0

0
0

文字

分享

0
0
0

真正的3D顯示技術:脈衝雷射的電漿舞台!

Scimage
・2012/02/07 ・417字 ・閱讀時間少於 1 分鐘 ・SR值 537 ・八年級

-----廣告,請繼續往下閱讀-----

雖然有很多種不同的3D顯示技術,但是這些技術都有使用空間上的限制,只能用某些方式讓人以為空間中的某些點有發出影像光。不過實際上要在任意空間發光的技術是存在的,就是利用很強的脈衝雷射把空氣擊穿打成電漿,然後電漿就可以發光或散射光。這樣一來只要動態控制雷射的聚焦位置,就可以把任意的空間都當作是雷射的螢幕。

但是這樣的技術需要強度夠大的脈衝雷射以及很快的掃描機構,以往並沒有這樣的顯示器。下面的影片介紹這種理論上做得到可是實際上非常昂貴的顯示技術目前的成品。展示內容雖然是在箱子內,不過後面也有展示在開放空間中的效果,效果還蠻讓人驚艷的(但需要更大的雷射)。

這樣的顯示技術或許不會有實用的一天,但是相同的技術,把脈衝雷射的能向快速注射到空間中的任意點,可以用在微加工與立體紀錄等技術上,以及生醫的檢測上。或許以後科技會給這樣的技術更多應用的空間!

轉載自 科學影像Scimage

-----廣告,請繼續往下閱讀-----
文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

2

17
5

文字

分享

2
17
5
水的性質國中不是學完了嗎?竟然還跟「量子效應」有關?
linjunJR_96
・2021/10/03 ・2111字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

圖/Pixabay

水這種物質看起來再平凡不過。人們每天洗澡、澆花、游泳、沖咖啡,無時無刻不跟水相處在一起。人體中還有地球表面上大部分都是水,事實上,它可是宇宙中第三多的分子。

不過,時至今日還是有許多頂尖的科學家在進行水的前沿研究。你以為他們領了政府與學校的研究經費,是為了探索未知的星系或癌症的解藥,但他們其實在研究無聊的水。這可不是因為他們是薪水小偷,而是水分子雖然十分常見,但它的許多獨特性質在科學上還未有定論。

三態間的未解之謎

你可能會覺得:「水的性質不是國中就都教過了嗎?」。不過就跟所有其他東西一樣,事情並沒有課本寫得這麼簡單。從固態的冰講起,就有十幾二十種結晶型態。就像石墨加壓會變成鑽石,普通冰塊在高壓下也會轉變成其他的結構。另外,關於過冷(低於冰點卻不結冰)這種奇怪的現象,至今也還沒有完全清楚的實驗和理論圖像。

結冰的過程已經這麼捉摸不定,蒸發更是如此。雖然我們知道衣服晾在外面會乾,但對於水蒸發的速率,卻沒有一個精準的描述。水的蒸發是源自分子碰撞時,某些分子被撞出液態的水,因此蒸發速率可以寫成分子碰撞的多寡乘上某個實驗常數。要決定這個實驗常數聽起來像是個簡單的高中科展題目,但以往的許多結果卻時常出現分歧,差距高達三個數量級(也就是一千倍)!

-----廣告,請繼續往下閱讀-----
我們經常以水作為物質三態變化的例子,但其中的細節其實還有待研究。圖/WIKIPEDIA

如果想用電腦進行理論模擬則會出現另一個問題,例如我們模擬 18 公克的水如何蒸發(喝水一口都比 18 克還要多),就必須同時計算 6 × 1023 個水分子的狀態,以目前的電腦運算力難以負擔。想要解決蒸發的難題,需要一些相當進階的實驗與理論方法,而這也是科學家目前正在努力的方向。

