0

0
0

文字

分享

0
0
0

第一個輝鉬礦(MoS2)微晶片

only-perception
・2011/12/31 ・850字 ・閱讀時間約 1 分鐘 ・SR值 527 ・七年級

輝鉬礦(Molybdenite),一種新的且非常有前途的材料,可超越矽的物理極限。EPFL 科學家製造出第一個輝鉬礦微晶片(上面有更小且更節能的電晶體)藉此證明這件事。

在揭露輝鉬礦的電氣優勢之後,EPFL 研究者現在採取決定性的下一步。奈米級電子與結構實驗室(LANES)製造出一款晶片,或積體電路,證明輝鉬礦就微型化、電力消耗以及機械彈性(mechanical flexibility)而論,超越矽的物理極限。

“我們打造出一個初步原型,把二到六個序列電晶體(serial transistors)就定位,並證明進行基本的二進位邏輯操作,那證明我們可製造更大型的晶片,” LANES 主任 Andras Kis 表示,其最近就此主題在科學期刊 ACS Nano 上發表了二篇文章。

在 2011 年初,該實驗室揭露二硫化鉬(molybdenum disulfide,MoS2)的潛力,一種相對豐富、天然產生的礦物。其結構與半導電特性使得它成為用於電晶體的理想材料。它因而能直接與矽(電子產品中最常用的成份)競爭,而且在某些方面上可與石墨烯相抗衡。

-----廣告,請繼續往下閱讀-----

三個原子厚

“MoS2 的主要優勢在於,它允許我們減少電晶體的大小,且因此能更進一步將之微型化,” Kis 解釋。到目前為止仍不可能製造出厚度少於 2 奈米的矽層,因為得冒著引發化學反應導致表面氧化進而影響其電子特性的風險。

在另一方面,輝鉬礦可以被加工到只有 3 個原子厚,這能夠製造出至少縮小三倍的晶片。在此規模下,這種材料仍非常穩定且傳導性也很容易控制。

不貪心

MoS2 電晶體也更有效率。”它們能更快速地被開啟與關閉,而且能進入更完全的待機模式,” Kis 解釋。

就擴大電子訊號的能力而論,輝鉬礦與矽不相上下,其輸出訊號比輸入訊號強四倍。這證明那 “非常有可能具有創造更複雜晶片的潛力,” Kis 說。”舉例來說,譬如石墨烯,這種增幅(amplitude)大約 1。低於此閾值,輸出電壓將不足以饋送給第二個、類似的晶片。”

-----廣告,請繼續往下閱讀-----

內建彈性

輝鉬礦所具有的機械特性也使得它受到關注,有可能成為一種用於彈性電子裝置(例如最終出現在彈性薄層晶片設計中的那種)中的材料。例如,這些能被用在製造可捲曲的電腦或是能夠貼在皮膚上的裝置。

資料來源:PHYSORG:First molybdenite microchip[December 5, 2011]

轉載自only-perception

-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

0
0

文字

分享

0
0
0
近零碳建築新趨勢:從節能創意到 2050 淨零轉型
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/23 ・3709字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 建研所 委託,泛科學企劃執行。 

根據聯合國統計數據,全球每年 38% 的溫室氣體排放,並非來自道路上的交通工具,而是由「現代都市與建築」所造成的。

我們如今站在兩條路徑的十字路口。一條是依賴更多水泥建築與空調系統來抵禦夏季酷暑,然而這樣的選擇只會加劇室外大氣的惡化。另一條則是徹底改革建築、用電、設計與都市規劃,不僅尋求低碳排放的建築方式,還要找出節能降溫的解決方案,實現事半功倍的效果。

然而,我們是否真的能將建築業的碳排放歸零?

-----廣告,請繼續往下閱讀-----

建築的溫室氣體哪裡來?

