Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

法拉第不只懂電磁學,也是火場鑑識專家?──《比小說還離奇的 12 堂犯罪解剖課》

PanSci_96
・2017/09/14 ・2642字 ・閱讀時間約 5 分鐘 ・SR值 552 ・八年級

火場通常又暗又臭,很不舒服,考驗體力。經過漫長的一天,你回到家,累得像條狗,渾身燒過的塑膠味。一點都不光彩。可是很迷人。

──火場調查員妮亞.尼克.戴依德(Niamh Nic Daeid)

是陰謀?還是天時地利人和造就了倫敦大火?

1666 年 9 月 2 日星期日,倫敦普丁巷的一名僕役被煙嗆醒,發現樓下店鋪起火了,他猛敲雇主麵包師傅湯馬斯.法里納(Thomas Farriner)的房門。全家上下沿屋頂逃生,只剩下女僕蘿絲(Rose)嚇得無法動彈,被烈焰吞噬。

圖/Diliff@wikimedia commons

不久,焰舌舔上附近住戶屋牆,市長湯瑪士.布拉德沃斯爵士(Sir Thomas Bloodworth)被叫到現場,指揮消防隊員拆毀建築,阻止火勢延燒。美夢遭到侵擾的布拉德沃斯怒氣騰騰,不理會消防隊員急切請求採取更進一步的措施。「呸!找個女人來撒泡尿不就沒事了。」說完,他離開現場。

隔天上午,記事員山繆爾.派比(Samuel Pepys)體驗到「狂風大作,將火焰趕入市區,歷經長時間的乾旱,什麼東西都成了可燃物,就連教堂的石牆也不例外」。到了下午,倫敦陷入地獄般的火海,火焰沿著「油、葡萄酒、白蘭地倉庫」、木造建築、稻草屋頂、瀝青、布料、油脂、煤炭、火藥──17 世紀的各種易燃物──呼嘯而過。極度高溫使得空氣迅速膨脹攀升,乘著風勢吸入新鮮空氣,將更多的氧氣捲入煉獄。倫敦大火塑造出專屬的天氣系統。

大火在 4 天後漸漸平息,摧毀了中世紀倫敦的大半城區,涵蓋 13,000 多棟屋舍、87 間教堂,以及聖保羅大教堂。城裡 80,000 居民中約有 70,000 人在一瞬間流離失所。

-----廣告,請繼續往下閱讀-----
倫敦大火的局部畫作,作者不明。畫中描繪9月4日星期二自倫敦塔碼頭附近船隻所見的火勢,倫敦塔在畫面右方,左方則為倫敦鐵橋,遠方為聖保羅座堂,被高竄的火舌環繞。圖/wikimedia commons

灰燼餘溫尚存,種種陰謀論甚囂塵上。大部分的倫敦人無法相信這場火純屬意外,裡頭有太多巧合:起火點是密集的木造建築區;當時大家都在夢鄉之中;那天街上格外冷清,沒有人幫忙滅火;吹起狂風,泰晤士河水位正低。

蓄意犯罪的謠言如雨後春筍般萌生。外科醫師湯瑪士.米斗頓(Thomas Middleton)站在教堂尖頂上,俯瞰火勢從幾處相隔甚遠的個別區域燒起。「這類狀況令我相信這場火的延燒是有人刻意為之。」他如此寫道。

外國人背負最大的嫌疑,在摩爾菲有個法國人差點被打死,因為旁人懷疑他用盒子裝「火球」,之後才發現那是網球。詩歌表達出眾人對起火原因的困惑:

我們仍舊不解一切從何而起;究竟是地獄、法國、羅馬,還是阿姆斯特丹。

──無名氏〈倫敦焚燒詩〉(A Poem on the Burning of London,1667)

