0

0
1

文字

分享

0
0
1

1910 年諾貝爾物理獎:想知道氣體與液體的差異?范德華用數學說給你聽——《物理雙月刊》

物理雙月刊_96
・2017/08/30 ・1231字 ・閱讀時間約 2 分鐘 ・SR值 557 ・八年級

-----廣告,請繼續往下閱讀-----

是什麼使氣體凝聚成液體?氣體與液體的分別,一直是許多科學家希望理解的問題。1910 年諾貝爾物理奬得主約翰內斯・范德華(Johannes van der Waals)就用數學描述了兩態之間的互換原理。

范德華的諾貝爾獎官方照片。圖 @ wikimedia commons

理想氣體方程不夠用?那想個新的吧!

我們知道在一般環境條件下,可以用理想氣體方程(ideal gas law)描述氣體的壓力、體積、溫度、分子數量的關係。理想氣體方程是伯諾瓦・保羅・埃米爾・克拉佩龍(Benoît Paul Émile Clapeyron)在 1834 年從三大氣體定律歸納出來的:

  1. 壓力與體積成反比(Boyle’s law)
  2. 體積與溫度成正比(Charles’s law)
  3. 體積與粒子數目成正比(Avogadro’s law)

這種熱力學方程式,統稱為物態方程(equation of state)。然而,科學家發現理想氣體方程在高壓力之下並不適用。當我們發現舊有理論在非一般條件下變得不適用,就是需要新理論的時候了。

范德華在博士班時已經對這個問題十分感興趣。1873 年,他在博士畢業論文《論氣態與液態之連續性》(Over de Continuiteit van den Gas- en Vloeistoftoestand)裡導出了一條能應用於氣體與液體的物態方程。

-----廣告,請繼續往下閱讀-----

這條方程式就是著名的范德華方程(van der Waals equation)。簡單來說,范德華方程就是理想氣體方程的改良版本。范德華認為在高壓力下理想氣體方程失效的原因是其忽略了氣體分子本身的體積以及分子之間的吸引力。

知道臨界溫度,輕鬆掌握氣/液態變化

我們熟悉的理想氣體方程是:

 PV=nRT

其中 是氣壓、是體積、是分子數量(以摩爾 mole 為單位)、是溫度,而 就是理想氣體常數(ideal gas constant)。范德華導出的改良方程為

-----廣告,請繼續往下閱讀-----

其中 代表分子之間的吸引力、代表分子所佔的體積。式中左邊第一個括號代表分子之間的壓力並不單止其互相碰撞的壓力 P,還要加上其相互吸引力;第二個括號則表示其體積等於容器的總體積 減去分子本身的體積。

當壓力上升,氣體就會變成液體。然而,如果該氣體的溫度高於臨界溫度時,就會保持在氣態。范德華發現,如果知道物質的臨界溫度,單單以比例就可以完全描述該物質的氣態和液態。

壁虎之所以能在平滑的垂直面上爬行,是因為牠們的足上佈滿蛋白質 β-keratin,能與垂直面產生強大的范德華力。圖/By Lpm @ Wikimedia Commons

現在,我們把這種分子之間的吸引力稱為范德華力(van der Waals force)。范德華當年並不知道為什麼分子之間存在吸引力。這關乎原子結構,簡單的解釋是各個分子的電子會互相排斥,因此一部分原子核就會「暴露」出來,與電子相吸引。


 

 

本文摘自《物理雙月刊》39 卷 8 月號 ,更多文章請見物理雙月刊網站

-----廣告,請繼續往下閱讀-----
文章難易度
物理雙月刊_96
54 篇文章 ・ 13 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

4
4

文字

分享

0
4
4
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

14
11

文字

分享

1
14
11
為什麼在下雨天時,你不會被雨滴狠狠痛扁?
若芽_96
・2022/04/21 ・5518字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

下雨天的時候走在路上,天氣涼涼的,聽著雨聲的感覺非常好。但是你有沒有想過,為什麼雨滴會從天上掉下來?

「啊!就像蘋果會掉到地面一樣,會受到重力的作用嗎?」你可能會這麼說。

好,那我們這邊就來帶大家算一下,一滴雨從高空落到地面,純粹只有受到重力時,應該是什麼樣子的感覺吧!