在建築物 60 年的生命週期中,建材的碳足跡其實只佔 9.8%,因為建築一旦完成後,材料不會頻繁更換。相反,日常生活中的用電才是主要的碳排來源,占了 83.4%,其中大部分來自冷氣、照明和各種電器。

當然,讓大家集體關燈停用電器「躺平」來拯救地球,顯然不切實際。既然完全不消耗能源是不可能的,我們應該尋找更現實的解決方案。

現在就來看看全球七棟零碳建築之一——成大的「綠色魔法學校」,臺灣首座淨零建築,如何運用建築技術,成為當代永續建築的典範。這些技巧中,有哪些能應用到你我家中呢?

綠色魔法學校。圖 / 內政部建築研究所

為了省電要把煙囪塗黑、吸收更多太陽光?

都市裡,我們最大的挑戰之一就是夏天的高溫,水泥建築群在陽光的烘烤下,變成一個個巨大的窯爐。為了解決這個問題,綠色魔法學校在國際會議廳裝了一個煙囪,不過這不是為了讓窯爐更熱,而是用來降溫的。

-----廣告,請繼續往下閱讀-----

煙囪為什麼都都要蓋的那麼高?原來煙囪越高,上下的溫差越大。熱空氣因為密度低而向上移動,產生熱對流。溫差越大,這個熱對流就越強烈,這就是所謂的「煙囪效應」。在要幫室內降溫的情況下,我們的目的是產生更強的煙囪效應,抽走熱空氣,讓室溫下降。但這棟建築裡沒有火爐,而溫差不夠大時,這效應會變得微弱,那該怎麼辦?

綠色魔法學校提出了一個大膽的解法:在煙囪南面下半部改裝透明玻璃窗,並將煙囪內部塗成黑色,還加裝了黑色烤漆鋁板,這樣可以最大限度地吸收太陽光。每當艷陽高照,這個不插電的的「自然通風系統」就能自動啟動,創造局部的熱對流,帶動整根煙囪的熱氣向上移動,為室內降溫,達到節能效果。以熱制熱,完全反常識。

綠色魔法學校的特殊煙囪設計,玻璃引入太陽光。圖 / 泛科學攝影畫面截圖

幫室內降溫的最大原則是:通風。

實際上,不是人人家裡都有煙囪。但如果建築的高處沒有任何窗戶或通風設備,熱空氣就是會從屋頂一路往下蓄積在室內。因此,你也一定在許多工廠或民宅的屋頂看過一個不斷旋轉的小風扇,它們也是有異曲同工的效用。雖然不是高聳的煙囪,但特殊的渦輪構造,風吹過就會開始轉動,並連帶空氣排出室外。是個不用插電的通風球。

-----廣告,請繼續往下閱讀-----
綠色魔法學校館內動畫-室內通風排熱補冷。圖 / 泛科學攝影畫面截圖

綠色魔法學校的煙囪就是個效能更強的換氣機,足以讓 300 人大型會議廳的換氣次數,高達每小時 5 到 8 次,甚至能在室內颳起風速每秒 0.5 公尺的微風,是最舒適的環境。這些利用熱氣密度的差異來改善室內溫度的方法,又稱為「浮力通風」。

為了把通風貫徹到底,綠色魔法學校在建築的兩面裝設大量窗戶以及吊扇,來讓水平也能通風。這些我們習以為常的裝置,其實才是關鍵。靠吊扇的一點點電力讓自然風可以自由進出,耗費的能源,遠比冷氣還要少得多。

幫空調省電的最後一招,就是微環境控制。

綠色魔法學校透過屋頂植栽與造林改善微氣候。圖 / 綠色魔法學校

實際上魔法學校內還是找的到空調設備,並不是完全拔除不用。除了選用最高效率的主機,以及把室內循環做到最好以外,降低周遭環境溫度才能減低冷氣的負擔。要降低水泥叢林的熱島效應,需要植被與水體來做溫度調適。

在太陽照射下,水泥屋頂表面最高可以達到攝氏 70 度,如果屋頂有種植植栽,室內頂層樓板的表面溫度就可以維持在攝氏32 度以下。不用開電就先幫室內降溫。

-----廣告,請繼續往下閱讀-----

水也是關鍵的一環。一是水的比熱高,想打破水分子之間的氫鍵,需要大量的熱量,要讓一千克水的溫度升高一攝氏度,需要 4,200 焦耳的熱量,這可以避免溫度因為烈陽就快速上升。二是當溫度真的過高,水也會透過蒸發帶走熱量,讓溫度不至於向上飆。