最高階層掀起對真相的渴求。查爾斯二世(Charles Ⅱ)在這場火中損失最為慘重。國王授權給國會,設立調查火災起因的委員會。大批目擊證人紛紛站出來,某些人說他們看到有人投擲火球,或是坦承自己正是丟火球的犯人。有個叫愛德華.泰勒(Edward Taylor)的人說,星期六晚上,他跟荷蘭籍的叔叔走到普丁巷,發現湯馬斯.法里納烘焙坊的窗戶開著,往裡頭丟了「兩顆用火藥跟硫磺做的火球」。不過愛德華.泰勒才十歲,他的證詞不被採信。法國鐘錶師之子羅伯特.賀伯特(Robert Hubert)腦袋愚鈍,承認點火的人是他。沒有人真正相信,可是因為他如此堅持,陪審團認定他有罪,把他送上泰伯恩刑場的絞架。

-----廣告,請繼續往下閱讀-----

國會委員會成員湯瑪士.奧斯朋爵士(Sir Thomas Osborne)寫下:「所有的論點都瑣碎無比,人民知道此事並非人為就滿足了。」最後,委員會判定這場恐怖的火災是源自「上帝之手、一場狂風,以及極端的乾季」。

火場鑑識專家:麥可.法拉第!?

委員會做出如此缺乏說服力的結論,其實我們不用意外。評估複雜火場的調查人員需要了解火焰的運作模式。17 世紀在這方面的科學知識少得可憐。直到 1861 年,麥可.法拉第(Michael Faraday)把關於火焰的論述寫進書裡之後,社會大眾才有辦法接觸這類理論。

《蠟燭的化學史》(The Chemical History of a Candle)書中收錄了 6 篇他針對年輕聽眾設計的講演內容,是這個主題的關鍵教材。法拉第以蠟燭作為燃燒本質的象徵。在某次關鍵的講座中,他用罐子悶熄蠟燭。「空氣是燃燒的要件。」他解釋道,「更重要的是,我要你們了解新鮮空氣是必要條件。」他口中的「新鮮空氣」其實就是「氧氣」。

麥可.法拉第。圖/Wellcome Library@Wikimedia commons

法拉第是早期的專業證人,有時將研究結果帶出實驗室這事實行得很徹底。1819 年,某間在倫敦白教堂區的糖廠於大火中燒毀,老闆告保險公司拒絕理賠 15,000 鎊的保險金。這個案子演變為某項新製程──老闆採用加熱的鯨油,沒有告知保險公司──與起火原因有多大關係。作證之前,法拉第拿鯨油做實驗,加熱到攝氏兩百度,展示「從油生出的蒸氣,除了水以外,全都比熱油本身還要易燃」。在法庭上,一名陪審員不相信這個論點,於是法拉第當場點燃他用試管裝來的蒸餾氣體,「整個法庭瞬間瀰漫最難聞的臭味」。

-----廣告,請繼續往下閱讀-----

法拉第最重要的鑑識任務,是 1844 年德罕郡的哈斯威爾礦坑爆炸案,有 95 名男子與男孩身亡。這起爆炸發生在德罕郡礦區勞資糾紛激烈時期。代表悲傷家屬的律師向首相羅伯特.皮爾(Robert Peel)請願,要求政府派出代表調查。法拉第就是其中一人。

這個團隊花了一天實地探訪礦坑,調查裡頭的空氣流向。途中,法拉第發現他坐在一桶火藥上,旁邊就是沒有遮蔽的燭火。他一躍而起,「抗議他們有多不小心」。陪審團判斷這是意外事件,法拉第贊同這個論點。但是調查團回到倫敦後提出報告,指出礦坑裡的灰塵是本次爆炸的重要因素,建議改善通風系統。礦坑主人因為成本考量而回絕。這個風險遭到長達六十年的忽略,直到1913 年,威爾斯的聖海德礦坑發生類似的意外,奪走 440 名礦工的性命,釀成英國史上最嚴重的礦災。

