0

0
0

文字

分享

0
0
0

玉米沒告訴你的「基因洗牌」關鍵蛋白質

研之有物│中央研究院_96
・2017/04/11 ・3610字 ・閱讀時間約 7 分鐘 ・SR值 554 ・八年級

為什麼要研究植物「減數分裂」?

氣候變遷迫使農田休耕、作物歉收,人類需要體質更優良也更美味的作物。一直以來,科學家利用「遺傳育種」,從大自然的遺傳多樣性中,透過有性生殖篩選保留優良的基因組合。在中研院植物暨微生物研究所王中茹的實驗室裡,透過超高解析度顯微鏡觀察玉米染色體世界,正在破解同源染色體如何重組的謎團。其中,發現蛋白質 DSY2 是解開謎團的第一個線索。

王中茹笑說:「就算是再小的發現,衝回實驗室跟大家宣佈前,我是全宇宙唯一知道這件事的人!」圖/張語辰提供

每天一睜開眼,想到要去上班是什麼心情?對於王中茹與團隊而言,每天都是一個發現新事物的機會。在好奇心的驅使下,王中茹與博士班學生李頂華及團隊成員發現影響玉米染色體 DNA 交換的關鍵之一: DSY2 蛋白質。這個蛋白質參與生殖過程中減數分裂的「染色體互換」,讓基因有機會透過「天然洗牌」的方式,使玉米的下一代有更多變異,有機會長得更好、更能適應環境。

當雄花的花粉落到雌花上,兩副單套的染色體組合成下一代,生成一顆顆玉米種子。但其實早在花粉母細胞(雄)和大孢子母細胞(雌)進行減數分裂時,就有人類肉眼看不見的基因重組,可以想像成基因天然洗牌。圖/賴鵬智、王中茹、iStock 提供;林婷嫻、張語辰改編

上千年來,人類一直藉由觀察植物的特性來選拔適合栽培的作物,近一百年來,則利用遺傳知識進行科學育種,主要為透過有性生殖的減數分裂來重組交換基因,藉由改變基因組成,挑選出更優秀的品系,稱為「遺傳育種」。

約三十年前,隨著基因轉殖技術的發展,科學家得以將來自於不同物種的 DNA 片段,殖入作物的基因組內藉以調整作物的某些特性,就是俗稱的「基因改造」。近五年發展出 CRISPR/Cas9 基因編輯技術,可以針對原有的特定基因改變部分 DNA 序列而微調其功能,稱為「基因編輯」。只要後續利用減數分裂,將誘導 DNA 序列改變的編輯器去除,這樣的品系將不帶有外來物種的 DNA 片段,因此學術界與官方管理單位傾向認定這類產品是「非基改作物」。這些技術皆改變了部分的基因組成,使農作物更優良。

在可見的未來,面臨人口爆炸、氣候變遷造成作物歉收的情況,科學家無不積極面對這嚴峻的挑戰,希望能讓作物便利種植、耐旱抗蟲害、產量大增還能保持美味。以目前全球產量最多的作物玉米為例,從 1960 年代迄今,國際間隨著農業技術進步、殺蟲劑與肥料的運用、及育種技術的創新,玉米產量節節升高,但價格也不斷攀升。估計到 2050 年全球的玉米產量需要再增加七成,才得以應付世界的變化。

遺傳育種、基因改良、基因編輯,三種技術的差別。圖/王中茹提供;林婷嫻 、張語辰設計

儘管新興的「基因編輯」技術引起廣大注意,並預期會帶來革命性的影響,但是傳統「遺傳育種」的地位仍不可取代。由於大多數高產量或其他複雜的作物特性,往往是由許多基因相互作用的結果,因此這類的改良目前仍依靠「遺傳育種」技術為主。然而,即使是在基因體解碼的後基因體時代,遺傳育種仍因為減數分裂中染色體重組的天然限制而效率不彰。如何運用減數分裂的奧妙,控制遺傳重組的「位置」和「數目」,是目前一個重要的研究方向,也是王中茹團隊投入的研究領域。

