0

3
1

文字

分享

0
3
1

公開金鑰密碼:能在網路上安全的傳送密碼,要感謝神奇的質數? ——《用數學的語言看世界》

臉譜出版_96
・2018/01/14 ・6243字 ・閱讀時間約 13 分鐘 ・SR值 513 ・六年級

自然數,特別是質數的性質,與祕密通訊關聯很深刻。將通訊內容經過特定的規則轉換成其他記號稱為「加密」;而將加密過後的數據還原成原本可以讀的狀態則稱為「解密」。

曾經破解「加密規則」=破解「秘密通訊」

到 1970 年代為止,使用的密碼是只要知道加密規則,就可以利用解密回推成原本的數據。例如,西元前 1 世紀凱撒所使用的密碼,是將字母按照固定的順序位移,因此只要將字母的順序反方向逆推回去,就可以解密了。所以,如果加密的規則被敵軍知道的話,通訊祕密就全部洩漏了。不只是有加密的規則被偷的例子,也有光是靠傳送的訊息所出現的規則就破解密碼的例子。

1925 年左右,第二次世界大戰時,德軍使用的密碼機稱為「謎式密碼機」(又稱恩尼格瑪(Enigma)密碼機)。謎式密碼機是利用複雜的齒輪結構變換字母順序,而且每次使用時,字母變換的規則都不相同,被認為是不可能破解的密碼。

一台 T 型恩尼格瑪密碼機,由日軍使用,圖/by Greg Goebel@wikipedia commons。

不過,每天早上,為了讓機器在傳送加密過的變更初期設定的方法時不發生錯誤,謹慎的德國軍人都會發出兩次相同的訊息。波蘭軍情局的年輕數學家馬里安.雷耶夫斯基(Marian Rejewski)利用被稱為群論的數學理論,破解了這個會在每天早上最一開始先重複兩次的訊息,因此破解了密碼機的齒輪構造。

-----廣告,請繼續往下閱讀-----

1939 年,當德軍對波蘭的侵略愈來愈近,波蘭軍情局長官覺悟到不可能保護祖國,於是召集了英國以及法國的情報軍官到華沙,告訴他們謎式密碼機的祕密。英國的政府密碼學校(GC&CS)根據這份情報,成功解讀德軍的通訊機密,對於同盟國的勝利有重大貢獻。

所有人都可以將資訊上鎖的「公開金鑰密碼」

各位可能會覺得,只要加密規則被發現的話,就有可能依照同樣的規則破解密碼,這似乎是將文件加密時無法避免的問題。但是,這個問題是可解決的。想到答案的是美國的惠特菲爾德.迪菲(Whitfield Diffie) 及 馬 丁. 赫 爾 曼(Martin Hellman)。 這是 1976 年左右的事情,為了說明他們的發想,先來說說南京鎖(鑰匙鎖)吧。

南京鎖,圖/《用數學的語言看世界》提供。

南京鎖是一種只要將上面的環壓入鎖的本體就會自動鎖住的鎖,不管是誰都可以簡單上鎖。不過,一旦南京鎖被鎖上了,只有持有鑰匙的人,或是有特殊開鎖技巧的人才能將鎖打開。雖然知道上鎖的方法,卻無法得知開鎖的方法。就南京鎖而言,上鎖的知識對於開鎖沒有任何幫助。

迪菲及赫爾曼他們想著,難道不能有像南京鎖這樣,即使知道加密規則也無法輕易解密的方法嗎?如果知道規則也無法解密的話,那加密的規則也就不需要保密,於是就能夠將加密的規則公開,不管是誰都可以將通訊內容加密了。就好像將南京鎖傳送到世界,不管是誰都可以幫忙傳送被南京鎖鎖住的信件。雖然南京鎖是公開的,但是只要將開鎖的鑰匙放在手邊不要被偷走的話,在通訊過程中沒有人可以打開鎖。

-----廣告,請繼續往下閱讀-----

同樣地,雖然公開了加密的規則,只要解密的規則沒有公開的話,就可以守護通訊祕密了。這就是迪菲及赫爾曼的想法。實現了這個公開金鑰密碼概念的,就是現在網路交易時使用的 RSA 密碼

現在網路交易時使用的 RSA 密碼,就是「公開金鑰密碼」。圖/JanBay@pixabay

從「費馬小定理」到「歐拉定理」

要說明 RSA 密碼之前,先介紹一下歐拉定理吧。這是費馬小定理一般化的定理。費馬小定理是指,如果 p 是質數,無論任何自然數 n,np - n 一定能被 p 整除。再看一次第五節的表吧。