圖/Wikimedia commons

在 20 世紀,消防單位與科學界聯手研發出火場調查技術,背後的支持者是想要知道究竟有多少火場、起火點以及起火原因的政府機關。60 與 70 年代的調查行動變得更加文明:有固定的流程、能夠驗出複合化學物質──比如,火場裡是否有汽油的蹤跡──的新器材。社會大眾愈來愈了解消防原理,現今的和平時代極少有火災或是爆炸──必定要有火才會引爆──造成大量死傷。要是這類不幸事故真發生了,調查火場的人員絕對是畢生難忘。

 

本文摘自泛科學2017年9月選書《比小說還離奇的12堂犯罪解剖課》,馬可孛羅出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

3

5
4

文字

分享

3
5
4
鑑識故事系列:德國免費電玩,邀玩家扮法醫
胡中行_96
・2023/03/20 ・1664字 ・閱讀時間約 3 分鐘

本系列以往藉由講解真實案件,來分享鑑識科學;這篇則摘要免費電玩的虛構情境,鼓勵讀者親自體驗辦案。2023 年 1 月的《國際法醫期刊》(International Journal of Legal Medicine),介紹了一款德國漢堡開放線上大學(Hamburg Open Online University)的遊戲,名叫「Adventure Legal Medicine」(非官方中譯:法醫歷險)。論文詳述開發過程與教學功能,還強調玩家不管有無醫學知識,皆能輕易上手。[1]

=========微劇情,防雷線=========

想避開遊戲情境簡介的讀者,請跳過圖片後的第一段,謝謝。

電玩《Adventure Legal Medicine》的繪畫風格。圖/參考資料 1,Figure 1(CC BY 4.0)

情境設定

依照學習的領域,此遊戲有下列 5 個故事情境,可供選擇:

-----廣告,請繼續往下閱讀-----
  1. 估計死亡時間(time of death estimation):有人死在公寓裡。玩家必須選取正確的驗屍工具,例如:直腸體溫計(rectal thermometer)或神經反射錘(reflex hammer),來推估死亡時間。[1, 2]
  2. 體外驗屍檢查(external post-mortem examination):河岸上死者的某些身體部位,藏有非自然死亡的線索。[1]像是顱骨和手肘擦傷等,都有待玩家一探究竟。[2]
  3. 鑑識人類學(forensic anthropology):森林裡,散落著人類骨骸。觀察並測量骨頭,以推估年紀、性別和身高。將結果拿去跟失蹤人口的檔案比對,玩家或許就能找出死者的身份。[1]
  4. DNA親子鑑定(DNA analysis/paternity test):不知從哪迸出 4 個人,想繼承情境 2 那名死者的巨額財產。[1]玩家得從唾液樣本,分析他們的 DNA,判斷誰才是真有血親關係的子嗣。[1, 2]
  5. 解剖、酒精與藥物(autopsy/alcohol and drug influence):玩家幫車禍死者體外驗屍;解剖以檢查器官;並進行毒物學分析。最後,判讀以上檢查所得的結果。[1]

開發過程

這個遊戲是鑑識病理學家、鑑識人類學家、心理學家、醫科學生、遊戲工程師和插畫藝術家,共同合作的結晶。類似於商業開發的線上遊戲,產品正式釋出之前,得先找人來封閉測試。2 名分別為 25 和 49 歲的男性;以及 21、25 與 54 歲的 3 名女性,率先嘗試情境 1 和 2 的前期測試版。研發團隊根據他們的感想與建議,改進遊戲,並設計情境 3。接著,請 40 名醫學系的學生,操作情境 1 至 3 的測試版。另外,其他不同教育程度的學生,作為一般大眾的樣本,也受邀試玩。最終統合大家的評論後,團隊設計出情境 4 和 5 的遊戲。[1]