染色體互換 攸關今生基因拿到什麼牌

有句名言說道「人生不在於手握一副好牌,而是打好你手上的牌」,但無論是人類或玉米,當爸媽的生殖細胞進行減數分裂,在染色體重組並隨機分配時已決定一部分基因組合;接著精細胞與卵細胞有緣相遇時,就完全決定今生拿到的基因牌組。

為何我從爸爸那遺傳到爺爺的自然捲、奶奶的大眼睛,但是沒有遺傳到爺爺的長睫毛、奶奶的挺鼻子?因為爸爸的染色體也是爺爺和奶奶給的,在爸爸的精細胞進行減數分裂時,爺爺奶奶的染色體互換重組,並且最後只留一組染色體在爸爸精細胞中,再搭配上媽媽送的另一組染色體,就組合成「我」的遺傳藍圖。

基因「天然洗牌」重組的過程中,在同一條染色體上的「好基因」與「壞基因」可藉著重組而打散,不再一起代代相傳。基因若能拿到好牌,表現在人類上,也許會是高顏值,表現在玉米上,也許會是又大又香甜又好種。

透過一代又一代的基因「天然洗牌」重組,配合分子標誌輔助,有機會培育出集合優點於一身的玉米,例如抗蟲、香甜又耐旱。圖/王中茹提供 ;林婷嫻、張語辰改編

打斷手骨顛倒勇 打斷 DNA 洗好牌

染色體上的 DNA 會發生多處打斷 (DSB) ,但最終能互換的 DNA 片段只有一部分。圖/王中茹提供 ;林婷嫻、張語辰改編

在生殖母細胞減數分裂的階段,同源染色體必須互相配對,才能正確地在接下來的過程中兩兩分離。在配對時,每對染色體(也就是一條來自爸爸,一條來自媽媽)會先在染色體的許多地方發生「DNA 雙股斷裂(DSB)」,從分子生物學的角度來看,這是相當危險的行動,因為 DNA 是生命的遺傳藍圖,可不能隨便斷裂損傷!

但減數分裂是個獨特的過程,染色體為了正確遺傳到下一代(也就是同一對染色體,只傳一條到生殖細胞中),勇敢地自斷手腳,為了正確配對而去尋找另一條同源染色體上可以互換的 DNA 。這些 DNA 斷裂的位置,有機會成為最終染色體互換的位置,基因重新組合後的兩條染色體,再平均分到細胞中。

計畫性地打斷 DNA 非同小可,可以想見細胞在這過程中必須有很嚴密的控制,比如說:何時打斷 DNA、打斷的位置和數目,以及確保所有 DNA 斷裂最後都被完整修復。另外,在眾多 DNA 斷點中,每對染色體通常只會發生一至兩個互換,而且最終互換的位置往往位於染色體的末端區域。

為此,世界各國的科學家與王中茹研究團隊,希望能找出決定 DNA 斷裂的關鍵、和最終控制染色體互換位置的機制,也許有機會讓原本不會互換的染色體區段,也能發生基因重組。

中間這一大段極少互換的染色體,可能有著讓下一代更好的基因。圖/王中茹提供;林婷嫻、張語辰改編

影響玉米基因洗牌 發現關鍵角色 DSY2

「在哪裡~在哪裡~不要隱藏你自己~」就像警方追查一個案件的發生,要找到關鍵人物一樣,科學家為了追查染色體互換的源頭,也是煞費苦心。2015 年王中茹研究團隊發現,影響玉米得以發生基因洗牌的關鍵角色之一,就是一種名為 DSY2 的蛋白質。

在你一口咬下的玉米中,有個名為 DSY2 的基因負責促成染色體互換。圖/王中茹提供;林婷嫻、張語辰改編

DSY2 蛋白質不僅影響 DNA 打斷的發生,也參與另一個重組互換中的重要過程:聯會。當同源染色體靠著 DSB 在細胞核中找到彼此時,另一群蛋白質(其中以 ZYP1 為主要)會形成拉鍊般的結構,把兩條染色體緊緊拉在一起,好讓染色體完成互換,並且修復所有的 DSB。這個拉鍊般的構造,稱為聯會複合體(synaptonemal complex)也會影響互換的發生。