除了轉變至固態與汽態的過程之外,就連最普遍的液態水也有許多捉摸不定的型態。科學家在瞬間結冰的水中發現兩種結構,兩者密度高低不同。由於瞬間凝結的冰沒有時間排列成整齊的固態晶格,所以能夠保留原本液態時的分子排列模式。也就是說,原本的液態水也有分兩種結構。這種結構上的差異被認為與過冷機制密切相關,相關的實驗不久前也剛登上 Nature 期刊 [1]

水分子間的量子效應

要對水的這些奇特性質建立更好的理解,得先了解水分子微觀上的交互作用。水分子是由一顆氧跟兩顆氫組成一個米奇形狀,其中氧帶較多負電,氫帶較多正電,所以相鄰的水分子會感受到來自鄰居的吸引力,也就是所謂的「氫鍵」。靠著分子間的氫鍵,水才能夠組成上面提到的各式結構。

水分子間的氫鍵(標示 1 處)3D 模型。圖/WIKIPEDIA

不過,用來解釋氫鍵的質子與電子,都是量子力學適用的尺度,而氫原子的嬌小身材,讓其中牽涉到的量子效應變的特別顯著。有許多人認為,如果將量子效應納入水分子結構理論模型,或許就能解釋水展現出的諸多特性。近期,史丹佛直線加速器中心(SLAC)的實驗團隊首次對水分子氫鍵的振動進行直接觀測,從實驗上踏出了重要的一步。

-----廣告,請繼續往下閱讀-----

發生在皮秒間的氫鍵震盪

這次實驗首先得射出一道比頭髮細一千倍的迷你水柱,作為探測的樣本。在這麼細的水柱中,每個截面可能只有幾萬個水分子。水柱中的分子間氫鍵被外加的雷射刺激並進行振動,實驗團隊接著便能用高能量的電子束作為「探測槍」,利用電子束散射的結果,分析水分子每個瞬間的分子結構。

圖/Pexels

這種觀測方法可以達到分子等級的解析度,而這次實驗直接聚焦在三顆水分子之間的拉動牽扯。受到雷射刺激時,氫原子會先將鄰近的氧原子拉近,再拉開距離,一切都在幾皮秒(10-12 秒)內發生。針對氫鍵長度的這種收縮震盪,研究團隊進行了一系列的探索。

透過電腦模擬,他們發現氫鍵拉扯的幅度比較符合加入量子力學的模型,為水分子結構的量子效應提供初步的證據。

拉開水分子量子性質的研究大門


以往研究分子結構需要仰賴光譜學的間接轉換,而以皮秒為單位在進行震盪的微小氫鍵,在實驗觀測上是一大挑戰。這次的裝置首次對液態水的氫鍵距離震盪做出直接的測量,也為科學家開啟更多的機會,去檢驗氫鍵的量子性質對於水的結晶和蒸發等過程有什麼影響。

-----廣告,請繼續往下閱讀-----

關於水,我們還有許多不知道的事。也因為如此,網路上常常能看到「小分子團水」,「能量水」等等的健康廣告,讓大家看得不知是真是假。隨著目前研究持續進行,或許很快就要有「量子水」上市了。

參考資料:

  1. https://pansci.asia/archives/194118
  2. Yang, J., Dettori, R., Nunes, J.P.F. et al. Direct observation of ultrafast hydrogen bond strengthening in liquid water. Nature 596, 531–535 (2021).
  3. https://www.sciencedaily.com/releases/2021/08/210825113614.htm
  4. https://nautil.us/issue/25/water/five-things-we-still-dont-know-about-water
所有討論 2
linjunJR_96
33 篇文章 ・ 846 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

5

13
1

文字

分享

5
13
1
托克馬克反應爐:地球上創造的人造太陽——成功大學電漿所向克強教授專訪
科技大觀園_96
・2021/07/29 ・3759字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

隨著工業發展,人類對能源的需求日益升高,然而傳統能源多仰賴地殼深處的化石燃料,資源不僅有限還會對環境造成嚴重汙染,為了解決能源危機,數十年來科學家一直在尋找新的替代能源,這種能源必須乾淨、安全,同時還得足以應付人類對能源的需求,但這種終極能源真的存在嗎?