嚴肅遊戲

德國研發團隊將產品定位成「嚴肅遊戲」(serious game),以教學而非娛樂為主要目的,而且在視覺上多採灰階,來保持中性。[1]筆者試玩了一小部份,又觀賞攻略影片,覺得繪圖和音效雖不華麗,但頗為用心。由於遊戲全程都有電子版的課本唾手可得,玩家本身無須具備專業知識。每個階段結束後,還能透過小測驗,了解學習成效。對相關科系而言,也可用於輔助教學或自學。從 2020 年 1 月在 Google Play 上架以來,有數千人下載,並獲得平均 4.5 星的評價;可惜不曉得線上網頁版的使用人次。[1]下面是此遊戲的基本資料、連結與攻略,歡迎讀者分享闖關心得。

Adventure Legal Medicine

  • 名稱:Adventure Legal Medicine[1](英文別名:Forensic Medicine Adventure;德文名稱:Abenteuer Rechtsmedizin)[2]
  • 對象:醫學相關科系的學生及一般愛好者。[1]
  • 語言:英文和德文。[1]英文版的故事敘述,用字不難;但基於辦案的情境,勢必會出現骨骼、基因等,鑑識科學常見的專有名詞。
  • 行動裝置版:僅支援Android系統的平板電腦和手機;沒有 iOS 的版本。請點超連結下載,或上Google Play搜尋「Abenteuer Rechtsmedizin」。[1]
  • 線上網頁版http://elearning.uke.de/HOOU/RechtsmedizinSeriousGame/ (完全載入後,可以按下方代表德文的「DE」,將語言改為英文「EN」。)[1]
電玩《Adventure Legal Medicine》英文版,前 4 個情境的攻略。影/參考資料 2

  

  1. Anders S, Steen A, Müller T, et al. (2023) ‘Adventure Legal Medicine: a free online serious game for supplementary use in undergraduate medical education’. International Journal of Legal Medicine, 137, 545–549.
  2. SLY MobileGaming (15 JAN 2021) ‘Forensic Medicine Adventure Abenteuer Rechtsmedizin | Point and Click Game Walkthrough’. YouTube.
-----廣告,請繼續往下閱讀-----
所有討論 3
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

10
2

文字

分享

0
10
2
鑑識故事系列:Lucia de Berk 值班死幾人?荷蘭護理冤案
胡中行_96
・2023/02/27 ・2983字 ・閱讀時間約 6 分鐘

前言:本文為鑑識系列中,罕見提及統計學的故事。不過,繁複的計算過程全部省略,僅討論統計概念和辦案原理。請害怕數學的讀者放心。

護理人員 Lucia de Berk。圖/Carole Edrich on Wikimedia Commons(CC BY-SA 3.0)

荷蘭護理人員 Lucia de Berk,長年於海牙茱莉安娜兒童醫院(Juliana Kinderziekenhuis)的 1 個病房,與紅十字醫院(Rode Kruis Ziekenhuis)的 2 個病房工作。2001 年 12 月,她因謀殺罪嫌被捕。[1]

超幾何分佈

警方起先偵辦 2 名住院病患的死因,發現是中毒身亡;後來連帶調查 1997 至 2001 年間,幾家醫院可能的謀殺案件,於是找上了她。[2]在法庭上,司法心理學家 Henk Elffers 用機率的概念,證明 Lucia de Berk 有罪。簡單來說,就是計算嫌犯現身出事班次的機率。他採取的統計方法,叫做超幾何分佈(又稱「超幾何分配」;hypergeometric distribution)。[1]

超幾何分佈適合用在從一個母數中,隨機抽取樣本,不再放回的情形。例如:袋子裝有 N 顆球,其中 L 顆為紅球。一把抓出 n 顆球,不特別挑選的話,紅球碰巧被抓到的機率為 X。[3, 4]以此類推,在此案被調查的時間範圍內,病房總共有 N 個班次,其中 Lucia de Berk 值了 L 班,而有醫療事故的班次共 n 個。如果不刻意安排,則她正好出現在事故班次的機率為 X。[1]公式介紹。[4]

