資料來源:PanSci: 新解答:泡水之後,為何手指頭上會出現皺摺?
本文與 高柏科技 合作,泛科學企劃執行。
當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。
2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。
不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。
但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!
這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。
換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。
要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。
散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。
在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。
現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。
為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。
那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。
典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。
為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。
OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?
傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。
其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。
3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。
在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。
整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。
從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。
隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。
然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。
另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。
高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。
討論功能關閉中。
乳癌是台灣女性發生率第一名的癌症,每年都有超過 10000 例新診斷的乳癌。不過,隨著醫學進步,乳癌的治療成效也不斷提升,讓許多患者可以獲得更好的預後與生活品質。由於乳癌可能在女性荷爾蒙的刺激下加速生長,因此,針對荷爾蒙受體的檢測與治療策略的制定,就顯得相當重要。
為了提升治療的精準度,醫療團隊通常會依據下列幾項指標來分型:荷爾蒙受體 ER(雌激素受體)、PR(黃體素受體)、癌症生長指數 Ki-67、以及 HER2(人類表皮生長因子受體 -2)。透過這些指標,可將乳癌分為幾種主要亞型,包括:管腔 A 型(Luminal A)、管腔 B1 型(Luminal B1)、管腔 B2 型(Luminal B2)、HER2 陽性型以及三陰性型。不同亞型的乳癌在治療反應及預後表現上都有差異,因此必須根據乳癌亞型擬定個人化治療策略。
「管腔 A 型(Luminal A)」具備 ER、PR 陽性以及 Ki-67 指數較低、HER2 陰性的特徵;這類病患的腫瘤通常成長速度較慢,對抗荷爾蒙治療也較敏感,預後相對較好。
「管腔 B1 型(Luminal B1)」同樣是 ER、PR 陽性,但 Ki-67 指數較高、HER2 陰性,意味著癌細胞增生速度偏快,但仍保有對抗荷爾蒙治療的反應。
「管腔 B2 型(Luminal B2)」則是 ER、PR 與 HER2 同時呈現陽性的狀態,這類病人除了可以考慮荷爾蒙治療外,針對 HER2 過度表現,也可能需要使用抗 HER2 的標靶藥物。