如果你覺得難以想像,不妨抬頭看看天空吧。

恆星內部一直都在持續進行核融合過程,以太陽核心為例,氫原子核在高溫高壓下不斷相互碰撞融合成更重的氦原子,過程中的質量虧損帶來巨大的能量釋放.這些能量也成為太陽能夠持續發光發熱的來源。

恆星內部持續進行核融合反應。圖/pixabay

自二戰結束以來,模仿恆星核心熱融合作為地球上能量來源的想法一直存在,但如何實現遠比想像中更為困難,光是尋找適合融合反應的材料、理解混沌的熱電漿行為便已耗費數十年,地球上的人造太陽該放在什麼樣的裝置內也是一門大問題,而托克馬克(Tokamak)便是科學家目前找出的最佳解答。

-----廣告,請繼續往下閱讀-----

什麼是托克馬克反應爐?

核融合電漿拘限理論專家、成功大學電漿所教授向克強指出,在核融合研究初期,各國科學家曾對約束裝置有許多不同想法,但這些都在蘇聯 1968 年公布托克馬克數據後有所轉變,由於托克馬克得出的結果遠優於當時所有設計近 10 倍,這也使得各國幾乎是在一夕之間拋下原本的設計轉而投入托克馬克懷抱中。

在缺乏恆星內部引力等環境下,實驗室中打造可實用核融合反應爐的溫度需求遠比太陽核心更高,以目前第一代燃料氘(D)和氚(T)為例,需求溫度為 1.5 億°C,約是太陽核心溫度的 10 倍。除了極高的溫度,科學家還必須設法約束、維持電漿的穩定性,創造適當環境讓電漿粒子能產生核融合反應。

這也正是托克馬克所具備的一切。從外觀來看,托克馬克就像一個甜甜圈,環形管道相連與抽氣系統形成真空室,管道外層纏繞著一圈一圈的超導磁鐵,透過環形電漿電流與線圈電流產生磁場約束內部的電漿粒子不會因接觸管道失去能量,去除終端損失來提升能源產生效益。

托克馬克反應爐內部構造。圖/wikimedia

向克強解釋,核融合研究最主要的目的是證明 Q 值(融合能量增益因子)能大於 1,即輸出核融合反應的能量比維持核融合反應的外加能量更多,才能確認真的能用來作為發電使用。有趣的是,核融合研究的進步速度其實與半導體領域的摩爾定律很相似。大約每隔兩年便會增長一倍,近年最新得出的結果已經相當接近最初 Q=1 的目標。

-----廣告,請繼續往下閱讀-----

「如果從 1932 年第一個核融合小實驗算起,人們已經走了將近一個世紀,每幾年邁出一步,如今終於要跨越 1 的目標,一旦能證明 Q 可以大於 1 甚至達到 10,將會是足以得到諾貝爾獎的成就。」

由多國合作參與、鄰近法國南部普羅旺斯的 ITER(國際熱核融合實驗反應爐)正是承載著這樣的希望在準備進行實驗。與傳統發電廠目的不同,ITER 目標並非生產能源提供使用,而是證明核融合發電已經能從電漿物理實驗研究走入實用階段。目前 ITER 已經完成初步建設,預計將於 2025 年展開首次電漿測試、2035 年進行氘氚融合實驗。最終目標是使用維繫設備運作必須的 50 MW 輸入功率產生約 500 MW 的能量,並讓核融合反應至少維持 400 秒,證明 Q 能夠大於等於 10,提供核融合發電商轉可行性的科學證據。

核融合發電與核能發電差異?人造太陽安全嗎?