魔法學校的屋頂花園使用水庫淤泥,研磨後燒製成的再生陶粒,裡頭混合了稻穀,結構極細,不會像有機土一樣分解消失,可以涵養水源,還不用動不動補土壤,不只降低屋頂植被的澆水次數,還能達到降溫效果。地面也採用透水鋪面,讓每一滴水都不浪費。

綠色魔法學校本名是成功大學的「孫運璿綠建築研究大樓」

2013 年被英國知名出版社羅德里其評為「世界最綠的建築」,並獲選為聯合國全球七棟零碳建築之一。

除了表彰之外,在認證上也確實取得了臺灣最高等級的「鑽石級綠建築」認證,以及美國最高級的「白金級綠建築」兩個綠建築認證。

-----廣告,請繼續往下閱讀-----

為了讓相同的成效可以陸續在全臺的所有建築上實現,臺灣在既有的綠建築標章體系上,擬定出了「建築能效評估系統 BERS」,針對關鍵的空調、照明、插座電器的用電狀況訂出明確的耗電密度指標得分。簡單來說,就是每平方公尺的面積上,每年平均的用電量。

建築能效標示。圖 / 內政部建築研究所

要打造一棟淨零建築,需要設計與材料硬體的相互配合。在日常用電這最大耗能項目上,能透過前面的淨零設計與智慧能源管理來減低能耗。而我們還沒提到的最後一塊拼圖,則是回到建築的建材本身。這部分減碳的方法有很多種,例如將傳統施作工法改為在工廠就完成模組化建材製造的「預鑄工法」,減少現場搭建鷹架、施工的步驟,達成減碳。又或是將部分建材更換為木、竹等負碳建材,甚至使用零廢棄物、能「循環使用」的建材。例如 2018 年亮相的臺中花博荷蘭館、或是 2021 年台糖在沙崙啟用的循環聚落。

建築物能夠完全不用電嗎?……電從哪裡來?

沒錯,連全球最綠的建築——綠色魔法學校,也無法做到完全不使用電力。正如前面提到的,建築的最大能源消耗來自日常使用,而這所「魔法學校」的成就,是成功將日常能源消耗降低,讓溫室氣體排放減少超過 50%。

這就是關鍵,減少一半後,剩下的部分就靠周邊的造林、太陽能和風能等綠色能源來補足。

-----廣告,請繼續往下閱讀-----

2022 年 3 月,國發會公佈了 2050 淨零排放的路徑圖,參考美國、日本、歐盟等國,制定了 2050 年達成淨零建築的目標。

這條路徑包含兩個核心目標:第一,所有建築物要在建築能效評估系統(BERS)中達到 1 級節能,甚至進一步達到「1+ 級」近零碳建築的標準,減少至少 50% 的能源消耗。第二,同步發展再生能源,讓這些近零碳建築朝淨零邁進。

淨零建築路徑。圖 / 內政部建築研究所。

這個目標比你想像的要容易實現。比如,2023 年 12 月,台達電的瑞光大樓 II 就成功取得了「1+ 級」近零碳建築認證,並符合 0 級淨零建築規範。而在 2024 年 7 月,國泰人壽在臺中烏日的商辦大樓經過改造後,也達到 0 級淨零建築標準。這些案例證明了綠色魔法學校的成功經驗可以複製,不論是新建築還是舊建築,都能達成甚至超越淨零目標。

圖 / 台達電瑞光大樓 II
圖 / 國泰人壽臺中烏日商辦大樓

如果我們不想讓「每個夏天都是未來最涼的一年」這樣的預言成真,碳排歸零是必須要實現的目標。現在你知道,這個任務的關鍵就掌握在你我手中。就像選擇能源標章電器一樣,只要選擇符合 BERS 能效標準的建築,我們不僅能降低冷氣的依賴,也能節省電費,讓地球和你的荷包都雙贏。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
DNA-PAINT:轉瞬標記 奈米解析
顯微觀點_96
・2024/10/03 ・3586字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

