0

0
0

文字

分享

0
0
0

有種感情叫遺憾美:自戀女╳逃避男的不完全戀愛──《戀愛這種病》

時報出版_96
・2017/04/20 ・2830字 ・閱讀時間約 5 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

  • 【科科愛看書】看到男/女神就心跳加速、呼吸急促、支支吾吾?俗話說思念是一種病,你是不是也曾身陷其中、不可自拔?但是,有病就要治,藥帖便是《戀愛這種病:解讀自我與對方的人格,診斷愛情的現在與未來》!這本書帶你用科學方法檢視自己,進而解決戀愛的各種難題,讓你從此人見人愛花見花開,男神女神都手到擒來!

無法盡如己意的「燃燒不完全」組合

對逃避型的男性而言,會覺得自戀型的女性幾乎是抬頭挺胸、過度充滿自信的人物。對自戀型的女性來說,纖細又像是耐陰植物的逃避型男性,會引發她的保護本能想要變成他的太陽,同時也會讓她有似乎可以支配又無法支配的焦慮感,或沒有什麼回應的感覺。

兩人關係以自戀型的女性為中心前進,逃避型的男性是以被牽連進去的形式,被迫演出被動性的配角。人生有時會因此朝著意想不到的方向前進,對他來說如果沒有遇到自戀型的女性就不可能會展開。

對自戀型的女性來說,逃避型男性的精力之低落或對他人缺乏興趣的程度總讓她有種不足夠的感覺。由於具備順從她意思的被動性,所以很難走到完全破裂的地步。

這個組合以第三者來看,或許只會覺得是逃避型的男性完全被自戀型的女性牽著鼻子走,但是逃避型的男性卻覺得很滿意,感覺到不滿的大多是自戀型的女性。這個組合可能會使兩者都感覺有某些地方並非本意,演變成燃燒不完全的人生。

-----廣告,請繼續往下閱讀-----
自戀女跟逃避男的戀愛容易有遺憾。圖/By wilhei@Pixabay

成為沉默的貨幣製造機,逃避男也甘之如飴

尤特里羅(Maurice Utrillo)的母親蘇珊.瓦拉東是從模特兒變成畫家的自戀性強的女性,在這樣的母親支配下長大的尤特里羅,無法表示自己的意思,變成一個沉默寡言,很不擅長與人來往的人。可以說是典型的逃避性類型。

由於一直被擺在不足夠的愛當中,他從十幾歲開始就有了酒精成癮症。尤特里羅為了治療開始畫畫,並因此找到了表現自我的方法。

誰也不會回頭看一眼的尤特里羅,變成畫家成名之後,突然就出現了一個結婚對象。那是大他足足有十二歲的女性,所以也有人說她接近尤特里羅多半也是出於經濟上的打算。尤特里羅就被妻子寶威兒支配,成為「貨幣製造機」一直被她壓榨。

然而這可能是第三者的看法。對尤特里羅來說,要抓住這個牢靠又擁有強悍自我的妻子,才能得到安定吧。在有存在感的配偶旁邊,一個隱形的丈夫默默努力工作,對他們來說或許也是一種幸福的姿態。

-----廣告,請繼續往下閱讀-----

只要看你一眼一瞬間,心便從此淪陷

以《兒子與情人》、《查泰萊夫人的情人》等優秀作品聞名的英國作家 D.H.勞倫斯,父親是礦工,他出生在一個勞工階級的家庭。母親對酒鬼丈夫早已沒有感情,在孩子們之中特別溺愛老幺羅倫斯。虛弱又纖細但是成績優秀的羅倫斯,得到獎學金可以上大學,成為一個老師。

二十五歲時,他的詩刊登在知名雜誌的卷頭,而且他的第一本小說《白孔雀》也完成了,但是在那之後有一件悲傷的事情在等著他,他得知母親已經罹患癌症末期。母親來不及等到《白孔雀》出版就過世了。然而禍不單行,二十六歲的秋天,羅倫斯得了嚴重的肺炎,不得不辭去教職。後來雖然康復了,但是失去了教職的羅倫斯,只能仰賴大學時代的恩師,厄尼思特.威克利教授幫他找工作。

英國作家 D.H.勞倫斯纖細瘦弱而優秀。圖/Public Domain, wikimedia commons

然而,此時一個意料之外的邂逅在等著他。他認識了教授夫人佛麗達。佛麗達是這麼回憶的──

「他生得骨瘦嶙峋的模樣,一雙筆直敏捷的腳,動作輕巧確實。他完全沒有任何一點造作。就這樣引起了我的注意。四目相對之後就知道我們應不只如此。」

另一方面,羅倫斯是這樣寫給朋友的,

-----廣告,請繼續往下閱讀-----

「她真的太棒了。是我目前為止從未見過的美好女性。她讓我大為驚豔,真的是這樣……不、她是我的真命天女。」

這時,佛麗達三十二歲,比羅倫斯大六歲,跟丈夫之間已經有三個孩子。佛麗達出身於德國的男爵家,遇見在德國的大學教書的威克利後,便嫁到英國來。但對佛麗達來說,與根本上就是學者氣質的丈夫結婚,讓她有種期待落空的感覺。在英國生活得喘不過氣來的佛麗達為了一掃陰霾,經常回去德國,在德國也有戀人。這件事羅倫斯也並不知情。