談到核,許多人第一時間想到的可能是現行的核能發電,然而核能與核融合能可說是完全不同的兩回事。目前的核能發電採用均為核分裂技術,發電核心仰賴使用如鈾般的重元素分裂後形成連鎖反應來釋放能量,儘管能提供大量能源,但也會產生半衰期動輒數萬年的核廢料,長期儲存問題及對環境造成的汙染也是最為人詬病之處。

相較之下,托克馬克採用的是核融合技術,透過設置適當的環境,促使二個輕原子核相互融合產生能量。以目前用來反應的氘氚為例,氘可以從海水中提取,而氚雖然由宇宙射線產生,在自然界中極其稀微,但同樣可以從鋰和中子的反應中產生,融合過程產生的放射性產物半衰期頂多只有 1、200 年.向克強也提及國外最新研究指出,透過重複使用產物,理想中甚至就像醫院的放射性廢棄物一樣處置即可,更別提未來還可能找到更適合的第二代、第三代燃料,廢棄物的放射性還可能更加降低。

-----廣告,請繼續往下閱讀-----
核融合反應,氘-氚的核融合反應產生氦與中子,期間釋放出的核能。圖/wikimedia

在安全性上,由於維持核融合反應需不斷的添加燃料,並不像核分裂會自主產生連鎖反應,一旦系統停止運作內部的融合反應也會立即停止,不會發生如傳統核電廠般爐心熔毀導致輻射外洩等無法控制狀況,建造不需要大片土地,零件製造上也比太陽能製造過程更為環保,加上運作過程沒有任何碳排放且只會產生少量的放射性廢棄物,可以說核融合對環境相對友善之餘又可滿足能源要求,與核能相比,應該是更容易被社會所接受的能源來源。

向克強認為,討論核融合最重要的一點,便是去了解「核融合與非核家園的願景並不衝突」。這不僅是單方面的說詞,許多國家都有著同樣想法,以同樣主張非核家園的德國為例,除了是 經由歐盟參與ITER的主要參與國之一,德國國內更有托克馬克和仿星器 W7X 兩大核融合反應裝置,在核融合研究投資上絲毫不手軟,鄰近台灣的韓國也在國內自力建造被稱為韓國太陽的 KSTAR托克馬克並參與ITER,甚至直接標榜核融合為「綠能」。

終極綠能的未來

由於托克馬克帶來的能源願景十分遠大,除了 ITER 的環形托克馬克形式,目前國際新型態的圓形托克馬克也展現出不同方向的發展潛力,向克強透露,許多先進國家早已有長遠的核融合發展計劃,除了參與 ITER,歐盟、美國、中國、日本、韓國自家的托克馬克研究項目也都在持續進行,「就像所有科學研究一樣,彼此間是合作也是競爭關係,大家都已經開始考慮 ITER 之後該做些什麼。」

所有人都想打造人造太陽來解決國內能源問題,但我們似乎忘記了什麼重要的事情。

-----廣告,請繼續往下閱讀-----

目前 ITER 約有多達 35 個國家參與,歐美民間也有一些企業正積極投資,就連泰國、哥斯大黎加也都了解到核融合對未來的重要性.開始投入大筆資源進行核融合研究,許多國家甚至開始規劃在 2050 年前後建造示範性核融合電廠,相較之下,台灣目前僅有極小規模的研究能量,向克強形容,現在的情況就像是國際上有一場關於乾淨能源的盛宴,唯獨台灣沒有參與其中。

事實上作為缺乏天然資源的亞洲國家,理應更迫切期待更好的能源來源出現,向克強指出,過去印度推廣核融合的專家訪台演講時,就曾直接表示印度的生活水準若要提升至與歐美國家相仿,核融合將是為未來「唯一選項」,從國內核電廠造價來看,台灣其實也具備國力發展核融合電廠,現在最重要的是盡早在現有基礎上投入更多先端研究,同時培養相關人才,才能在未來能源變革上與世界接軌,「我們已經落後許多,現今必須竭力趕上。」