DNA-PAINT:易脫落的奈米「漆」

DNA-PAINT 屬於單分子定位顯微術(SMLM)大家族一員,它突破繞射極限的途徑類似 PALM 與 STORM:以閃爍(blinking)的螢光讓多個目標分子的位置輪番呈現,最後將多次定位影像以電腦疊合重建成完整的超解析分子地圖。結合電腦運算輔助和光學成像的統計原理,DNA-PAINT 可以達成極端細緻的 RESI 定位術,清楚區別兩個距離不到 1 奈米的螢光來源。

單看字面,DNA-PAINT 給人「以 DNA 作為油漆」的印象。事實稍有不同,這種技術以 DNA 作為「點累積奈米成像術」(PAINT , Point Accumulation for Imaging in Nanoscale Topography)的探針。接上螢光染劑的短小 DNA 片段,可以靈敏標記蛋白質、染色體以及許多細胞內構造。

DNA-PAINT 的特別之處,在於利用「不牢固」的螢光標記製造閃爍效果。不同於 PALM, STORM 以光調控「固著在目標上」的螢光來源,DNA-PAINT 使用與目標連結力量薄弱的螢光探針,結合目標之後會快速分離。只有在探針與目標結合的瞬間,同時被激發光照射,探針上的螢光團才能發出螢光。目標分子與螢光探針分離後,依然保有和下一個探針結合的能力,因此不必擔心螢光團的放光能力衰退。

-----廣告,請繼續往下閱讀-----
Dna Barcoded Labeling Probes For Highly Multiplexed Exchange Paint Imaging
DNA-PAINT 原理:Docking strand(嵌合序列)附著在人造 DNA 構造上,溶液中漂浮著成像序列(Imager strand),成像序列上的螢光團不容易被激發(膚色)。成像序列與嵌合序列結合時,螢光團才會被激發(橘紅色) 圖片來源:Agasti, Sarit S., et al. Chemical science 8.4 (2017): 3080-3091.

DNA-PAINT 使用的 DNA 探針片段長度不超過 10 個鹼基,又稱寡核苷酸(oligonucleotides 或oligomers)。這些短小 DNA 片段可以附加上螢光染劑的螢光團分子,成為螢光探針。

DNA 探針的結合對象是另一段互補的 DNA 片段,此互補序列會預先透過抗體與定位目標連結,等待 DNA 探針前來結合。DNA 探針因為具有螢光團,被稱為「成像片段(imager strand)」,而牢固於目標的互補序列則稱為「嵌合片段(docking strand)」。對生物細胞進行 DNA-PAINT 時,嵌合片段與目標分子之間常有抗體或配體做為銜接,需要類似免疫螢光染色的前置作業,目標表面的抗原也可以因應實驗需求進行設計。

因為兩個短小 DNA 片段之間的結合力有限,成像片段與嵌合片段結合後會快速分離。而螢光團只有在結合目標時才容易放光,因此可以形成閃爍的螢光定位標記。經由電腦疊合閃爍的定位影像,DNA-PAINT 可以達成 10 奈米左右的超解析定位,若沒有序列成像的幫助,依然無法突破奈米以下解析度的光學障礙。

Direct Visualization Of Single Nuclear Pore Complex Proteins Using Genetically‐encoded Probes For Dna‐paint
以 DNA-PAINT 對細胞核膜上的 Nup96 核孔蛋白進行 3D 定位。在圖 a. 中,不同的螢光色彩象徵不同的空間深度。圖 b. 箭頭所指處,則是成對出現的 Nup96 蛋白。比例尺:圖 a. 2000nm, 圖 b. 50 nm. 圖片來源:Schlichthaerle, Thomas, et al. Angewandte Chemie 131.37 (2019): 13138-13142.