此處實際帶入數據後得到的答案,說明 Lucia de Berk 理論上應該只有 3 億 4 千 2 百萬分之一(X = 1 / 3.42 x 108)的機率,會剛好在醫療事故發生的班次值班。因此,法庭認定她的頻繁出現(> 1 / 3.42 x 108),絕非巧合。[1, 2, 5, 6]2003 年,Lucia de Berk因 7 起謀殺和 3 次殺人未遂,[2]被判終身監禁。[5]

茱利安納兒童醫院(Juliana Kinderziekenhuis)外觀。圖/Joris on Wikimedia Commons(CC BY-SA 3.0)
紅十字醫院(Rode Kruis Ziekenhuis)已於 2021 年關閉。圖/1Veertje on Wikimedia Commons(CC BY-SA 4.0)。

統計謬誤

當時有位醫師任職於 Lucia de Berk 待過的一家醫院。他的女性姻親 Metta de Noo-Derksen 醫師,以及 Metta 的兄弟 Ton Derksen 教授,都覺得事有蹊蹺。[7]Metta 和 Ton 檢視死者的病歷紀錄,並指出部份醫療事故的類型和事發時間,與判決所用的數據對不起來因為後者大半仰賴記憶,他們甚至發現有些遭指控的班次,Lucia de Berk 其實不在現場。然而,光是這些校正,還不足以推翻判決。[1, 7]

-----廣告,請繼續往下閱讀-----

所幸出生於英國的荷蘭萊頓大學(Universiteit Leiden)統計學榮譽教授 Richard Gill,也伸出援手。[2]在協助此案的多年後,他的團隊發表了一篇論文,解釋不該使用超幾何分佈的理由,例如:[1]

  1. 護理人員不可互換:所有受訪醫師都說,護理人員可以相互替換;但是護理人員覺得,他們無法取代彼此。由於各別的個性與行事風格迥異,他們對病患的影響也不同。[1]
  2. 醫療事故通報機率:既然每個護理人員都有自己的個性,他們判定某事件為醫療事故,並且通報醫師的機率也不一樣。[1]畢竟醫院的通報規定是一回事;符合標準與否,都由護理人員判斷。比方說,有個病患每次緊張,血壓就破表。那就讓他坐著冷靜會兒,再登記第二次測量的正常結果即可。不過,難免會有菜鳥護士量一次就嚇到通報,分明給病房添亂。
  3. 班次與季節事故率:夜間與週末只剩護理人員和少數待命的醫師;季節性的特定病例增減;以及病患的生理時鐘等,都會影響出事的機率。[1]
  4. 護理排班並不平均:護理人員的班次安排,理想上會有帶狀的規律。可能連續幾天都是白班,接著是幾個小夜班之類的,[1]比較方便調整作息。此外,護理人員的資歷和個性,通常也會被納入考量。[1]以免某個班次全是資深人員;但另個班次緊急事故發生時,卻只剩不會臨機應變的新手。在這樣的排班原則下,如果單看某個時期的班表,每個人所輪到的各類班次總數,應該不會完全相同。
  5. 出院政策曾經改變:茱莉安娜兒童醫院在案發期間,曾經針對確定救不活的小病患,是否該在家中或病房離世,做過政策上的調整。帳面上來說,算在病房裡的事故量絕對會有變化。[1]

總之,太多因素會影響護理排班,或是干擾醫療事故的通報率,因此不能過度簡化成抽取紅球那樣的隨機概念。更嚴重的是,Henk Elffers 在計算過程中,分開處理 3 個病房的機率,然後再相乘。Richard Gill 的團隊強調,這樣會造成在多處上班的護理人員,比只為一處服務者,看起來有較高的嫌疑。[1]

帕松分佈

因應這種情境,Richard Gill 教授建議採用帕松分佈(又譯「布阿松分配」;Poisson distribution),[1]一種描述特定時間內,事件發生率的統計模型。[8]有別於先前的計算方法,在這裡事故傾向(accident proneness),以及整體排班狀況等變因,都納入了考量。前者採計護理人員通報醫療事故的意願強度;後者則為輪班的總次數。這個模型通常是拿來推估非尖峰時段的來電、大城市的火災等,也適用於 Lucia de Berk 的案子。[1](深入瞭解公式計算(p. 4 – 6)。[1, 8]