「HER2 陽性型」指 ER、PR 陰性但 HER2 陽性的患者;這一類患者過去預後較差,但現在因為針對 HER2 的標靶治療藥物相當進步,整體治療效果也比以往明顯提升。
「三陰性型」則是 ER、PR、HER2 三者皆為陰性,過往主要依賴化學治療,但是隨著新藥的發展,三陰性型乳癌的治療成效亦逐漸提升。
這幾種乳癌亞型中,最常見的是管腔 A 型與管腔 B1 型,兩者加起來約佔總病例的一半左右。它們的共同特點是 ER、PR 呈陽性、HER2 陰性,代表癌細胞對「抗荷爾蒙治療」通常有反應。抗荷爾蒙治療的原理在於阻斷女性荷爾蒙對乳癌細胞的刺激,減緩或中斷癌細胞的生長。
傳統上,如果病情需要,會視患者情況合併使用化學治療。近年來,CDK4/6 抑制劑口服標靶藥物的發展,讓患者有更好的治療選擇。不僅能更精準地抑制腫瘤生長,還能減少因化學治療帶來的不適、副作用,幫助患者在整體治療過程中保有較好的生活品質。
CDK4/6 抑制劑口服標靶藥物(例如 palbociclib、ribociclib、abemaciclib)是透過干擾細胞週期,阻斷癌細胞在分裂複製過程中的關鍵步驟。細胞週期素激酶(Cyclin-Dependent Kinases, CDK)是調控細胞分裂增殖的核心蛋白質,若這些蛋白質的活性被抑制,癌細胞就難以快速增殖,也能延後其對抗荷爾蒙治療產生抗藥性的時間。
透過抗荷爾蒙藥物與 CDK4/6 抑制劑的雙管齊下,可以顯著延長患者無疾病惡化存活期,並降低治療過程中常見副作用的強度。相較於副作用較強的化學治療,標靶治療相對温和,可維持較好的生活品質。此外這些 CDK4/6 抑制劑為口服藥物,患者不必頻繁到醫院接受點滴治療,相當便利,因而也能提升治療的順從度,確保療程順利進行。
CDK4/6 抑制劑口服標靶藥物適合用於符合條件的乳癌患者,包括(1)停經後的乳癌患者(包括自然停經、注射藥物導致的停經、或手術切除卵巢後形成的停經),(2)荷爾蒙受體陽性且 HER2 陰性的患者,以及(3)局部晚期或轉移性乳癌患者。由於部分患者年紀較輕,尚未自然停經,醫師也可能透過藥物或手術誘導停經,使其符合治療條件,進一步達到較佳的治療效果。
目前臨床上已核准三種 CDK4/6 抑制劑口服標靶藥物,包括:愛乳適(Ibrance, palbociclib)、擊癌利(Kisqali, ribociclib)與捷癌寧(Verzenio, abemaciclib)。這三款藥物均可應用於晚期乳癌的第一線或在經過其他治療後的第二線乃至後線治療,為許多已經擴散或無法單靠傳統治療控制的病患,提供了新的選擇。
值得關注的是,根據近期一項名為「P-Verify」的大規模真實世界研究[1],研究團隊針對 HR+ / HER2- 轉移性乳癌患者,在接受 palbociclib、ribociclib 或 abemaciclib 加上芳香化酶抑制劑(AI)作為第一線治療時,觀察這些病人的整體存活期(OS)。該研究納入 9146 名患者,分析來自 280 個美國研究中心的數據,結果顯示,三種 CDK4/6 抑制劑在整體存活期方面並無顯著差異,與先前的隨機對照臨床試驗結論相符。林敬翰醫師指出由於回溯性研究無法隨機分配患者,可能存在選擇偏誤。因此,P-Verify 研究使用治療權重倒數機率(Stabilized inverse probability of treatment weighted, sIPTW)的校正方法,降低各個變數之間不平衡的狀態,幫助提升研究結果的可信度,而這樣大型的回溯性研究結果與實際臨床自身經驗相似,在使用 CDK4/6 抑制劑療效上並無顯著差別,主要差異於副作用處理,需要與主治醫師進行全方面的治療討論才能選擇適合的 CDK4/6 抑制劑。
根據國際乳癌治療指引,針對荷爾蒙受體陽性、HER2陰性的局部晚期或轉移性乳癌,抗荷爾蒙治療搭配使用 CDK4/6 抑制劑口服標靶藥物是一線標準治療。只要符合健保給付條件,醫師都會協助向健保申請使用,幫助延緩疾病的惡化,延後化學治療的介入時機,讓患者維持較佳的生活品質。
討論功能關閉中。
「現在的歌好像都沒有比以前的歌好聽!」這句話你是否曾經在某個時刻不經意地想過?無論在哪個年代,這種感受似乎是普遍存在的,總是有些歌曲一播放,彷彿時間倒流,將我們帶回到那些青春年少的日子,童年或青春時期的歌曲似乎更能觸動人心,而新的歌曲則顯得平淡無奇。這到底是因為過去的音樂具有更強的魅力,還是我們的大腦在面對特定時期的音樂時,自然而然地產生了偏好呢?
這一現象其實並非偶然,人類對音樂的偏好,常常與其個人的生活經歷及情感記憶密切相關,這些經歷和記憶共同塑造了我們對不同音樂的感受,成為了音樂和情感之間的緊密聯繫的根源。