回憶起投入核融合研究的契機,向克強笑著表示,他依稀記得 1969 年仍就讀高中時,剛成立不久的徐氏基金會曾舉辦一場科普演講,邀請到剛參訪美國相關機構的大學教授談論核融合,講者在最後說了這樣一段話:也許,根本沒有任何人了解核融合,就是這樣一段話提起他的興趣,往後數十年間一頭栽入核融合能源領域研究中。如今向克強不僅是核融合電漿拘限理論的專家,更是國內托克馬克反應爐理論的少數研究者之一,帶著曾於美國橡樹嶺國家實驗室、韓國、日本核融合研究中心擔任教授或科學家的經歷,目前也持續在成大電漿所投入國內與國際合作研究,協助建立核融合能源及電漿科學研究團隊。

向克強表示,他也是後來才發現 1969 年正好是托克馬克開始被各國重視的年代。「如果當年沒有去參加那場演講,也許我今天就是在其他領域進行研究,只能說人生有很奇妙的對稱性。現在到我這個年紀也開始要為大眾科普貢獻綿薄之力,希望同樣能帶給一些人正面影響。」

-----廣告,請繼續往下閱讀-----

50 年過去,人們現在對核融合的理解已經更為深入,掌握了許多當初不清楚的環節,然而核融合發電的研究仍在持續,ITER 的氘氚實驗至 2035 年才開始,發電廠設計還有更長遠的路要走,人才培育需要數十年的時間,如果現在起步,或許這樣的對稱性仍可持續延續下去。

參考文獻

所有討論 5
科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

2

15
5

文字

分享

2
15
5
真正的隨機:史上最速亂數產生器
linjunJR_96
・2021/04/12 ・2451字 ・閱讀時間約 5 分鐘 ・SR值 521 ・七年級

-----廣告,請繼續往下閱讀-----

圖/wikipedia

隨機性,在許多領域都扮演了不可或缺的角色。例如電腦信息的加密,還有模擬複雜物理系統等技術,都需要用到巨量的亂數資料。不過,這些隨機是怎麼來的呢?

當電腦計算 1+1 是多少時,它可以遵從既定的程序算出正確答案;但如果叫電腦隨便給你一個數字,它肯定不知道該怎麼辦。畢竟電腦不像人,可以隨便「想到」一個數字。電腦只能根據你的命令,算出你要的結果。

要得到「真正的隨機」並不如想像中簡單。當我們到廟裡擲筊,或是玩桌遊時丟骰子,得到的結果看似沒有規律,但其實不然。它們可以用簡單的電腦計算來預測,像是丟硬幣的結果,便早已被研究透徹。只要對初始條件有足夠良好的掌握(像是丟出的速度與角度等等),這類物品的行為都能用兩百年前確立的力學定律來精準預測,因此稱不上是「真正」的隨機;另外一個缺點在於,這類方法產生隨機結果的速度實在太慢,跟不上現代社會對於隨機資料的龐大需求。

對於丟硬幣的結果,只要對初始條件有足夠良好的掌握,這類物品的行為都能用力學定律來精準預測,因此稱不上是「真正」的隨機。圖/Giphy

至於使用電腦計算的結果呢?常見像是串流平台的隨機播放功能,以及粉專抽獎會用的亂數產生器,它們所呈現的隨機是演算法算出來的。隨機播放功能利用特殊的演算法,排列出一個讓你聽起來很隨興的歌單;一般的電腦亂數,只是將特定的「種子」數字丟進一個超複雜的算式,算出成串毫無規律的數字。這些方法雖然快速又實用,但終究是可以預期的。當亂數數量夠多時,往往可以發現某些規律;而可被預期的亂數若是用於加密或認證,便會成為駭客眼中的肥羊

-----廣告,請繼續往下閱讀-----

由量子世界尋求真正的隨機!