兩人很快地親密起來。彼此都追求變化,也因此互相都感覺像是遇到了理想的催化劑一樣。佛麗達懷著與心愛的孩子分離的痛苦,把孩子們交給祖父母,奔向羅倫斯身邊。兩人在查令十字路車站碰面,像是預知前途困難似地搭船渡過英吉利海峽。

這場私奔讓兩人都付出了沉重的代價,但熱戀中的兩人,意氣揚揚地徒步越過阿爾卑斯山,度過了無比甜美的時光。然而,這兩個人懷抱著現實的困難與彼此性格的不一致,是從一開始就很明顯的事。

令人又愛又恨的悲劇之戀

羅倫斯是一個禁慾的、勤儉努力的人,做什麼事情都不會偷懶。但另外一方面,佛麗達擁有一個雜亂無章也無所謂的差不多個性,幾乎不做家事,個性善變、揮霍又奔放,很隨心所欲、勇於貪歡的人。

-----廣告,請繼續往下閱讀-----

羅倫斯出身貧窮,是很辛苦才接受了大學教育,跟雖然多少有點欲求不滿,但卻從來不知民間疾苦、總是隨心所欲過日子的佛麗達,是兩個世界的人。

而且,佛麗達身為德國人,這讓兩人的命運變得坎坷。兩年後,佛麗達的離婚終於成立了,就在兩人舉行婚禮後的第二個月,第一次世界大戰爆發了。有一位敵國出身的妻子,逐漸對羅倫斯產生不利的影響。第二年,原本要出版的《虹》,受到英國當局發出的禁止刊行處分,羅倫斯因此被迫離開母國英國。

兩人一面在各地旅行,一面被迫過著浮萍般漂泊的生活。那也影響著羅倫斯的身體健康,縮短了他的壽命。兩人的關係幾度陷入危機。羅倫斯也曾這樣寫著──「她真的是個惡魔。我覺得我想跟她永久分別了!讓她一個人去德國吧。我到別的地方去。我真的已經被她傷害了很長一段時間了。現在的話,應該也可以沒有痛苦的真正跟她分手了吧。」

兩人的惡劣關係讓勞倫斯無比痛苦。圖/By FuN_Lucky@Pixabay

然而,兩人並沒有分手。不知道那究竟是幸,或是不幸。兩人的愛情之所以可以維持到羅倫斯死去為止,應該也是因為這段孽緣既已彼此傷害至此,事到如今也不可能再失去了吧。

-----廣告,請繼續往下閱讀-----

臨終時,羅倫斯對佛麗達懇求說:「不要離開我。不要走。」佛麗達念書給羅倫斯聽,看著他痛苦的表情哭了出來。羅倫斯不由分說地命令她「別哭」。然後他再也忍耐不了臨死前的痛苦,要求她為他打嗎啡。他臨終前的最後一句話是──

「我終於解脫了。」


 

 

 

本文摘自《戀愛這種病:解讀自我與對方的人格,診斷愛情的現在與未來》時報出版

文章難易度
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
如果在虛擬實境裡尋找伴侶,真的可以建立舒服的戀愛關係嗎?——《元宇宙超圖解》
azothbooks_96
・2023/09/27 ・983字 ・閱讀時間約 2 分鐘

在元宇宙的世界裡,比較容易和價值觀相近的對象,談一場少摩擦的戀愛。

所謂的「談戀愛」,其實就是彼此價值觀的碰撞。

在價值觀日趨多元、細分的現代社會,實體世界裡的戀愛,情侶之間免不了會發生一些摩擦。

所謂的「談戀愛」,其實就是彼此價值觀的碰撞。圖/pexels

越來越多人在實體社會的戀愛關係中感受不到舒適,大眾認為「談戀愛風險很高」的傾向,更是一年比一年更鮮明。

可見「談戀愛」的魅力,正逐步下降。不論是在元宇宙內或外,都有一套很現代的方法可以解決這個問題,那就是配對服務。

迴避戀愛和元宇宙

當我們對戀愛的價值觀細分化之後,在生活周遭便很難找到滿足條件的人選;但只要像在社群網站上找興趣相近的同好那樣,從一個規模龐大的母群體當中找出伴侶的話,發生摩擦的狀況,會比不假思索就交往的對象減少許多。

若想找更根本的解決之道,那麼元宇宙上還有一個獨門絕招,就是乾脆把伴侶化為虛擬實境的一部分——因為情侶在元宇宙上會隔著虛擬替身,建立起隔一道防火牆的溝通方式。

有些人會覺得「虛擬替身碰不到、摸不著」,不過,時下認為談戀愛不見得一定要有實體互動或性接觸的人已越來越多,或有些原本潛伏噤聲的族群浮上檯面。

想必今後會有越來越多人願意相信這不是逃避實體戀愛,而是元宇宙上的愛情,比實體更美好。圖/azothbooks

要是這些虛擬替身由 AI 操控的話,還能與另一半建立更舒適的戀愛關係——如果對象是 AI,不論是再怎麼極端的戀愛觀,或是任何性傾向,它應該都會接受吧!

想必今後會有越來越多人願意相信這不是逃避實體戀愛,而是元宇宙上的愛情,比實體更美好。

——本文摘自《元宇宙超圖解:從刀劍神域到寶可夢,一小時讀懂78個概念,掌握本世紀最大商機》,2023 年 9 月,漫遊者文化出版,未經同意請勿轉載。

azothbooks_96
53 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。