雖然此模型的細節複雜,統計學家得大費周章解釋給法官聽,但是考慮的條件比較趨近真實。倘若套用原始判決的數據,這個計算最後的答案是 0.0206161,意即醫療事故本來就有 49 分之 1 的機率,會與 Lucia de Berk 的班次重疊。如果帶入 Mettade Noo-Derksen 和 Ton Derksen 校正過的數據,機率更高達 9 分之 1。[1, 9]換句話說,她單純是倒楣出現在那裡,就被當作連續殺人犯。[6]

其他證據與翻案

大相逕庭的計算結果,顯示出選擇正確統計模型的重要性。然而,最不合理的,是以機率作為判決的主要根據。就謀殺案件來說,怎能不忠於病歷或驗屍報告?Richard Gill 教授接受美國犯罪學講師 Jon Robins 的訪問時,表示後來由醫師和毒物學家組成的獨立團隊,被允許瀏覽當初沒送上法庭的關鍵資料。[2]他們發現原本被視為受害者的病患,根本都喪命於自然死因。[2, 6]

在各方人士的協助下,Lucia de Berk 還是歷經兩次上訴失敗。[6]她曾於 2008 年,被允許在家等候重審結果。[1]但直到 2010 年 4 月,司法才還她清白。[7]Ton Derksen 認為,在荷蘭像這樣誤判的案件,約佔總判決數的 4 至 11%,也就是每年 1,000 人左右。不過,2006 到 2016 年間被判刑的 2 萬 3 千人裡,只有 5 個上訴到最高法院,而且僅 Lucia de Berk 的案子得以平反。[10]

-----廣告,請繼續往下閱讀-----
Lucia de Berk 冤案改編電影的海報。圖/電影《Lucia de B.》(2014) on IMDB

  

  1. Gill RD, Groeneboom P, de Jong P. (2018) ‘Elementary Statistics on Trial—The Case of Lucia de Berk’. Chance 31, 4, pp. 9-15.
  2. Robins J. (10 APR 2020) ‘Ben Geen: Statisticians back former nurse’s in last chance to clear name’. The Justice Gap.
  3. 超幾何分佈」國立高雄大學統計學研究所(Accessed on 03 FEB 2023)
  4. 李柏堅(06 FEB 2015)「超幾何分配CUSTCourses on YouTube.
  5. Sims J. (24 FEB 2022) ‘Are We in the Midst of a Data Illiteracy Epidemic?’. Inside Hook.
  6. Schneps L, Colmez C. (26 MAR 2013) ‘Justice Flunks Math’. The New York Times.
  7. Alexander R. (28 APR 2013) ‘Amanda Knox and bad maths in court’. BBC News.
  8. 李伯堅(04 FEB 2015)「布阿松分配」CUSTCourses on YouTube.
  9. Wilson D. (13 DEC 2022) ‘Red flag to be wary of when hunting a killer nurse’. The Herald, Scotland.
  10. One in nine criminals may have been wrongly convicted – research’. (21 NOV 2016) Dutch News.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
1

文字

分享

0
1
1
法拉第不只懂電磁學,也是火場鑑識專家?──《比小說還離奇的 12 堂犯罪解剖課》
PanSci_96
・2017/09/14 ・2642字 ・閱讀時間約 5 分鐘 ・SR值 552 ・八年級

火場通常又暗又臭,很不舒服,考驗體力。經過漫長的一天,你回到家,累得像條狗,渾身燒過的塑膠味。一點都不光彩。可是很迷人。

──火場調查員妮亞.尼克.戴依德(Niamh Nic Daeid)

是陰謀?還是天時地利人和造就了倫敦大火?