王中茹研究團隊發現 DSY2 蛋白質也是聯會複合體是否可以成功組裝的關鍵。若把 DNA 片段想像成要跳到另一條同源染色體攻城,中央蛋白 ZYP1 是負責在護城河搭橋的士兵,而 DSY2 蛋白質是引導這一切得以實現的軍師。

超高解析度螢光顯微鏡中,看到染色體上面的 綠色的 DSY2 蛋白質、紅色的 ZYP1,組合成聯會複合體。圖/王中茹提供

如果造物主限制染色體互換的區段和數目是關上一道門的話,王中茹研究團隊的發現彷彿為玉米界的減數分裂互換開了一扇窗。此研究成果被刊登在國際期刊《植物細胞》(The Plant Cell),並獲美國農業部「玉米基因組研究資料庫 MaizeGDB」評鑑為重要的科學發現。透過對 DSY2 功能的更多分析,研究團隊正逐步了解 DSB 的決定因子和聯會在重組上的調控。只要了解玉米的染色體重組機制後,就能實驗如何操控這些蛋白質影響基因「天然洗牌」重組,或許能發展出育種上有用的策略,成為未來解決糧食危機的機會。

基礎研究不一定能應用,但如果不從基礎開始,就像房子沒有了地基,何來的創新應用。

──中研院植物暨微生物所 王中茹

延伸閱讀:

 

  • 執行編輯|林婷嫻 美術編輯|張語辰

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
287 篇文章 ・ 2913 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)
PanSci_96
・2023/01/30 ・2348字 ・閱讀時間約 4 分鐘

在 2022 年裡,我們見證了低軌通訊衛星在戰爭中的作用、Omicron 肆虐與次世代疫苗、韋伯太空望遠鏡捕捉系外生命印記、銀河中心黑洞初次現身、人類精準回擊小行星、台灣 CAR-T 首例、特斯拉的平價人形機器人、與超強的 LaMDA 跟 ChatGPT AI 語言模型!

2023 年能更刺激嗎?有哪些值得我們關注的科學大事呢?

我們綜合整理了 Nature、Science、Scientific American、NewScientist、富比世雜誌、經濟學人雜誌,結合泛科學的觀察與期待程度,提出這份「2023 最值得關注十大科學事件」;今年的科學界將會熱鬧非凡,令人目不暇給!

No.10 病原體通緝名單

2022 年 11 月,法國科學家在 bioRxiv 上發表了從西伯利亞永凍土中復活的多種病毒;這些「殭屍病毒」中最古老的已經有 48500 歲,在溫度升高後,這些病毒都復甦了過來……。雖然這批古老病毒只能感染變形蟲,但也暗示著,冰層之下存在更多正在休眠、極可能對哺乳動物或人類造成危險的病毒。

隨著氣溫與海溫升高,這些不定時病毒炸彈正在醞釀著。

世界衛生組織將在今年發布修訂後的「重點病原體清單」,至少 300 位科學家嚴謹審查超過 25 個病毒與細菌家族的各種證據,針對目前還未知、但可能造成全球疫情的未知疾病 Disease X 做出預測,擬出一份優先名單。被列入名單的病原體通緝犯將會被重點研究調查,以利未來開發疫苗、治療與診斷技術。

被列入優先名單的病原體將會被重點研究調查。圖/Envato Elements

No.9 新一代 mRNA 疫苗

乘著在 COVID-19 大流行間快速成熟的 mRNA 疫苗研發平台,許多疫苗正蓄勢待發。

BNT 在 2023 年初針對瘧疾、肺結核和生殖器皰疹的 mRNA 疫苗開始了首次人體實驗;也與輝瑞合作,研發能降低帶狀皰疹發病率的疫苗。另一家 mRNA 大廠莫德納,也在研發能預防生殖器皰疹和帶狀皰疹病毒疫苗。

除此之外,莫德納開發的黑色素瘤 mRNA 疫苗與默克的藥物合併療法,在去年底公布中期臨床試驗結果,顯示能降低 44% 的死亡率及復發風險,臨床試驗也將在 2023 年進入最後階段。

這些將在 2023 年揭曉的成果,將拓展人類使用 mRNA 疫苗對抗疾病的手段。

新一代 mRNA 疫苗正蓄勢待發。圖/Envato Elements

No.8 CRISPR 療法獲批准

由於之前的臨床試驗結果很不錯,CRISPR 基因編輯療法極有可能會在今年首次正式通過批准!