核孔複合體(Nuclear Pore Complex)上的 Nup96 蛋白是科學家經常探索的重要目標,即使是超解析顯微術也未能在自然狀態下呈現其構造。隆曼團隊以 RESI 對 Nup96 進行定位,不但清楚定位出符合電子顯微鏡拍攝的 8 對 Nup96 蛋白沿著核孔形成環狀結構,還能清楚呈現每對蛋白之間的 11 奈米的間距。

-----廣告,請繼續往下閱讀-----

結合序列成像(Sequential Imaging)與 DNA-PAINT 兩種技術,RESI 讓科學家得以運用一般門檻的顯微儀器、耗材,就能達到超乎以往想像的定位解析度。而 DNA-PAINT 這種巧妙的定位方法並非一蹴而就,而是數種有趣的技術累積而成。

PAINT 起源:不穩定又不專一的尼羅紅

PAINT(Point Accumulation for Imaging in Nanoscale Topography, 點累積奈米成像術)系列定位法的螢光探針由一個螢光染劑分子與一個分子探針(probe)構成。親和性抗體、寡核苷酸(短小 DNA 片段)都可作為分子探針的材料,再由此探針結合目標分子或其上的抗體。除了 DNA-PAINT, PAINT 家譜上還有 FRET-PAINT, Exchange-PAINT, u-PAINT 等不同特質的成員。

在 2006 年由沙羅諾夫(A. Sharonov)和霍克崔瑟(R. M. Hochstraser)發表的第一代 PAINT 中,僅僅使用螢光染料尼羅紅(Nile Red)為標記。這種染劑在含水溶劑中無法發光,必須進入磷脂層等非極性環境才能展現其螢光活性。

因此尼羅紅無須結合探針,只要以低濃度加入樣本溶液中,就能觀察到其進入細胞膜脂雙層、大型磷脂囊泡(large unilamella vesicles)表層等疏水性環境中,受到激發放出螢光。尼羅紅與磷脂層的親和性不強,很快就會再次脫離,也容易遭到光漂白(photobleaching)而失去螢光,因此可作為一種閃爍的螢光定位標記。

-----廣告,請繼續往下閱讀-----

尼羅紅可以結合所有疏水性(hydrophobic)的構造,無法真的標記特定分子,缺乏分子生物學重視的專一性。但它開啟了 PAINT 以「不牢固螢光染劑」增進解析度的先河。與多數螢光顯微術追求螢光團穩定性與強度的定位技巧背道而馳。

Image 2
圖 a. 以尼羅紅標記磷脂層的直接成像;圖 b. 以 PAINT 技術進行上千次成像重建後的磷脂層定位。兩者定位解析度形成強烈對比。圖 c. 為 uPAINT 概念:接受激發光(綠色)照耀的螢光探針才會發光(紅色),漂浮在激發光範圍外的螢光探針保持黯淡(粉紅),即使未結合目標的探針也能發光,且僅能標記細胞膜表面的目標。圖片來源:Nieves, Daniel J., et al. Genes 9.12 (2018): 621.

4 年後,吉安諾內(G. Giannone)和荷西(E. Hosy)以具目標專一性的配體,例如抗體蛋白,連接螢光團形成螢光探針,達成具有專一性的 PAINT 超解析定位。透過進步的生化技術製作配體,這種技術幾乎可以定位所有類型的目標,因此被命名 universal-PAINT, 簡稱 uPAINT。

uPAINT 可以提升多種目標的定位解析度,但其螢光探針即使游離在溶液中,也能接受激發、放出螢光,形成背景雜訊。且結合螢光染劑的抗體無法穿透細胞膜,因此只能定位細胞膜上的目標。

因此 uPAINT 必須限縮激發光照射的範圍,對準目標、減少雜訊,例如微調全內反射顯微鏡(TIRF)的角度,形成「高傾斜層光照明」(Highly Inclined and Laminated Optical sheet, HILO)以限定激發範圍。

-----廣告,請繼續往下閱讀-----

同在 2010 年,隆曼與史坦豪爾(C. Steinhauer)嘗試以寡核苷酸為探針,定位 DNA 摺紙構造(DNA origami structure)上的目標,達到了奈米等級的解析度。DNA-based Point Accumulation for Imaging in Nanoscale Topography 正式誕生,善用「不牢固的螢光探針」與電腦運算的輔助,以一般螢光顯微鏡就能突破繞射極限。