1666 年 9 月 2 日星期日,倫敦普丁巷的一名僕役被煙嗆醒,發現樓下店鋪起火了,他猛敲雇主麵包師傅湯馬斯.法里納(Thomas Farriner)的房門。全家上下沿屋頂逃生,只剩下女僕蘿絲(Rose)嚇得無法動彈,被烈焰吞噬。

圖/Diliff@wikimedia commons

不久,焰舌舔上附近住戶屋牆,市長湯瑪士.布拉德沃斯爵士(Sir Thomas Bloodworth)被叫到現場,指揮消防隊員拆毀建築,阻止火勢延燒。美夢遭到侵擾的布拉德沃斯怒氣騰騰,不理會消防隊員急切請求採取更進一步的措施。「呸!找個女人來撒泡尿不就沒事了。」說完,他離開現場。

隔天上午,記事員山繆爾.派比(Samuel Pepys)體驗到「狂風大作,將火焰趕入市區,歷經長時間的乾旱,什麼東西都成了可燃物,就連教堂的石牆也不例外」。到了下午,倫敦陷入地獄般的火海,火焰沿著「油、葡萄酒、白蘭地倉庫」、木造建築、稻草屋頂、瀝青、布料、油脂、煤炭、火藥──17 世紀的各種易燃物──呼嘯而過。極度高溫使得空氣迅速膨脹攀升,乘著風勢吸入新鮮空氣,將更多的氧氣捲入煉獄。倫敦大火塑造出專屬的天氣系統。

-----廣告,請繼續往下閱讀-----

大火在 4 天後漸漸平息,摧毀了中世紀倫敦的大半城區,涵蓋 13,000 多棟屋舍、87 間教堂,以及聖保羅大教堂。城裡 80,000 居民中約有 70,000 人在一瞬間流離失所。

倫敦大火的局部畫作,作者不明。畫中描繪9月4日星期二自倫敦塔碼頭附近船隻所見的火勢,倫敦塔在畫面右方,左方則為倫敦鐵橋,遠方為聖保羅座堂,被高竄的火舌環繞。圖/wikimedia commons

灰燼餘溫尚存,種種陰謀論甚囂塵上。大部分的倫敦人無法相信這場火純屬意外,裡頭有太多巧合:起火點是密集的木造建築區;當時大家都在夢鄉之中;那天街上格外冷清,沒有人幫忙滅火;吹起狂風,泰晤士河水位正低。

蓄意犯罪的謠言如雨後春筍般萌生。外科醫師湯瑪士.米斗頓(Thomas Middleton)站在教堂尖頂上,俯瞰火勢從幾處相隔甚遠的個別區域燒起。「這類狀況令我相信這場火的延燒是有人刻意為之。」他如此寫道。

-----廣告,請繼續往下閱讀-----

外國人背負最大的嫌疑,在摩爾菲有個法國人差點被打死,因為旁人懷疑他用盒子裝「火球」,之後才發現那是網球。詩歌表達出眾人對起火原因的困惑:

我們仍舊不解一切從何而起;究竟是地獄、法國、羅馬,還是阿姆斯特丹。

──無名氏〈倫敦焚燒詩〉(A Poem on the Burning of London,1667)

最高階層掀起對真相的渴求。查爾斯二世(Charles Ⅱ)在這場火中損失最為慘重。國王授權給國會,設立調查火災起因的委員會。大批目擊證人紛紛站出來,某些人說他們看到有人投擲火球,或是坦承自己正是丟火球的犯人。有個叫愛德華.泰勒(Edward Taylor)的人說,星期六晚上,他跟荷蘭籍的叔叔走到普丁巷,發現湯馬斯.法里納烘焙坊的窗戶開著,往裡頭丟了「兩顆用火藥跟硫磺做的火球」。不過愛德華.泰勒才十歲,他的證詞不被採信。法國鐘錶師之子羅伯特.賀伯特(Robert Hubert)腦袋愚鈍,承認點火的人是他。沒有人真正相信,可是因為他如此堅持,陪審團認定他有罪,把他送上泰伯恩刑場的絞架。

國會委員會成員湯瑪士.奧斯朋爵士(Sir Thomas Osborne)寫下:「所有的論點都瑣碎無比,人民知道此事並非人為就滿足了。」最後,委員會判定這場恐怖的火災是源自「上帝之手、一場狂風,以及極端的乾季」。

火場鑑識專家:麥可.法拉第!?