這種 exagamlogene autotemcel(exa-cel)療法,是由美國波士頓的 Vertex Pharmaceuticals 和英國劍橋的 CRISPR Therapeutics 公司共同開發。用超簡化的方式來説,治療方法就是先收集一個人自己的幹細胞,接著用 CRISPR-Cas9 編輯修正幹細胞中有缺陷的基因,最後再把這些細胞輸回人體。

Vertex 公司預計會在 3 月向美國 FDA 申請批准,讓 exa-cel 療法可以用於治療 β-地中海貧血或鐮狀細胞病的患者。

然而,隨著療法上市,相關的討論預期也將甚囂塵上……。

CRISPR 基因編輯療法極有可能在今年正式通過批准。圖/Envato Elements

No.7 阿茲海默有藥醫

美國 FDA 將在年初宣布,Eisai 製藥公司和 Biogen 生技公司開發的 lecanemab,是否可以用來治療阿茲海默患者。

該藥物就像一台大腦專用的掃地機器人,為單克隆抗體,可以清除大腦中積累的 β 澱粉樣蛋白;在包含了 1785 名早期阿茲海默患者的臨床試驗中顯示,比起安慰劑,能減緩認知能力下降的速度約 27%。不過,有些科學家認為這效果只能說是還好,也有些擔心藥物不夠安全。

無獨有偶,另一款由美國的 Anavex Life Sciences 開發的阿茲海默藥物 blarcamesine,目前也正在臨床試驗階段;它能啟動一種可提高神經元穩定性及相互連接能力的蛋白質,就像是幫神經元升級了連線速度與品質,估計在今年會持續帶來新消息。

blarcamesine 能幫神經元升級連線速度與品質。圖/Envato Elements

No.6 迷幻療法

2023 年,也極可能立下迷幻藥被用於醫療用途的里程碑。

多個相關臨床研究都進展到第三期,例如為 PTSD 創傷後症候群設計的新療法,結合了心理治療與 MDMA 亞甲二氧甲基苯丙胺,也就是所謂的搖頭丸,在臨床三期中,67% 的患者不再被診斷有 PTSD。

而來自迷幻蘑菇的裸蓋菇素,則被用來治療難治型憂鬱症,其臨床二期結果令人鼓舞。233 名難治型憂鬱症患者分成三組,在服用不同劑量裸蓋菇素後,每一組的憂鬱症量表分數都降低;而劑量最重的那組,其降幅最顯著。

最後是 K 他命,竟然成為對抗酒精使用障礙的療法!酒精使用障礙包括酗酒、酒精依賴、成癮等,86% 的臨床試驗病人,在接受新療法後六個月,持續戒除酒精。

然而,也有科學家警告這些樂觀訊息中有炒作成份,就讓我們持續關注吧!

迷幻藥能有效治療病情!?圖/Envato Elements

看到這你可能會想,第六到十名怎麼都是跟醫療健康有關的大事件呢?別急!在下一篇中,我們接著介紹更精采的第五到第一名!

也歡迎大家跟我們分享,你知道的、即將在 2023 年發生的科學大事件!