無限調色的虛擬油漆:Exchange-PAINT

2014 年,隆曼與同事阿凡達尼歐(M. S. Avendaño)、沃爾斯坦(J. B. Woehrstein)發表 DNA-PAINT 的巧妙變化,除了同時以不同探針標記不同構造,達成精準的多重定位(multiplexed localization),更實現以一種螢光超解析定位多種目標,讓多重標記的潛力加速實現。

這種多重標記被隆曼與同事稱為 Exchange-PAINT,同樣使用 DNA 片段作為探針。在同一個樣本的 10 種不同目標上,連結了 10 種不同的嵌合片段(docking strands),隆曼等人再以 10 種互不干涉的短小 DNA 序列(orthogonal sequences)作為成像片段(imager strands)。

他們每次只加入一種成像片段,針對一種目標進行閃爍(blinking)定位,並由電腦套上特定顏色,接著洗去既有成像片段,再加入下一種成像片段。最後將所有目標的獨立定位圖疊合起來,便能得到完整的奈米級定位。

-----廣告,請繼續往下閱讀-----
Multiplexed 3d Cellular Super Resolution Imaging With Dna Paint And Exchange Paint 2
圖 a.為 Exchange-PAINT 概念,每一輪定位針對一種目標,完成後洗去探針,再加入下一種探針進行定位,最後將每一輪的定位影像疊合起來。圖 c., 圖 d. 表現 Exchange-PAINT 的多工能力, 1 個 DNA 摺紙樣本上的 10 種不同目標可以依序定位,賦予顏色(實際上使用相同螢光染劑,不同成像片段),再以電腦重建疊合。每一種目標的定位都進行了 7500 次拍攝。圖 d., 圖 e. 中的比例尺為 25nm. 圖片來源:Jungmann, Ralf, et al.  Nature methods 11.3 (2014): 313-318.

只需要一種螢光染劑接上多種成像片段,Exchange-PAINT 便能以基本的實驗設備達到多重目標的超解析定位,不像多重標記的 DNA-PAINT 受限於染劑顏色數目,Exchange-PAINT 的門檻在於互不相干寡核甘酸片段的數目,在實驗中幾乎不可能窮盡。而可以使用一般螢光顯微鏡與螢光染劑達到埃(ångström)解析度的 RESI 技術,就是將 Exchange-PAINT 的多種目標定位應用於單種目標定位,透過不同探針標記同種目標製造發光順序落差,大幅提升解析度。

在「眼見為真」的生物學影像趨勢中,「增加偵測光子數量」是螢光顯微技術提升解析度的基礎光學原理,也是最主流的技術改良方向。而 DNA-PAINT 系列技術跳脫了對光子數量的追求,不受螢光染劑的光漂白及螢光壽命限制,以快速脫落的探針另闢蹊徑,使低成本的超解析影像得以實現,更展現生物物理學蘊藏的廣泛技術可能性。

參考資料:

  • DNA-PAINT 的最新應用:RESI序列成像解析度增強術
  • Jungmann, Ralf, et al.  Nature methods 11.3 (2014): 313-318.
  • Agasti, Sarit S., et al.  Chemical science 8.4 (2017): 3080-3091.
  • Nieves, Daniel J., Katharina Gaus, and Matthew AB Baker. Genes 9.12 (2018): 621.
  • Schlichthaerle, Thomas, et al.  Angewandte Chemie 131.37 (2019): 13138-13142.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
16 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
RESI : 基礎儀器定位奈米世界
顯微觀點_96
・2024/09/14 ・3117字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

Abstract Of Digital DNA Construction.
圖/顯微觀點

電腦運算是近 20 年來生物影像突破繞射極限的可靠工具,例如 STORM(Stochastic Optical Reconstruction Microscopy), PALM(Photo-Activated Localization Microscopy),以電腦記憶、疊合,將多次拍攝的零散螢光重建成完整輿圖,解析度極限可接近 10 奈米。