音樂對人的影響涉及許多的層面,並且與個人的生活經驗緊密相連。從情感層面來看,音樂能夠激發各種情緒,無論是快樂、悲傷,還是懷舊與感動(Eerola & Vuoskoski, 2012),一首熟悉的旋律往往能勾起特定時刻的情感記憶;在生理層面,音樂可能引發如心跳加快、發抖或起雞皮疙瘩等反應(Grewe, et al., 2007);而在認知層面,音樂能幫助我們回憶過去的事件,以及提升或降低專注力與學習能力(Shih, et al., 2012; Lehmann & Seufert, 2017)。然而,音樂對每個人的影響並不完全相同,個人的經歷、文化背景與音樂偏好,會影響我們如何感受一首歌以及我們做出的反應,因此,即便是聆聽相同的旋律,有些人會感動落淚,而有些人則毫無感覺,這正是音樂影響力的獨特之處。
自傳式記憶(Autobiographical Memory)指的是我們對自己過去經歷的回憶,不僅涵蓋具體的事件,還包括我們對這些事件的情感體驗與個人評價。這種記憶不僅是過去經歷的簡單回顧,還有助於我們理解自己是誰,如何與他人互動,以及這些經歷如何塑造我們未來的想像以及期許(Fivush, 2011)。簡而言之,自傳式記憶是一個人理解自己生命過程的工具,是我們理解過去與展望未來的橋梁。
有趣的是,音樂作為一種強烈的感官刺激,對於喚起自傳式記憶具有獨特的力量。這種現象被稱為「音樂喚起的自傳式記憶」(Music-Evoked Autobiographical Memories, MEAMs),音樂能夠有效觸發與過去經歷相關的記憶,並且這些記憶通常比其他類型的記憶更具生動性和情感強度(Belfi et al., 2016)。
在一項研究中,Belfi 等人(2016年)比較了音樂和名人臉孔在喚起自傳式記憶方面的差異,他們發現,音樂能喚起的記憶比名人臉孔所引發的回憶更為生動,儘管名人臉孔能喚起較多回憶,但這些回憶往往包含較多的外部細節,例如關於名人的背景資訊,而較少與個人經歷直接相關的細節,而音樂喚起的記憶通常包含更多的感官細節,例如景象、聲音和氣味等感官體驗,這表示,音樂能夠引發的記憶,不僅是對過去事件的回顧,更能夠生動地再現那些經歷時的情感,進而強化我們對特定時刻的情感聯繫。
除了在一般人聽到音樂能被喚起回憶,在阿茲海默症患者的研究中更揭示了 MEAMs 的獨特力量。研究中,阿茲海默症患者在聆聽自己喜愛的音樂後,也能顯著提高記憶的喚起效果,這些患者所喚起的記憶比在無音樂的情況下更加具體、更生動,並且回憶的速度也明顯較快(El Haj et al., 2012),這些現象表明,音樂具有一種非自願的回憶觸發能力,即使是身處記憶衰退的狀態下,音樂依然能夠自動激活深藏的記憶,讓過去的經歷再度浮現。
因此,音樂不僅僅是一種娛樂或藝術表現的形式,它還是一個強有力的記憶觸發器,能夠引發我們過去的情感,成為了一種「時間膠囊」,讓我們在歲月的長河中與過去的自己再次相遇。
雖然音樂能喚起自傳式記憶,但是並不是所有一生中的記憶都容易被提取,心理學家發現,人類在10至30歲這段時間,會形成最為鮮明且最多的回憶,這一現象被稱為「記憶高峰」(reminiscence bump;Rubin et al., 1998)。這段時期是個體發展的關鍵階段,充滿了各種首次經歷,如初戀、第一次獨立生活、首次參加演唱會等等,這些重要的生活經歷通常會深刻地編碼進我們的大腦,並且成為未來回憶的核心。
此外,這一階段的回憶,通常與自我認同的建立密切相關(Conway, 2005),年輕人在此階段對自己身份的認識、對未來的規劃以及與他人互動的方式,無不在塑造他們對自我概念的理解,因此,這段時期的記憶不僅鮮明,而且深刻,容易在後來的生活中被回想起來。
而音樂回憶的研究也支持「記憶高峰」的存在,研究顯示,音樂回憶常常與青少年至成年早期的歌曲相關聯,這些歌曲能喚起這一時期的強烈情感,進而幫助回憶起這一階段的重要經歷(Janssen et al., 2007),這些歌不僅與當時的情感狀態密切相連,而且經常成為人們日後回憶青春時光的「情感載體」。
除了個人經歷對音樂回憶的影響外,音樂的影響還可能跨越世代,這一現象被稱為「級聯式記憶高峰」(cascading reminiscence bump; Jakubowski, 2020)。這指的是,年輕人可能會因為家庭環境的影響,對上一代的音樂產生偏好,例如,許多年輕人會對1980或1990年代的歌曲情有獨鍾,甚至會愛上更早期的搖滾樂或爵士樂等音樂風格,這是因為這些歌曲在家庭中藉由父母反覆播放,成為年輕人成長過程中不可分割的一部分,進而形成對這些音樂的懷舊情感。
這種跨世代的音樂偏好,也能通過藝術家對經典歌曲的翻唱、電影中的音樂運用、社群媒體的傳播等方式,持續延伸至未來的世代,例如,披頭四(The Beatles)的歌曲誕生於1960年代,但因為不斷被當代藝術家翻唱,仍然擁有著大量年輕粉絲,這顯示了音樂的跨世代傳遞功能,音樂並非單純的時代產品,它能夠穿越時間,激發不同世代之間的情感共鳴。
總結來說,我們感覺過去的歌曲比現在的歌更具魅力,並非因為當代音樂的品質有所下降,而是因為那些曾經伴隨我們度過青春歲月的歌曲,承載了我們對過去的深刻情感與記憶,聽到這些歌曲不僅是音符的組合,它們成為了我們生命中一段特定時期的情感標記。下次當你聽到一首熟悉的老歌時,或許可以靜下心來,細細品味其中不僅是旋律的美妙,更是那些珍貴的回憶與情感的回響。
討論功能關閉中。