期待在 2023 年即將發生的科學大事件!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1190 篇文章 ・ 1752 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

1
2

文字

分享

1
1
2
你知道基因改造,那知道「基因編輯」技術嗎?讓專家一次告訴你!
台灣科技媒體中心_96
・2022/06/29 ・3505字 ・閱讀時間約 7 分鐘

英國環境食品與鄉村事務部(DEFRA)於 2022 年提出的《基因技術(精準育種)法案》。
圖/envato

英國環境食品與鄉村事務部(DEFRA)於今(2022)年 5 月 25 日提出的《基因技術(精準育種)法案》(Genetic Technology (Precision Breeding) Bill),6 月 15 日已過二讀討論,6 月 28 日將進入下一個審議階段。該法案針對精準育種的動植物,以及由這些動植物生產出的食品與飼料,提供開放銷售相關的風險評估。

台灣科技媒體中心邀請專家說明目前的研究與技術,4 位專家皆解釋精準育種技術更能縮短育種作物的時程,並指出該法案可供臺灣參考的面向。

法案修訂,提升糧食生產策略的重要性

臺灣大學生物科技研究所教授 兼 生物資源暨農學院副院長 劉嚞睿 表示,目前各國用基因編輯技術,做為基礎開發的新興精準育種技術產品,管理方式並不一致。所以目前國際上,是否以基因改造生物的規範來管理新興的精準育種技術產品,仍未達成共識,會影響新興精準育種技術產品的開發。

成功大學生物科技與產業科學系副教授 郭瑋君 指出,過去,美國對科技作物相對開放,而多年來歐盟強力反對。英國作為歐洲的三大強權之一,提出此修訂案,開放精準育種作物的產業研發及銷售,反應出此技術不再只是美國自身的國際貿易考量,而是提升未來糧食生產的重要策略。

英國開放精準育種技術,可能是提升糧食產量的重要策略。圖/envato

郭瑋君認為,這對全球有顯著的指標作用,相信此舉也會帶動歐盟未來思量修改相關法案。但郭瑋君也指出,該法案所提的專一基因編輯,在臺灣的精準育種技術只在研究單位進行,以分析作物的基因功能為主,目前仍未發展於產業育種。

郭瑋君表示,精準育種技術可以直接修改植物的基因,因此最大的潛力是可以去除造成植物生長弱勢的基因,而提高生長能力及永續栽培方法的應用。她說,精準育種技術可以顯著縮短育種時程,從 10 年縮短到 1 年半,這在因應氣候變遷造成每年極端氣候,加快培育有抗性的作物品種,有極大的助益。

郭瑋君舉例,自精準育種技術於 2013 年成功改變植物基因後,2017 年美國食品藥物管理局(FDA)即已核準了精準育種可抗旱的大豆、増加含油量的亞麻,及不會變黑的蘑菇上市。

臺灣大學農藝學系副教授 蔡育彰 表示,英國提出修訂精準育種法案,是繼美國、澳洲、日本等國之後,將基因編輯作物與基因改造作物做出區別。

目前已訂定法規中允許的精準育種作物,主要是影響作物本身特定的基因表現。

精準育種可以大幅縮短育種時程、因應快速來臨的極端氣候。圖/envato

蔡育彰認為,這種改變原本特定基因表現的作物,與現行一般育種方法所育成的作物相似,若再輔以目前成熟的全基因組定序分析技術,可完整的比對出精準育種作物與對照品種的基因組序列差異,後續相關安全性評估可與過去一般品種育成的流程相似。

臺灣海洋大學水產養殖學系副教授/前系主任 龔紘毅,同時也是執行科技部、農委會與多項產學合作的計畫主持人。龔紘毅指出,精準育種技術幫助我們減少對農藥及抗生素的依賴,減少對環境的影響並改善動物福利,增加動植物的營養價值,從而提高糧食系統的生產力、復原力及可持續性。

龔紘毅說明,臺灣現在發展的精準育種技術有「基因體選育」(Genome selection)與「基因體編輯技術」,前者需要有明顯不同性狀的族群樣品並選育物種,但相對也會投入很高的成本,較適合少數高產量與高經濟規模的物種。

臺灣現在發展的精準育種技術有「基因體選育」(Genome selection)與「基因體編輯技術」。
圖/envato

龔紘毅表示,臺灣在農業基因體學和遺傳技術有豐沛的能量及基礎研究,可借鏡英國法規,制定輕度監管的方式,釋放研發及促進農業產業發展的能量,且制定符合台灣最大效益的規則。龔紘毅提到,日本專家及政府在制訂精準育種法規的前瞻性、推廣經驗與鼓勵新創,也值得臺灣加以借鏡學習。