現在,透過電腦輔助的序列成像解析度增強術(RESI, Resolution Enhancement by Sequential Imaging),科學家能將細胞內分子的定位解析度大幅提升到埃(Ångström, Å.等於1/10奈米)的尺度,清晰定位緊鄰的分子、觀察它們在細胞內的變化。

RESI 定位可呈現 DNA 相鄰鹼基間距,超越超解析顯微鏡,達到與電子顯微鏡同等的解析度,而且只需基本的細胞固定,近乎完全保持樣本原貌。

-----廣告,請繼續往下閱讀-----

在德國馬克斯.普朗克生化研究所率領團隊研發 RESI 的榮曼(Ralf Jungmann)認為,RESI 能填補介於光學顯微術與結構生物學之間的資訊空白,揭露更多複雜生命系統的真相,為分子生物學與藥物動力學開闢道路。

「發光順序」成為解析度新要素

使 RESI 成為「超級超解析」定位術(super-super resolution)的核心概念,是以不同 DNA 螢光探針對目標進行多次標記定位,定位過程由電腦為目標編上號碼(DNA-barcoding),使「發光順序」成為分辨目標的新維度,並以「定位次數」來大幅提升解析度、為量化分析提供充沛樣本。

Cd20
CD20 的分布在 RESI 定位下一覽無遺,透過 RESI 定位可發現,標靶藥物 RTX 使癌細胞表面的 CD20 聚集成鍊狀。圖片來源:Reinhardt et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).

例如,淋巴癌與自體免疫疾病的關鍵標靶:B 細胞表面 CD20 蛋白﹐雖然早已發現是重要的癌細胞特徵,也確認有效藥物,但其結構與分子動力學依然曖昧不明,學界對它的了解還不足以研發進一步療法。

儘管 CD20 蛋白的結構已被電子顯微鏡呈現,但電子顯微鏡的拍攝條件會破壞細胞膜結構,導致 CD20 變形、偏移。現在透過 RESI 進行定位,CD20 的構造、藥物效果,都可以在接近生理狀態下一探究竟。

-----廣告,請繼續往下閱讀-----

在 RES I分析下,榮曼等學者發現 CD20 總是成對出現(as dimers),並且在關鍵藥物 RTX(一種抗 B 細胞的單株抗體)加入後,會在細胞膜上聚集成緊密的長鏈。這些資訊是過往電子顯微鏡與超解析光學顯微鏡都未曾展現的。

序列成像:以次序換取空間

各種超解析單分子定位術的共同難題,是兩個目標分子過於接近,連電腦運算也無法辨別。假使兩個距離 1 至 2 奈米的相同分子輪流被激發,PALM, STORM 等仰賴隨機放光的超解析定位術即使分別收到兩個光源的螢光訊號,重建時也容易將緊密的兩者混為一點。

榮曼也強調,當兩個螢光團的距離小於 10 奈米,近場光學效應會大幅影響光調控螢光染色分子(photoswitchable fluorescent dyes)的表現。分辨兩個距離數奈米甚至數埃(Å)的分子,是單分子定位技術的最後關卡。

面對諾貝爾級超解析技術也無法克服的障礙,RESI 巧妙地以「標記」技術避開了光學難關。RESI 採用進化版本的 DNA-PAINT,螢光探針與目標結合轉瞬即脫落,並能使相鄰的目標結合不同探針,避免兩者同時發光,兩個緊密的分子幾乎不會干擾彼此成像。

-----廣告,請繼續往下閱讀-----

奠基於隨機放光的單分子定位術(SMLM),序列成像(Sequential Imaging)用不同顏色、不同激發光譜的 DNA 螢光探針,標記鄰近的兩個目標,使兩者輪流發光。如此一來,發光順序便成為辨別螢光標記的新方法:兩個目標距離僅 1 奈米左右,但因為發光順序、螢光顏色不同,在重建過程中能夠被電腦清楚區分。

在真實的細胞中,若想以不同嵌合片段(docking strands)標記鄰近的相同蛋白(例如Nup96 dimer, CD20 dimer),則多少需要仰賴運氣。目前的 RESI 使用隨機標記(stochastically labelling),而非直接指定標記種類與位置。

Image 1
以 RESI 定位核孔複合體的 Nup96 蛋白(圖d.),可以達到電子顯微鏡的解析度(圖 b.)。本實驗對同一個核孔進行 4 輪標記定位(圖d.),每次得到的定位資訊將重建疊合成最終定位圖。圖片來源:Reinhardt et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).