既然手邊的物品和電腦都不管用,科學家於是轉向微觀的量子世界。量子物理對世界的描述本身就是機率性的,因此物理學家可以從實際測量結果中汲取「正港的」隨機亂數。像是物質的放射性衰變或電路中的雜訊,都是常見的選項。這類過程雖然可以確保隨機性,但效率還是稍嫌太差,相關的實驗架設也相當費工。

不過就在今年二月,研究人員利用半導體雷射技術,打造出有史以來最快的亂數產生器:每秒 250 TB 的隨機位元,比先前的紀錄高出一百多倍。

雷射的產生牽涉到原子內的「電子躍遷」。在一般狀態下,大部分原子中的電子會按照高中化學課本中提到的「電子軌域」排列,這種排列方式稱為「基態」,代表原子中的所有電子,都處在最低能量狀態。

在原子接收一定的能量後,會有部分電子跳入高能量的軌域中,變成「激發態」,這時原子內的電子組態不穩定,電子會跳回低能量軌域中回到「基態」,並以光(輻射)的形式放出能量。圖/wikipedia

在原子接收一定的能量後,會有部分電子跳入高能量的軌域中,變成「激發態」,這時原子內的電子組態不穩定,電子會跳回低能量軌域中回到「基態」,並以光(輻射)的形式放出能量。

-----廣告,請繼續往下閱讀-----

而這些跳回的電子,如果都從同一個激發態回到基態,就會釋放出特定「頻率」與「能量大小」的光,以愛因斯坦的說法,從相同的激發態回到基態,會得到固定的「光子」,這是舊量子論的重要發現之一。提供原子特定的能量,讓原子放出光子,就可以激發出雷射。

利用電子躍遷的隨機性

但這件事情跟隨機性有什麼關係呢?電子躍遷本身就是具有隨機性的。

要激發雷射,其實事情並沒有那麼簡單,需要克服這個機率性。讓我們回頭看上面的敘述,「『大部分』原子中的電子會按照……」、「在原子接收一定的能量後,『有部分』電子跳入高能量的軌域中」,這些「大部分」、「有部分」,使得我們就算給原子固定能量,也未必能平穩釋放出特定光子,讓雷射光的強弱不穩定,也不會朝同方向射出。

因此雷射技術的重點之一,就是「光學共振腔」,將激發光子的物質放在共振腔中,放出的光子會在共振腔中來回游走,再次激發原子放出更多的光子,來增強雷射強度,並讓雷射光往特定方向射出。

-----廣告,請繼續往下閱讀-----

但是,「光學共振腔」強化雷射強度以及方向,但實際上雷射光的強度,仍然是由量子力學的隨機性所決定!如果我們能用感光元件捕捉雷射光線起伏不定的強度,再轉換為數位訊號,就能獲取珍貴且無法破解的隨機亂數。

蝴蝶結狀「光學共振腔」

這種想法雖有十幾年的歷史,不過由於技術上的限制,產率一直相當有限。而且一般方形共振腔產生的雷射,容易讓光強度陷入特定的規律,產生的隨機性也較低。為了解決這個問題,研究人員將共振腔的形狀改良為蝴蝶結狀。如此一來,在其中反彈的雷射光便能保有其當初紊亂的特性,且往特定方向射出。

隨機的雷射光源被 254 像素的高速攝影機拍下,每個像素受到的光強度也被證實為相互獨立,因此成就了 254 條同步生產線,一同產出隨機亂數,使效率遠遠勝過以往一次只能記錄一個像素的做法,創下每秒 250 TB 的紀錄。

現今電腦運作的時間尺度最快不超過幾 GHz,因此這次的 250 THz 創舉難以發揮全部的實力。如果犧牲一些效率,用較簡單的偵測裝置來取代高速攝影機,可以讓整個裝置變得更加輕巧,提升實用性。在不久的將來,史上最速的亂數產生機制,或許可以直接容納於單一晶片之上。

-----廣告,請繼續往下閱讀-----

參考資料:

所有討論 2
linjunJR_96
33 篇文章 ・ 846 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。