他指出,日本與臺灣均為水產消費大國,日本雖然在基因改造生物(GMO)法規上嚴格管理,但學界與政府認為基因編輯技術在精準育種具有龐大的發展潛力,因此在基因編輯法規超前部署,制定明確且兼顧產業發展與生物安全的法規制度。同時在科學教育及注重新興技術與民眾溝通、宣導和知的權利。

精準育種,相對縮短培育時程

劉嚞睿說明,依臺灣「食品安全衛生管理法」定義,基因改造是指使用基因工程或分子生物技術,將遺傳物質轉移或轉殖到活細胞或生物體,產生基因重組現象。基因改造技術食品含有外源基因,對人體健康與環境生態可能有影響。

不過他舉例,三種基因編輯技術中,其中兩種技術的衍生產品,不含有外源基因。所以除了歐盟仍以基因改造生物的規範進行管理以外,大多數國家認定風險與安全性應與傳統育種無異,故認為不屬於基因改造產品。

劉嚞睿指出,基因編輯技術可在不含外源基因的情況下,精準快速的改變生物體內特定的基因序列,大幅縮短育種時間,帶動新興精準育種技術的發展。但此精準育種技術,透過人為的操控物種基因體,甚至影響物種的基因多樣性,仍引起諸多道德倫理與社會價值的矛盾與衝突。

用人為方式改變生物基因的精準育種技術,仍有道德倫理上的疑慮。圖/envato

蔡育彰說明,精準育種使用的基因編輯技術,與傳統基因改造不同,傳統基因改造是經由外加的基因。他指出,實際應用的困難在於,精準育種此技術應用在不同作物、品種和品系上,效率也都不同。由於目前法規允許的精準育種技術有限制 DNA 序列的變異型式,應用於許多現行栽培的作物種類上可能預期效果較有限。蔡育彰也提醒,精準育種技術的應用也需要對目標作物的基因組序列有完整的了解。

郭瑋君指出,基因改造主要技術核心是,永久放置「非植物」的基因片段於農作物體內,如抗病或抗蟲或抗農藥基因,可能來源是昆蟲或細菌,以提高基因改造作物的產量。因此這些外來基因在作物內會產生外來的蛋白質,可能栽種時造成其它生物如昆蟲的生長或演化上的變異,在食用時可能成為人類食物的過敏源。

郭瑋君解釋,精準育種技術是直接去除或變異「植物」本身的基因片段,最終的育種作物不會有外來的基因或蛋白質。

與基因改造不同,精準育種的基因編輯技術,只會剔除、不會新增外來基因到農作物體內。圖/envato

龔紘毅解釋,精準育種中的基因編輯技術,讓科學家能幫助農民和生產者開發出有益處的植物和動物品種,這些也能通過傳統育種和自然過程發生,但基因編輯可以更有效和更精準的大幅縮短選育新品種所需的時間。

台灣科技媒體中心表示,目前英國的精準育種技術仍屬於基因改造生物(GMO)法規的監管下,若此法案通過,將有利於精準育種技術與產業發展,但是,使用精準育種技術的作物是否納入或獨立於「基改作物」的法規規範,仍待持續關注與討論。雖然英國、紐西蘭、澳洲等都有專家長年持續的討論基因改造作物與基因編輯作物的技術,但在臺灣仍十分缺少對此科學議題的專業看法與討論

台灣科技媒體中心總結,透過科學家說明目前的研究與技術,能幫助在科學技術被誤解之前,提供正確的資訊以利討論。雖然這次是在英國提出的精準育種法案,但未來臺灣若有相關發展,也可以做為參考的資料。

所有討論 1
台灣科技媒體中心_96
46 篇文章 ・ 326 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。

1

16
4

文字

分享

1
16
4
蠑螈可愛微笑底下隱藏著令人稱羨的再生能力——《竄改基因:改寫人類未來的 CRISPR 和基因編輯》
貓頭鷹出版社_96
・2022/04/04 ・1621字 ・閱讀時間約 3 分鐘