第五節表,圖/《用數學看世界》提供。

根據這個表,將 n 除以 5 與將 n5 除以 5 的餘數是相等的,這就是費馬小定理。難道沒有其他有趣的規律了嗎?看看「n4 除以 5 的餘數」那行,除了右邊之外,其餘的數字都是 1。右邊是 n 為 5 的倍數的情況,也就是說,當 n 不是 5 的倍數時,n4 除以 5 會餘 1。一般而言,當 p 是質數、n 不是 p 的倍數時,np-1 除以 p 時,餘數為 1。

np-1 = 1 +(p 的倍數)

-----廣告,請繼續往下閱讀-----

這可以從費馬小定理推導而來。雖然費馬小定理是指 np - n 能 被 p 整除的關係式,但是因為:

np -n = n×(np-1 - 1)

如果,當 n 本身不是 p 的倍數,也就是說,n 無法被 p 整除,那 麼 np-1 - 1 應該能夠被 p 整除。因此

np-1 = 1 +(p 的倍數)

-----廣告,請繼續往下閱讀-----

也有人 認為這個關係式才是費馬小定理

18 世紀數學家歐拉,將這個費馬小定理擴大應用。費馬小定理是計算除以質數 p 的餘數;而歐拉定理則是計算將 n 被一般的自然數 m 除時的餘數。m 不是質數也沒有關係, 只要 n 跟 m 之間沒有 1 以外的公因數就可以。也就是說,n 跟 m 的 最大公因數是 1。這時候,n 跟 m 稱為「互質數」。

n 跟 m 的 最大公因數是 1,n 跟 m 稱為「互質數」,圖/by geralt@pixabay。

將與 m 互為質數,且小於 m 的自然數 n 的個數寫成 φ(m), 當 p 跟 q 是不同質數的時候,就成為

φ(p) = p - 1

-----廣告,請繼續往下閱讀-----

φ(p×q)=(p - 1)×(q - 1)

這個函數 φ(m),又稱為歐拉函數。歐拉定理認為,自然數 n 跟 m 相互為質數的時候,具有下面的關係式。

nφ(m) = 1 + (m 的倍數 )

例如,當 m = p 是質數的情況,因為 φ(p) = p - 1:

-----廣告,請繼續往下閱讀-----

np-1 = 1 +(p 的倍數)

這就是費馬小定理。歐拉定理在 m 是質數的情況下,就會成為費馬小定理。

「公開金鑰密碼」的鑰匙──歐拉定理

公開金鑰密碼所使用的,是當 m 為兩個質數 p 與 q 的乘積,也就是 m = p×q。在這個時候,因為 φ(p×q)=(p - 1)×(q - 1), 因此自然數 n 不被質數 p 及 q 整除的話,下面的關係式就能成立。

n(p-1)×(q-1) = 1 + (p×q 的倍數 )

-----廣告,請繼續往下閱讀-----

例 如, 假 設 有 兩 個 質 數 p = 3、q = 5 而 m = p×q = 15, φ(3×5)=(3-1)×(5-1) = 8,n 與 15 互相為質數的話,則應該是

n8 = 1 + (15 的倍數)

請各位用 n = 7 代入試試看。

使用歐拉定理的話,就可以發現數字的有趣性質。例如,歐拉定理可以證明 9、99、999 這些 9 排成的數,利用質因數分解的話,會出現除了 2 跟 5 之外的質數。

使用歐拉定理的話,就可以發現數字的有趣性質,圖/by geralt@pixabay。

下一節要使用歐拉定理說明加密原理,先做些準備工作吧。根據歐拉定理,如果自然數 n 無法被質數 p 及 q 整除,那麼就存在下列的關係式:

n(p-1)×(q-1) = 1 +(p×q 的倍數)

如果乘上 s 次方,因為 1s = 1,就成為:

ns×(p-1)×(q-1) = 1 +(p×q 的倍數)

再乘一次 n,就成為:

n1 + s×(p-1)×(q-1) = n +(p×q 的倍數)

也就是說,不管 n 是怎樣的數,只要 n 無法被質數 p 及 q 整除, n1 + s×(p-1)×(q-1) 除以 p×q 的餘數,就會還原成 n。

那麼,就來應用在公開金鑰密碼上吧。

信用卡號碼的傳送與接收

加密技術在網路購物或是銀行的帳戶管理、甚至是身分證都經常被使用。將網路上的資訊加密之後送信、收信的過程稱為  SSL(Secure Socket Layer)。網頁的 http://www. …,就是遵從 SSL 通訊協定來收發訊息。

信用卡號碼加密遵從 RSA 密碼,圖/by stevepb@pixabay。

如果使用公開金鑰密碼的話,不管是誰都可以將信用卡之類的個 人隱私資訊加密之後,利用網路傳送。然而,知道該怎樣解讀的,只有知道解密規則的收信人。實現這件事的,就是由羅納德.李維斯特 (Ron Rivest)、阿迪.薩莫爾(Adi Shamir)以及倫納德.阿德曼 (Leonard Adleman)三人的姓名開頭字母組成的 RSA 密碼。