只有受到重力作用雨滴的運動分析

當不考慮空氣阻力時,由高空落下的物體全程會受到重力加速度值 g 的作用,而因為地表的重力加速度約為定值,以海平面且緯度 45º 為標準,其數值為 9.8m/s2 [1]。因此雨滴從高空落下時,可以視為一個單純的等加速度運動,而這個運動我們又稱之為自由落體

-----廣告,請繼續往下閱讀-----

假設雨滴是靜止落下且受到重力加速度值 g 作用,即可根據等加速度運動公式,求得雨滴從高度 h 自由落下時的末速度值:

然而,在探討雨滴落下的末速度之前,我們必須對於雲的分類以及大致上的高度有一個基本的了解,才能比較明確地知道我們要探討的雨滴大概是從什麼樣的高度落下來的。

氣象學家 Luke Howard 於 1803 年中的著作《論雲的變形》(The Essay on the Modification of Clouds)中,按照不同雲的形狀、組成、形成原因,將雲分為 10 大雲屬,並且將這 10 大雲屬劃為三個雲族,分別為:位於距地表 6,000 至 7,000 公尺的高雲族,位於距地表 2,000 至 6,000 公尺的中雲族,以及位於距地表 0 至 2,000 公尺的低雲族[2]。另外,則還有橫跨了三個不同雲族高度的直展雲族,常常造成短暫但是相當豐沛的降雨量[3]

國際氣象組織所提供的基本雲的分類標準對照圖。圖/世界氣象組織[2]

按照國際氣象組織所提供的分類,以及 Luke Howard 的定義,天空中主要的降雨來源為積雨雲(cumulonimbus)以及雨層雲(nimbostratus),降雨來源以雨層雲較為常見,且其雲底多為 1,200 公尺以下。故我們這邊計算雨滴的高度時,便以 1,200 公尺作為高度的參考依據。

-----廣告,請繼續往下閱讀-----

因此,當一滴雨從高空落下,代入前述自由落體公式,即可計算出雨滴理論上應該要有的末速度:

根據上述的計算式子可以知道,當雨滴從高處落下時,如果沒有任何的空氣阻力,雨滴落到地面的速度大約會是 153 m/s。

對於這個數字沒有感覺嗎?那這邊簡單地計算給你看一下,讓你有點 fu。但是在這個計算之前,首先我們要先對於雨滴的大小有個概念。

依照 2009 年的相關研究[4]顯示,小雨滴在降落時幾乎是圓形,可是隨著體積越大,就會變得越扁平,受到空氣的影響也會越明顯。當雨滴達到特定的大小時,就會被切割為較小的雨滴,也因此最大的雨滴直徑會被限制在 6 mm 左右。

而按照另一個研究[5]對於雨滴粒徑的分布探討,發現雨滴的直徑多數是落在 0.5 mm 至 4 mm 之間,也就是半徑 0.25 mm 至 2 mm 之間。

-----廣告,請繼續往下閱讀-----
不同大小的雨滴受到空氣影響的形變研究示意圖。圖/Wikipedia [6]

這邊先姑且不論雨滴本身的化學成分所帶來的密度差異,以及落下過程中的密度和質量變化。因此我們可以簡單的利用密度、質量和體積的關係式,假設有一顆雨滴的成分皆為水,密度為 1 g/cm3,半徑 2 mm,且為均勻球體的情況下,計算這顆雨滴的質量如下:

接著,我們利用牛頓第二運動定律動量衝量的概念,來計算平均一顆雨滴所造成的衝擊力大小。這邊,我們假設你是淋雨的狀態,雨滴跟你的腦袋接觸的時間大約為 0.001 秒,且雨滴最後會完全靜止在你的腦袋上,也就是末速度為 0。

此時,造成雨滴會有速度變化的作用力有二,一為雨滴所受到的重力、二為腦袋給雨滴的正向力。根據牛頓第三運動定律,腦袋給雨滴的作用力,與雨滴給腦袋的作用力,為「作用力與反作用力」之間的關係。

那我們要怎麼知道雨滴對於腦袋的衝擊力有多少呢?