委員會做出如此缺乏說服力的結論,其實我們不用意外。評估複雜火場的調查人員需要了解火焰的運作模式。17 世紀在這方面的科學知識少得可憐。直到 1861 年,麥可.法拉第(Michael Faraday)把關於火焰的論述寫進書裡之後,社會大眾才有辦法接觸這類理論。

-----廣告,請繼續往下閱讀-----

《蠟燭的化學史》(The Chemical History of a Candle)書中收錄了 6 篇他針對年輕聽眾設計的講演內容,是這個主題的關鍵教材。法拉第以蠟燭作為燃燒本質的象徵。在某次關鍵的講座中,他用罐子悶熄蠟燭。「空氣是燃燒的要件。」他解釋道,「更重要的是,我要你們了解新鮮空氣是必要條件。」他口中的「新鮮空氣」其實就是「氧氣」。

麥可.法拉第。圖/Wellcome Library@Wikimedia commons

法拉第是早期的專業證人,有時將研究結果帶出實驗室這事實行得很徹底。1819 年,某間在倫敦白教堂區的糖廠於大火中燒毀,老闆告保險公司拒絕理賠 15,000 鎊的保險金。這個案子演變為某項新製程──老闆採用加熱的鯨油,沒有告知保險公司──與起火原因有多大關係。作證之前,法拉第拿鯨油做實驗,加熱到攝氏兩百度,展示「從油生出的蒸氣,除了水以外,全都比熱油本身還要易燃」。在法庭上,一名陪審員不相信這個論點,於是法拉第當場點燃他用試管裝來的蒸餾氣體,「整個法庭瞬間瀰漫最難聞的臭味」。

法拉第最重要的鑑識任務,是 1844 年德罕郡的哈斯威爾礦坑爆炸案,有 95 名男子與男孩身亡。這起爆炸發生在德罕郡礦區勞資糾紛激烈時期。代表悲傷家屬的律師向首相羅伯特.皮爾(Robert Peel)請願,要求政府派出代表調查。法拉第就是其中一人。

-----廣告,請繼續往下閱讀-----

這個團隊花了一天實地探訪礦坑,調查裡頭的空氣流向。途中,法拉第發現他坐在一桶火藥上,旁邊就是沒有遮蔽的燭火。他一躍而起,「抗議他們有多不小心」。陪審團判斷這是意外事件,法拉第贊同這個論點。但是調查團回到倫敦後提出報告,指出礦坑裡的灰塵是本次爆炸的重要因素,建議改善通風系統。礦坑主人因為成本考量而回絕。這個風險遭到長達六十年的忽略,直到1913 年,威爾斯的聖海德礦坑發生類似的意外,奪走 440 名礦工的性命,釀成英國史上最嚴重的礦災。

圖/Wikimedia commons

在 20 世紀,消防單位與科學界聯手研發出火場調查技術,背後的支持者是想要知道究竟有多少火場、起火點以及起火原因的政府機關。60 與 70 年代的調查行動變得更加文明:有固定的流程、能夠驗出複合化學物質──比如,火場裡是否有汽油的蹤跡──的新器材。社會大眾愈來愈了解消防原理,現今的和平時代極少有火災或是爆炸──必定要有火才會引爆──造成大量死傷。要是這類不幸事故真發生了,調查火場的人員絕對是畢生難忘。

 

本文摘自泛科學2017年9月選書《比小說還離奇的12堂犯罪解剖課》,馬可孛羅出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。