墨西哥鈍口螈是一種看了會令人開心的可愛生物,牠是蠑螈家族的兩棲動物,有著一張看似正在微笑的臉,即使我們知道這麼說是把牠擬人化了,但還是忍不住微笑回禮。

看起來總是在微笑的墨西哥鈍口螈。圖/Pexels

蠑螈可愛微笑背後的祕密

墨西哥鈍口螈的處境非常奇特,牠們是極危物種但在地球上的數量卻有幾百萬隻。這是因為野外幾乎已經完全沒有墨西哥鈍口螈,但人為飼養的數量非常多,其中一個原因是因為,牠們是模樣可愛又容易飼養的寵物。另一個原因則是牠們具備在人類眼中幾乎可謂奇蹟的再生能力,這使牠們成為廣受科學家歡迎的模式生物。

有超強再生能力的墨西哥鈍口螈。圖/Pixabay

如果人類失去了最小的腳趾、一部分耳垂,或少了一點鼻尖,這些部位就是永遠消失了。墨西哥鈍口螈就算失去了整條腿也不在乎,因為大約一個半月的時間,失去的部位就能重新生長回來,沒有任何一種哺乳類動物或鳥類具備這種能力。

為了滿足我們的好奇心,以及了解這種現象應用在提升醫療效用上的潛力,我們很想知道這些可愛的小生物如何施展這種奇技,以及人類是不是能改造牠們的能力,用來提升人類再生醫學的進展,因為人口老化的問題,這個領域正受到高度關注。

長久以來,人體有許多組織的演化速度跟不上我們現在的生活方式。醫學不會往讓人類肢體重新生長的方向前進,而是想辦法改善已經耗損的身體功能。

面對咯咯作響的膝蓋、疼痛難忍的髖關節、發炎的指節,我們希望在不用動手術的前提下,或許能靠著促進疲勞的組織(如老舊的軟骨和骨骼)恢復活力,進而改善這些身體部位的功能。也許,墨西哥鈍口螈的再生天賦值得我們借鏡。

面對難以忍受的疼痛,期望能靠手術外的方式恢復。圖/Pexels

透過基因編輯技術探究蠑螈再生的關鍵

同樣地,藉由基因編輯領域的新技術,科學家可以讓墨西哥鈍口螈這樣的實驗系統發揮最好的效用。透過這些技術,想要改變墨西哥鈍口螈的DNA,進而研究在再生過程中有哪些基因和程序扮演了重要角色,是一件很簡單的事。此外,墨西哥鈍口螈的卵體積很大,使得在墨西哥鈍口螈生命初始導入基因編輯試劑這件事變得非常容易。藉由這樣的方法,研究人員早已證明在他們選出的一群細胞裡,有個特別的基因,在墨西哥鈍口螈肢體重生長出新肌肉的過程中,扮演著至關重要的角色。

沒有人期待這些實驗結果在短期內就能讓人類肢體徹底再生,這條路上要面對的障礙極大,複雜性極高,各位讀者在有生之年,可能都看不到這件事成真。電影《蜘蛛人》裡的柯提斯·康納斯博士—也就是蜥蜴人—的狀況不在任何真實的治療願景內。

科學家已經利用基因改造的方法來探究墨西哥鈍口螈脊髓重生過程中,一些特定基因的重要性,希望最後可以藉此詳細了解牠們如何修復重要組織,以及在這樣的過程中,有哪些程序是人體所缺乏的,或者哪些程序在人體的運作方式有所不同。

利用這些知識和相似的基因改造技術,來改變脊髓損傷患者神經細胞及相關組織的行為和活動,是完全有可能實現的事。在人類的脊柱中,僅僅幾公釐的間隙,就有可能造成終身癱瘓和殘障。想要在未來幾十年內彌合這樣的間隙,並不是什麼荒謬的想望。

——本文摘自《竄改基因:改寫人類未來的CRISPR和基因編輯》,2022 年 1 月,貓頭鷹出版社

所有討論 1
貓頭鷹出版社_96
62 篇文章 ・ 25 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。