根據前面的假設,我們假設腦袋給雨滴的作用力使用變項為 N,可以列式如下:

-----廣告,請繼續往下閱讀-----

雖然我們前面說,在計算正向力 N 時,應該要將重力納入考量,不過實際計算後會發現雨滴本身重量也不算大,相較之下,後面的重力項是可以忽略的,因此計算出來的衝擊力約為 0.52 kgw。

嗯?你說你還是沒有感覺嗎?再說白話一點好了,這個重量就差不多是一瓶 500 ml 的礦泉水壓在你身上的感覺。這只是單一顆雨滴,平常在下雨的時候絕對不可能只有一顆雨滴。一瓶礦泉水壓在身上其實是有感覺的,那很多雨滴下在身上,等同於很多很多瓶礦泉水壓在身上,那肯定也是非常有感。

修但幾勒,這個結論跟我們平常淋雨的感覺完全不同吧!那到底問題出在哪裡?

其實雨滴不只受到重力的作用

雨雲本身存在於大氣層的對流層內,而對流層內充滿很多空氣分子。當雨滴在這些空氣分子所形成的「流體」裡面移動的時候,會使得雨滴本身除了受到重力以外,還會額外受到空氣阻力(drag force)的作用。

-----廣告,請繼續往下閱讀-----

在流體動力學中,在流體中移動的物體會受到一個和運動方向相反的阻力。這個阻力來自流體,會存在於兩個流體層之間,或者是流體與固體之間。可是,這和以往我們所學的固體和固體之間的摩擦力不同,因為物體在流體中受到的阻力其實是和物體移動的速度有關[7][8]

物體在流體中所受到的阻力,會受到物體大小、形狀、特性,以及流體性質的影響。阻力方程式(drag equation)概括了這些因素,描述如下[7]

其中,ρ 為流體的密度(如果是在空氣中,則是空氣的平均密度)、A 為物體在流體中的有效面積、v 為物體在流體中之速度;CD 則是阻尼係數,是一個沒有因次的數字,一般來說會跟物體的形狀以及雷諾數(Reynolds number)有關。

而雷諾數則是在流體動力學之中,流體慣性力(inertial force)和黏性力(viscous force)的比值,用來預測流體狀態的無因次物理量。對於不同的流體來說,雷諾數會有很多不同的表達方式,但一般來說都會包含流體的密度(density)、黏滯性(viscosity)、流體的流速,以及特徵長度或尺寸。

-----廣告,請繼續往下閱讀-----

最基本的雷諾數可以表示如下[9]

其中,ρ 為流體的密度,v 為流體的平均流速、D 為特徵長度,而 μ 則為流體的黏滯性。

雷諾數低的時候,流體會呈現層流(laminar flow)的狀態。流體分子會在每一層中平順流動,相鄰層之間就像堆疊的紙牌,鮮少或甚至幾乎沒有混合,當然也不會產生漩渦[10]

相反地,在雷諾數高的時候,流體則是會呈現紊流(turbulent flow)的狀態,流體的流速跟壓力沒有一定的變化規律,流體分子也沒有明顯的平行層,很常會互相混合在一起[11]

-----廣告,請繼續往下閱讀-----
圖 a 為層流的流線示意圖,而圖 b 則為紊流的流線示意圖。圖/SimScale [12]
黏滯力是一種流體受到外來作用力所產生的阻力,來源為液體內部的摩擦力。黏度較高的流體比較不容易流動,黏度較低的流體反之。本圖為不同黏性的流體所呈現出來的狀態模擬。左邊為黏性低的流體、右邊則為黏性高的流體。圖/Wikipedia [13]

扯遠了扯遠了,我們還是繼續回到原本的阻力方程式。

根據實驗觀察,在雷諾數較高,也就是流體的密度較大、流速較快,而且黏滯性較小時,阻力係數可以幾乎視為定值。此時,阻力就會跟流體流速的平方成正比,公式如下:

而在雷諾數低,也就是流體密度較小、流速較慢且黏滯性較大時,阻力係數會和雷諾數的倒數成正比,因此我們結合雷諾數本身的定義以及阻力方程式,就可以知道「在雷諾數較低時,阻力與流速之間的關係為線性關係」,公式如下:

依照前面講過的阻力方程式和流速之間關係的背景知識,讓我們回到最一開始遇到的雨滴問題。

之前在分析雨滴的受力時,只有考慮到重力的作用,計算出雨滴自 1200 m 高的雨雲雲底落到頭上時,速度約為 153 m/s。在考慮到空氣阻力時,由於阻力與雨滴的運動方向恆相反,因此我們可以將雨滴的質量先以 m 作為變項,假設雨滴為正球形且半徑為 R,繪製雨滴所受到的力圖如下:

雨滴所受到的力。圖/筆者親繪

因為空氣阻力恆與物體運動的速度反向,而雨滴在落下的時候,速度一定是向下的,加速度也向下,故空氣阻力會向上。

阻力方程式中的 A 是投影的等效面積,在球形的雨滴中,即為上圖斜線部分,可以用半徑 R 和圓面積的公式來計算。此時,我們利用牛頓第二運動定律計算雨滴運動過程中所受到的加速度量值,來觀察雨滴運動的情形:

如果今天的流體狀況是屬於高雷諾數的情況(流體的密度較大、流速較快且黏滯性較小)時,則前述的式子可以下表示,並計算出加速度的關係式:

反之,如果是低雷諾數的情形(流體的密度較小、流速較慢且黏滯性較大),則前述的式子可以下表示,也順手計算出加速度的關係式:

從前面的兩條化簡式子,可以看出雨滴掉落時,不論雷諾數如何,速度漸大都將造成阻力漸大,並使得加速度漸小。當達到一定的速度時,雨滴就不再會有加速度,而是改以等速度的方式落下。此時,雨滴所具有的速度即終端速度(terminal velocity, vt)。在終端速度時,我們可以知道雨滴所受到的重力與拖曳力達到力平衡,因此可以根據不同的雷諾數而列式。高雷諾數的情況下所計算出的終端速度如下:

低雷諾數的情況下所計算出的終端速度如下:

我們這邊以高雷諾數的流體情形來考量大氣中的情況,與前面的條件相同假設,也就是雨滴為半徑是 2 mm 的正球體,雨滴密度主要成分為水,因此密度為 1000 kg/m3,而阻尼係數這邊我們根據雨滴的形狀和經驗公式簡單取 0.6 來概略估算[14]

利用高雷諾數的情況計算終端速度實際值時,會需要流體的密度。在這裡,我們討論的對象是空氣中的雨滴,故理想上(當然,這是很理想的情況下)可以使用理想氣體方程式來求出於 1 大氣壓、20ºC 時候的空氣密度,來代入終端速度的公式。

代入我們目前空氣的條件,也就是 1 大氣壓、20ºC 的情形,而這邊務必將所有單位都轉為 SI 制,加上理想氣體常數,此時使用的是 8.314。其中,M 為空氣的分子量,我們這邊使用 28.97 g 配合以上的條件代入計算[15]

將前述所得到的空氣密度數值,結合前面的其他條件,代入高雷諾數情況的終端速度公式,即可計算終端速度:

由計算結果可以知道,當考慮到空氣阻力時,雨滴會以 8.52 m/s 的終端速度落下,比起之前純粹考慮重力時,求出的 153 m/s 來說小了非常多,是原本的二十分之一。按照牛頓第二運動定律,這樣的雨滴打到腦袋時,對於腦袋瓜的正向力也會減為原本的二十分之一。如此一來,就比較像我們平常淋雨的情況了。

由前面的計算過程,我們可以明白從高空落下的雨滴不只有受到重力。能夠讓我們下雨天走在路上不被雨滴狠狠槌死的最重要因素,其實就是空氣阻力的功勞。同時,我們可以知道,造成雨滴落下的運動過程並非等加速度,而是變加速度運動。利用牛頓第二運動定律得出加速度的關係式後,也知道速度越來越大,加速度就會越來越小。在加速度為 0 時,則會以終端速度等速落下。

最後,讓我們來感謝空氣阻力,讓每一個人在下雨天的時候都能安心走在路上。

註解

所有討論 1
若芽_96
1 篇文章 ・ 2 位粉絲
因為人生想要追求知識跟技能樹的全開,而遊走在物理、法律、職業安全衛生、數位行銷、數據分析等各種不同領域的人。下一個領域會去哪呢?我也不知道,不過持續不停向前這是絕對必要的。個人網站:https://wakame.tw