定位 Nup96 的實驗就是一個例子,榮曼團隊的4種嵌合片段中,需要有 2 種分別標記相鄰的 Nup96 蛋白,才能夠使兩個相鄰蛋白分別依序發光。榮曼強調,得到理想標記的機率,會隨著嵌合片段的種類提升。在榮曼團隊的定位實驗中,RESI 對 Nup96 的定位達到和掃描式電子顯微鏡同等精密的解析度。

榮曼認為:「理論上,透過發光順序的差異,RESI 技術可以分辨無限接近的兩點。」

定位次數帶來解析度新境界

基於光波繞射的性質,點光源的光線不會透過顯微鏡聚焦為理想的一點,而是呈現一個立體球狀照射範圍。這個讓科學家困擾一個半世紀的照射範圍,就是此光學系統的點擴散函數(PSF, Point Spread Function)。

-----廣告,請繼續往下閱讀-----

在顯微鏡焦平面上,PSF 會形成一個中心最亮、四周漸黯的圓形光斑(艾里斑,Airy Disk),若兩個光點的光斑大幅重疊,就會難以辨別。這也就是遠場光學顯微鏡的最大天然障礙:阿貝繞射極限的由來。

包含 PALM, STORM 等超解析技術的單分子定位顯微術(SMLM, Single-Molecule Localization Microscopy)也必須考慮 PSF。它們定位解析度(也稱定位精準度,σSMLM),接近點擴散函數的標準差(σDiff)除以每次定位偵測光子數(N)的平方根:

 σSMLM  σDiff / N1/2

解析度數值愈小,代表辨別極限的距離愈近,定位結果愈清晰。超解析定位技術不斷追求的,就是縮小 σSMLM。

-----廣告,請繼續往下閱讀-----

在點擴散函數標準差(σDiff)隨儀器性能固定的情況下,每次定位偵測的光子數 N 就是定位解析度的主要變數。多數單分子定位技術,都需要設法提升偵測光子數以看得更清晰。

與其他單分子定位術不同的是,RESI 採用的 DNA-PAINT 探針對目標分子反覆結合、脫落,不斷有新的螢光探針前仆後繼,迅速與目標短暫結合,可以對每個目標累積多次定位。

Image
DNA-PAINT 技術可達到小於繞射極限的解析度,但 10 奈米內的構造依然難以辨識。加上 RESI 以定位順序進行輔助,可以將解析度提升近百倍,達到 10 埃的尺度。圖片出處:S. C. M. Reinhardt et al., Nature 617, 711 (2023)

因此目標的「定位次數」(K)進入解析度數值核心。每個目標定位的解析度由單次定位的點擴散函數標準差(σSMLM),轉變為多次放光定位的平均值標準誤差(SEM, Standard Error of the Mean),其大小和定位次數(k)的平方根成反比。

SEM σSMLM / k1/2 ≈  Diff / N1/2) / k1/2

-----廣告,請繼續往下閱讀-----

此時只要提升定位次數(k),就可以得到更精密的定位(σRESI),毋須追求更強或更漫長的螢光來增加每次偵測的光子數(N)。再搭配以定位順序區分鄰近分子,RESI 就能得到近乎無限小的解析度。這種靈活的反覆定位模式,有賴 DNA-PAINT 技術奇特的「不牢固」結合(transient binding)搭配榮曼團隊研發的開源影像處理軟體Picasso 合力實現。

(DNA-PAINT 技術介紹請見:DNA-PAINT:短暫標記 奈米解析

參考資料

  • Reinhardt, S.C.M., Masullo, L.A., Baudrexel, I. et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).
  • Max-Planck-Gesellshft. Ångström-resolution fluorescence microscopy. (2023)
  • Agasti SS, Wang Y, et al. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem Sci. 2017 Apr 1;8(4):3080-3091.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
16 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。