RSA 密碼,是依照下列順序進行的。

  1. 密碼的接受者——假設是亞馬遜購物網站好了——為了製作公開金鑰,先選擇兩個非常大的質數,假設是 p 及 q。
  2. 亞馬遜網站也選擇了與 (p - 1)×(q - 1)「互為質數」的自然數 k。舉例來說,當 p = 3、q = 5 的話,因為 (p - 1)×(q - 1) = 8,所以假設選了 k = 3 為 8 的互質數。
  3. 亞馬遜計算 m = p×q,並且告訴你 m 以及 k。這就是公開金鑰。 然而,卻不跟你說 m 的質因數 p 及 q 是什麼數字。所以你只知道兩個質數的乘積。以現在的例子的話,m = p×q = 15。因為這數字實在太小了,馬上就能知道 15 的質因數是 3 跟 5。實 際上使用的 RSA 密碼大概是 300 位位數的數字,不可能進行質因數分解。
  4. 你將信用卡密碼之類想要傳送的資訊轉換成自然數 n。要注意一點,n 要小於 m,並且 n 及 m 為互質數(因為 m 是將近 300 位位數的天文數字,所以不會太難找到 n)。
  5. 你使用從亞馬遜來的情報(m,k),將 n 加密。加密的規則是: 計算 nk ,接著除以 m,計算除以 m 之後的餘數。將餘數寫成 α。 也就是: nk = α +(m 的倍數)你將這個 α 做為密碼,利用網路傳送給亞馬遜。例如,n = 7 的話,就計算 73 = 343 = 13 + 15×22,所以 α = 13。
  6. 亞馬遜收到密碼 α 之後,開始將 n 解密。

第(6)項就是 RSA 密碼的重點。亞馬遜應該要解決的問題是 「有一個不知道是什麼的數 n,當 nk 除以 m 而餘數是 α 時,n 是多 少呢?

如果沒有「除以 m,而求餘數」這一個步驟的話,問題就會變得比較簡單。如果只是 nk = α 的話,那麼只要計算 α 的 k 次方根就好。

RSA的作者之一:阿迪·薩莫爾(Adi Shamir),圖/by Ira Abramov from Even Yehuda, Israel@wikipedia commons。

一般計算 k 次方根時,可以逐漸逼近正確答案。例如,當 n3 = 343 時,想知道 n 的時候,首先,先任意的推測一下,假設 n = 5, 53 = 125 似乎有點太小了。那麼,稍微增加一點,n = 9 試試看,這 次 93 = 729 又太大了。當 n 增加,n3 也增加;當 n 減少,n3  也減少, n = 5 太小而 n = 9 太大,所以正確值一定就在 5 跟 9 之間。反覆計算幾次之後,就可以得到 n = 7 的正確答案。

但是,當加入「除以 15,計算餘數」這個步驟之後,問題突然 變得難上加難。除以 15 而有餘數代表著,當餘數從 1、2、3 直到 15 時,也就是 0,之後又會再從 1、2、3 開始。即使 n 增加了,不代表n3 除以 15 的餘數會增加。實際上,與 15 互為質數的 n 有 n = 1、2、4、 7、8、11、13、14,計算 n3 之後除以 15 的餘數是 1、8、4、13、 2、11、7、14,這些餘數的排列方法,似乎沒有簡單的規律性。因此,即使知道「n3 除以 15 的餘數」,要計算 n 的值也很困難。像 15 這樣小的數字,還可以從頭到尾算過一次,如果是 300 位數的數字, 應該只能舉雙手投降了。

但是呢,亞馬遜卻可以很輕鬆地解決這個問題。因為他們知道 m 是 p 及 q 的乘積這件事。使用這項資訊的話,就可以決定「魔法數字」 γ。這就是解開密碼的鑰匙。對於不知道是什麼數的 n,只要知道:

nk = α +(m 的倍數)

利用魔法數字 γ,就可以知道:

αγ = n +(m 的倍數)

也就是說,從密碼 α 可以推算回原本的數 n。

舉例來說,當公開金鑰 m = 15、k = 3 的時候,因為 73 = 13 +(15 的倍數),將 7 密碼化的話,就變成 α = 13。於是,你把這個 數字傳送給亞馬遜。這個時候,魔法數字就是 γ = 3。

亞馬遜知道這個數字。因此,他收到密碼 13 之後,計算 133 = 7 +(15 的倍數)。 將密碼 13 做 3 次方運算之後,除以 15 的餘數為 7,於是,加密之前 的資訊 n = 7 就被復原了。 亞馬遜要怎樣找到魔法數字 γ 呢。本來 α 是由:

nk = α +(m 的倍數)

