁。今日,科學家們正期待著下一對共舞的緻密天體搖響精密儀器的銀鈴,讓更多未解之謎得以撥雲見日。

藝術家繪製的 GW170817 雙中子星合併事件想像圖。圖/LIGO-Virgo/Frank Elavsky/Northwestern University

宇宙看似恆常不變,然而在無盡好奇的驅使下,人類以最新科技突破既有的感官極限。我們洞見宇宙深邃瞬變的幽光,聆聽時空悠遠微弱的呢喃。宇宙「新」光的無盡奧秘,還有待來日的勤奮深掘。

註解

註一:客星指新出現的星,意義上包含彗星等在太陽系內遊走的天體,惟不在本文範疇。

註二:金星是地球的夜空中最明亮的星,清晨及黃昏也可見。古時稱金星出現於黃昏為「太白」、「長庚」,出現於清晨為「啟明」。

-----廣告,請繼續往下閱讀-----

註三:人類聽見的聲音主要來自空氣分子的震盪,只要震盪頻率在 20~20000 Hz 的範圍,並且經由介質傳遞使耳膜震動,我們就能聽見。雖然重力波是時空震盪,無法直接以耳朵聽見,但概念上類似,因此常見到科學家將重力波訊號轉換成「音訊」,方便人們感受。

註四:多信使天文學(Multi-messenger astronomy)指利用多種訊號探索宇宙的現象。不同於早期僅以可見光探看宇宙,人類如今能夠探測光子、電磁波、微中子、重力波和宇宙射線等高能帶電粒子。透過這些訊號,可以傳達不同面向的資訊,協助我們拼湊出單一宇宙現象更細緻的原貌。GW170817 事件除了以重力波和電磁輻射觀測,亦有微中子觀測站參與,只是沒有找到相關聯的微中子訊號,因此理論在這方面尚未證實,有待解惑。

延伸閱讀

  1. Li, KL., Metzger, B.D., Chomiuk, L. et al. (2017). A nova outburst powered by shocks. Nat Astron 1, 697–702. https://doi.org/10.1038/s41550-017-0222-1
  2. Aydi, E., Sokolovsky, K.V., Chomiuk, L. et al. Direct evidence for shock-powered optical emission in a nova. Nat Astron 4, 776–780 (2020). https://doi.org/10.1038/s41550-020-1070-y
  3. Gal-Yam, A. (2019). The most luminous supernova. Annual Review of Astronomy and Astrophysics, 57, 305–333. https://doi.org/10.1146/annurev-astro-081817-051819
  4. Metzger, B.D., Martínez-Pinedo, G., Darbha, S., Quataert, E., Arcones, A., Kasen, D., Thomas, R., Nugent, P., Panov, I.V., Zinner, N.T.. (2010). Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Monthly Notices of the Royal Astronomical Society, 406(4), 2650–2662. https://doi.org/10.1111/j.1365-2966.2010.16864.x
  5. Smartt, S., Chen, TW., Jerkstrand, A. et al. (2017). A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 55175–79 . https://doi.org/10.1038/nature24303
-----廣告,請繼續往下閱讀-----
全國大學天文社聯盟
7 篇文章 ・ 19 位粉絲

0

9
1

文字

分享

0
9
1
讓人們窺見宇宙天體的真面目 ——哈伯太空望遠鏡
科技大觀園_96
・2021/10/11 ・2164字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

以哈伯望遠鏡觀測的經典天文照片

哈伯太空望遠鏡(Hubble Space Telescope)在 1990 年 4 月 24 日發射升空,今年歡慶 31 週年。這座舉世聞名的望遠鏡,以前所未有的解析度與靈敏度,讓人們窺見宇宙中許多天體的真面目。 

哈伯望遠鏡基本資料。(圖/沈佩泠製表)

哈伯望遠鏡網站上,經常公布五彩繽紛的天文照片。大家可能不知道,許多經典的天文照片,幕後推手是中央研究院天文及天文物理研究所所長朱有花。朱有花在 2014 年返回臺灣之前,是美國伊利諾大學天文系教授,長期使用哈伯望遠鏡進行研究。她拍的許多天體影像,經過哈伯望遠鏡後製團隊巧奪天工之手,變成網路上廣為流傳的經典照片。

朱有花的一件得意作品,是 NGC 3603 星雲的照片。這張照片在 2000 年 1 月登上《國家地理雜誌》封面。朱有花說,當時她剛好有訂閱雜誌,收到雜誌才發現,封面竟然是自己的觀測影像,於是立刻打開來看,想知道內文如何介紹他們的成果。結果發現書中內容與這張照片毫無關係,只是因為雜誌編輯很喜歡這張照片,而將它放在封面。 

NGC3603 照片登上《國家地理雜誌》封面。(圖/朱有花提供)

經典天文照片,藏著對宇宙的問題與解答 

哈伯望遠鏡拍攝的照片不只是美麗,更重要的是提供許多科學訊息。在 NGC 3603 星雲照片的左上角(雜誌封面的字母 G 上方)有一顆藍超巨星,與著名的超新星 1987A 的前身星相似。早先地面望遠鏡在這顆星周圍偵測到恆星拋出的物質,引起朱有花的興趣,於是她利用哈伯望遠鏡的高解析度,看見了清楚的環狀構造,發現半徑與超新星 1987A 周圍的環相近。朱有花認為,這顆藍超巨星大概很快就會爆炸,說不定會成為 21 世紀銀河系內的第一顆超新星!

-----廣告,請繼續往下閱讀-----

在 NGC 3603 星雲的照片中間,還可看到一個星團,而星團中的大質量恆星把周圍氣體吹出一個氣泡。恆星風吹出的氣泡,也是朱有花利用哈伯望遠鏡研究的重要課題。

「大質量恆星都會吹出氣泡嗎?」朱有花在 1976 年讀博士班的時候,就提出這個問題。理論上,大質量恆星都會吹出氣泡,然而大多數恆星的影像中,都無法看到氣泡。到了 1990 年代,朱有花就想,假如氣泡真的存在,那哈伯望遠鏡總該看得到了吧!

然而觀測結果出爐後,卻發現仍然看不見氣泡。不過,朱有花利用光譜做動力學分析,確實找到了膨脹的氣泡。原來是因為氣泡膨脹速度太慢,約每秒 10-15 公里,只比宇宙中游離化氣體的聲速快一點(相較於地表,這些氣體密度很低、溫度很高,因此聲速快很多),因此震波(shock wave)微弱,不容易用影像拍攝的方式偵測。簡而言之,氣泡真的存在,只不過拍照拍不出來。經過 25 年努力,朱有花的疑惑終於得到解答!

朱有花也曾用哈伯望遠鏡,嘗試在超新星殘骸 N63A 尋找氣泡,結果沒有看到氣泡,卻看到許多微小的雲氣團塊。這些團塊被超新星殘骸快速膨脹的震波侵襲、加熱,正在蒸發。這個奇特的現象,讓人們窺見星雲之中複雜的交互作用。哈伯拍攝到的 N63A 影像相當特殊,但僅能看到雲氣團塊,無法看到超新星殘骸的球形外殼,需要 X 射線望遠鏡才能掌握全貌。 

-----廣告,請繼續往下閱讀-----
超新星殘骸 N63A 的多波段影像,右上區域金黃色的團塊是哈伯拍攝的可見光,外圍球殼狀構造則是 X 射線。(圖/Enhanced Image by Judy Schmidt (CC BY-NC-SA) based on images provided courtesy of NASA/CXC/SAO & NASA/STScI.)

2014 年回到臺灣後,朱有花主持科技部計畫,利用哈伯望遠鏡的資料研究 Ia 型超新星殘骸的起源。Ia 型超新星的爆炸機制,目前有兩種主流的說法:「一顆白矮星吸取伴星的物質而爆炸」,以及「兩顆白矮星合併而爆炸」。如果以第一種機制爆炸,伴星理論上會存活下來,因此若能找到存活的伴星,就是第一種機制的重要佐證。2017 年,朱有花與指導的學生李傳睿(現為中研院天文所博士後研究)合作,在超新星殘骸 N103B 尋找存活下來的伴星,找到一顆可能是伴星的星球,並在《天文物理期刊》發表成果。 

哈伯望遠鏡拍攝的超新星殘骸 N103B(左上)及其周遭環境。(圖/歐柏昇製圖)

想使用哈伯望遠鏡,先提出觀測計畫 

朱有花能夠用哈伯望遠鏡拍攝這麼多影像,並非易事。事實上,想要使用哈伯望遠鏡,必須先提出觀測計畫,與全世界天文學家激烈競爭,以 2019 年來說,只有不到 20% 的觀測計畫通過。朱有花說,競爭到最後還是有點運氣成分,許多自認完美的計畫最後失敗了,反而有些倉促完成的計畫書,竟然無心插柳柳成蔭。光是爭取望遠鏡時間,天文學家就有不少甘苦談。

除了主動爭取觀測時間之外,朱有花也常利用哈伯的資料庫做研究。筆者在朱有花老師門下,亦有從資料庫中挖到寶的經驗。哈伯望遠鏡 30 年來累積了大量珍貴的數據,仍蘊藏許多人們未曾發掘的資訊。

哈伯望遠鏡拍攝的每一張美麗照片,背後都有天文學家的艱辛,以及豐富的科學內涵。欣賞照片的同時,不妨試著了解,人們如何透過這些照片,認識宇宙精彩的面貌。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。