計算而得知的數,魔法數字成為 γ 這件事情就表示:

αγ = n +(m 的倍數)

也就是說:

(nk )γ = nγ×k = n +(m 的倍數)

這時候,回想一下歐拉定理吧。如果 n 不能被 p 或 q 整除,那麼就符合下列方程式。

n1 + s×(p-1)×(q-1) = n +(m = p×q 的倍數)

這兩個式子看起來很像呢。不管哪一個都是計算 n 的次方之後, 就能恢復 n 的式子。所以,如果選擇一個適當的 γ,讓 γ×k = 1 + s×(p - 1)×(q - 1) 的話,就可以解開密碼了。

這時候的重點是,k 及 (p - 1)×(q - 1) 要「互為質數」。這時候, 一定存在自然數 γ 及 s,使得:

γ×k = 1 + s×(p - 1)×(q - 1)

例如剛剛的例子,k = 3,(p - 1)×(q - 1) = 8,與這兩個數互為 質數,因此假設 γ = 3,s = 1:

3×3 = 1 + 1×8

密碼 α 是由下面的方程式決定的:

nk = α + (m 的倍數 )

如果像這樣使用 γ 的話,就能夠利用

αk = nk×γ + (m 的倍數 ) = n1 + s×(p-1)×(q-1) + (m 的倍數 ) = n + (m 的倍數 )

於是,從密碼 α 就可以解密恢復原本的 n 了。而這個 γ,就是亞馬遜的魔法數字。

此流桯圖顯示非對稱加密過程是單向的,其中一條密鑰加密後只能用相對應的另一條密鑰解密,圖/by Nicobon@wikipedia commons。

近乎不可能的天文數字「質因數分解」讓密碼牢不可破

只要無法計算天文數字的質因數分解,RSA 密碼系統就不可能被破解。即使利用現在廣為人知的演算法,計算 N 位數自然數的質因數 分解所花費的時間仍然與 N 呈指數函數的關係。例如,2009 年,有 一個團隊完成了 232 位數的質因數分解,但是據說他們利用了數百台平行電腦,花了兩年時間才完成計算。

如果,發現了完成質因數分解只需要 N 位數的 N 次方時間的演算法的話,使用 RSA 密碼做為公開金鑰的系統都會被破解,應該會造成網路經濟大混亂吧。

實際上,雖然還沒有實現,但是已經知道如果能做出使用量子力學的「量子電腦」的話,N 位數自然數的質因數分解,應該只需要 N 次方時間就能完成。1994 年,麻省理工學院的數學家彼得.秀爾 (Peter Shor)發現了一種計算質因數分解的演算法,只需要 N 位數自然數的 N3 計算次數就能完成。只是,「量子電腦」目前仍然處於理論的階段,實際上依然無法做到。

另一方面,如果利用量子力學的原理,也有可能做出跟 RSA 相異的通訊密碼。「量子密碼」的方法是,如果密碼被中途攔截並且解密的話,不論藏得多隱密,都一定會被發現。只要量子力學是正確的, 就不可能竊取通訊訊息。不管是「量子電腦」或「量子密碼」被開發出來,應該都會對通訊安全造成很大的改變。

這些定理在現代的網路經濟中扮演非常重要的角色,圖/by TBIT@pixabay。

這一話所提到的許多證明及定理,證明了質數有無限多個,也證明 了質因數的分解法只有一種,還有費馬小定理以及歐拉定理,這些都是著迷於自然數以及質數性質的數學家們,因好奇而發現的。而這些定理卻在現代的網路經濟中扮演非常重要的角色,這真是令人感觸良多。

在 1995 年,證明出將近四個世紀都沒有解開的費馬最後定理; 而在 2013 年,對於孿生質數的證明有很大進展。另外,應用歐拉定理而產生的 RSA 密碼是在 1977 年發明的,而有效判定質數的方法是 2002 年發明的。雖然對自然數的研究已長達數千年,然而,對於自然數性質的理解以及應用開發,直到現在仍持續發展中,而且尚未解決的謎題依然很多。

19 世紀美國的哲學家詩人亨利.大衛.梭羅(Henry David Thoreau)曾經寫過:「雖然數學被喻為詩一般的存在,但是其中的大多數都尚未被歌詠。」對於質數,應該從現在開始會有許多的詩歌詠頌吧。然後,就會像根據歐拉定理所產生的 RSA 密碼在網路經濟上的運用一般,質數的新發現也可能對未來的生活產生重大的變革。

 

 

本文摘自《用數學的語言看世界:一位博士爸爸送給女兒的數學之書,發現數學真正的趣味、價值與美》,臉譜出版

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia