0

0
0

文字

分享

0
0
0

南北有差 東西有別-都是海流搞得鬼

大海子
・2012/01/20 ・1815字 ・閱讀時間約 3 分鐘 ・SR值 535 ・七年級

「哇!北部好冷喔!你們南部現在很冷嗎?」住在北部的家人如是問
「嗯!還好呀!只是風比平常大了一些。」

台灣島季節性的溫度變化受到洋流的季節變化的影響
台灣島季節性的溫度變化受到洋流的季節變化的影響(圖得來源取自於水試所與中央氣象局)

每當大陸冷氣團入侵台灣時,往往造成台灣北部氣溫劇烈下降,流行感冒趁機發威、四處作虐,讓北部的居民有雪上加霜的痛苦;然而台灣南部雖略有寒意,但氣溫卻往往與北部地區相差至少5℃以上;有時當北部人都開始穿上羽毛衣保暖時,南部人白天還是薄衣短褲,嫌天氣不像冬天還有點熱呢?若是由南部北上出差洽公,當走出台北車站大門之際,瞬間就會感受到寒氣咄咄逼人,令人冷不防地打了個冷顫。反之,走出高雄火車站時,若不先行脫掉厚重的外套,走不到三五步,就會熱汗直流了。冬天氣溫之所以如此明顯的差異,乃因冬季進入台灣的冷氣團範圍大小不同,簡單來說,若冷氣團襲擊的範圍只限於台灣中北部並未南下至台灣南部,台灣南北部的溫度就有明顯的差異了。

在夏季,無論南來北往,或跨越中央山脈之間的東西部之旅,各地氣溫就沒有如此明顯的差異,差異範圍大都在1-2℃之內,因此不會有被老天耍了的受騙感覺。台灣南北氣溫在冬夏兩季有如此鮮明的差異,除了與氣候有關之外,其實與台灣海域附近錯綜複雜的海流不無關係,這些流經台灣附近海域的海流在台灣的氣候上扮演著關鍵性的角色。

台灣附近海域有三個主要的海流,其中以東部的黑潮最為知名,它是源自於赤道的一條暖流,沿著北太平洋邊緣終年川流不息,台灣是它流經亞洲地區其中的一站,黑潮水溫多在25℃以上,許多海洋生物都隨著它洄游至各地;冬季時黑潮部份分支流會穿過巴士海峽之後,迴轉北上出現在台灣西南部海域,讓台灣西南部浸泡在溫暖的海水中,且又與南下入侵台灣中北部海域的低溫大陸沿岸水在台灣海峽中部(雲彰地區附近海域)對峙交鋒,相互較勁,互不相讓;此時台灣東部溫暖的黑潮可說是東部海岸在寒冬中的海洋暖暖包,因此當東北季風凛冽呼嘯之際,台灣西南部與台灣東部無論是氣溫還是水溫卻都不冷不熱,相當宜人;反觀首當其衝的台灣北部地區,當大陸冷氣團發威南下時,除了氣溫急劇下降之外,台灣北部沿海的水溫,也因大陸沿岸冷水團的大舉入侵而隨之驟降,這股源自於長江口鹽度較低的冷水團最低溫度可以到達15℃,因此台灣北部地區在冷氣團的淫威下又同時遭受低溫海水的侵襲,此種情形好比一個人身體浸泡在冰水裏,頭上還有冷氣呼呼地吹,怎麼能不冷呢? 簡直是「酷」斃了。

-----廣告,請繼續往下閱讀-----

台灣夏季艷陽高照,西南季風盛行,驅動南中國海表層溫暖的水層北上,這股平均水溫在28℃左右的水層,流經台灣西部經由澎湖與台灣中部之間狹窄的黑水溝,順地形由深至淺扶搖直衝進入平均水深只有60公尺的台灣海峽,伴隨而行的西南季風溫熱且潮濕,直撲台灣而來;另終年流台灣東部海域的黑潮亦不相讓,自始至終「熱」情依然不減,因此夏季的台灣島可說是烈陽當空高高掛,地表濕熱季風陣陣吹,全島東西兩側又被兩股暖呼呼的海流團團圍繞,想要不熱也真難了。仔細觀察全省的氣象預報圖就可以發現夏季台灣全島各地之間的氣溫相差無幾,幾乎都是同步在飆高溫,因此將夏季的台灣島比喻成是一個暖呼呼、熱烘烘的火燒島可說是一點都不為過;縱使偶而遇上颱風豪雨的侵襲,氣溫也只略略下降1-2度而已,並沒有太大的降溫效應,畢竟颱風只是一時路過,而台灣四周海域海水的加溫作用卻持續不斷,從未因此而消退。

無可諱言,溫度是影響生物地理分布的重要環境因子。每年冬至前後來自北方的烏魚南下至台灣西南海域尋找冷暖水團所形成的鋒面繁衍後代,為台灣南部帶來的豐富的漁產,更孕育了烏魚文化;但每年冬季西南部水產養殖業常遭受到冷氣團侵襲造成瞬間養殖水溫驟降的寒害(如澎湖寒害),水產品市場價格也常隨之上下大幅波動,間接影響民生經濟;冬季時流行性感冒在北部地區橫行霸道,令人苦不堪言,而南部流行的疫情卻正好相反,反而是酷暑期間盛行的登革熱疫情,卻仍在秋風蕭瑟的十月大行其道,這些都要拜台灣周圍海域海流季節變化,導至台灣南北部溫差大所賜。

台灣附近的海流靜默地在季風變化的掩護之下,隨著季節更替上演不同的劇碼,導致台灣各地氣溫亦隨之翩翩起舞,不僅長年影響著台灣人民的身心健康與日常生活起居,更是孕育台灣海洋文化多樣性的一股不可忽視的推動力。

文章難易度
大海子
53 篇文章 ・ 3 位粉絲
希望以人文關懷的觀點,將海洋生物世界中的驚奇與奧妙, 透過多媒體的設計與展現,分享個人心得給社會大眾, 期望能引起更多人關心海洋的公共議題, 為保護海洋略盡一份心力。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

5
3

文字

分享

1
5
3
臺灣美麗的森林怎麼形成?東亞地區的氣候變遷如何影響生態?——《橫斷臺灣》
春山出版
・2023/07/29 ・2245字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

植物學者/獵人威爾森曾說:「福爾摩沙真是名副其實的東方之珠,她最美麗的,是生機蓬勃的樟櫧森林,以及生長在崎嶇陡峭高山上的巨大檜木與挺拔的臺灣杉。」其中的「櫧」,指的就是殼斗科苦櫧屬物種,而樟櫧森林顯然也是在指稱臺灣的山地樟櫟林。

其實不只威爾森,許多博物學者與植物獵人都曾在著作裡提過山地樟櫟林,認為它是東亞十分美麗的一種森林群落。在他們的描述裡,山地樟櫟林樹冠細密相連,遼闊的冠層也沒有太大的起伏;光潔的葉片,映著日光,遠遠看去就像一片閃耀的綠色海洋。

在威爾森等一眾博物學著來臺的年代,山地樟櫟林顯然為他們帶來了美的衝擊,但當時他們對於山地樟櫟林的誕生與演化卻所知甚稀。臺灣為什麼能夠得天獨厚地擁有這樣一片美麗的森林?時至今日,我們已經知道這並非上天對我們的島的偏愛,而是地球環境在內外營力驅動之下所衍生的一種結果。

如前所述,臺灣的山地樟櫟林是東亞常綠闊葉林的一種類型。想要追溯它的起源,必得先瞭解東亞常綠闊葉林的時空演化歷史。從地理分布來看,東亞常綠闊葉林的範圍十分遼闊,但主體仍在亞熱帶地區(北緯二四至三二度和東經九九度至一二三度間)。在亞熱帶,這類森林孕育了令人印象深刻的物種多樣性,也庇蔭了許多冰河孑遺的譜系(臺灣山毛櫸,以及著名的鐘萼木、昆欄樹等)。

-----廣告,請繼續往下閱讀-----
四川盆地東部雅安地區的野生鐘萼木大樹。攝/《橫斷臺灣》

過去半個世紀來,許多學者除了將研究聚焦在這種森林的起源,對於它的擴張與形成歷史很感興趣。一來,因為它分布之處,正是東亞最人口稠密與富庶的地帶;二來,森林裡許多樹種都是優良的經濟林木,極具應用價值。在許多學者眼裡,東亞常綠闊葉林之所以能夠穩定地擴張與繁衍,除了在冰河期時逃過大範圍冰棚覆蓋的威脅外,另外一個決定性的因素是東亞整體溼潤的大環境。

八百萬年濕潤的風,成就山地樟櫟林的擴張

森林系的學生都深知,森林是水的故鄉,但水更是森林的母親。夏季,由西太平洋吹往陸地的海洋季風為東亞帶來綿綿不絕的水氣,替植物營造有利於生長的環境。長久以來,學者們不斷想驗證,在宏觀歷史上,東亞季風是否真的與東亞常綠闊葉林的擴張有所關聯,卻始終受限於資料與分析技術,到不久前都還夙願未償。

二○二二年,研究人員在此問題似乎終於有新的突破。通過 DNA 定序技術,他們從東亞常綠闊葉林裡挑出了二百九十一個優勢分類群(根據粗略的統計,東亞常綠闊葉林裡有大約二千九百個開花植物分類群,分別隸屬於一百四十七個科和七百六十個屬。而此取樣約占所有分類群的百分之十),為它們個別進行親緣關係的重建以及定年分析。然後透過綜合分析(meta-analysis)的方法,統整出了東亞常綠闊葉林發育的時間規律。

他們發現,東亞常綠闊葉林裡大部分的優勢木本類群都可能起源於晚漸新世至早中新世之間(例如殼斗科苦櫧屬、茶科木荷屬、樟科楨楠屬),而各優勢類群之中,物種多樣化的時間則都稍晚一些,落在中新世晚期(大約八百萬年前)。這兩個時間點十分關鍵,因為晚漸新世至早中新世之間正是東亞夏季風可能形成的時代,而中新世晚期則大約是地球科學學者推論的東亞夏季風強度增強的時代。

-----廣告,請繼續往下閱讀-----
東亞常綠闊葉林分布圖。圖/《橫斷臺灣》

無疑的,時間上的耦合關係間接支持了研究人員的假說,凸顯東亞夏季風對亞熱帶常綠闊葉林的擴張與多樣化的重要影響。不過,儘管這個初步結果令人興奮,但研究人員並不滿足於僅使用優勢類群所取得的結果,他們想用優勢類群之外,更多的類群測試這個時間規律。意即,他們想知道整片森林中,每個植物類群的物種多樣化歷史是否都集體起始於中新世晚期。

研究人員的雄心壯志,對我來說或許反映的是東亞生活圈對常綠闊葉林的關注。就像溫帶殼斗科的落葉林對歐美諸國產生的影響,東亞居民的文明與文化數千年來也受到東亞常綠闊葉林的呵護。

化石說故事——半乾旱東亞歷經的巨變

八百萬年來東亞季風的吹拂,維持並守護了東亞常綠闊葉林的生長(尤其是在亞熱帶地區),更促生了許多如今組成臺灣山地樟櫟林的優勢類群。但在八百萬年之前至晚漸新世之間,海洋季風尚未深入東亞地區,化石證據告訴我們,東亞許多地區曾盛行著半乾旱的氣候。當時亞熱帶常綠闊葉林仍處於胎兒的階段,而東半球的常綠闊葉林主要分布在熱帶地區。

究竟晚漸新世以來,東亞是否發生了什麼重大的環境變遷事件?將本該荒煙蔓草,一如北半球其他亞熱帶地區的東亞,轉化爲至今日萬物向榮的模樣?

-----廣告,請繼續往下閱讀-----

過去半個世紀,學者們在遼闊的亞洲大陸上小心翼翼地挖掘化石和石頭,試圖向過去尋找線索。他們靠著滅絕生物以及它們與環境之間交互作用遺留下的痕跡,不斷地歸納出一個結論:巨變確實存在。

然而,意外的是,這些來自已逝之物的線索也同時指出了引發巨變的源頭。位於東亞內陸,一塊舉世無雙的高原的隆起,扭轉了整個東亞的氣候與生靈的命運。

——本文摘自《橫斷臺灣》,2023 年 7 月,春山出版未經同意請勿轉載。

所有討論 1

0

4
2

文字

分享

0
4
2
熱穹所壟罩的世界!——熱浪對全球造成的衝擊——《科學月刊》
科學月刊_96
・2022/11/26 ・4035字 ・閱讀時間約 8 分鐘

  • 駱世豪/中研院環境變遷研究中心博士後研究學者。

Take Home Message

  • 歐美熱浪的主因是噴流增強了熱穹的下沉,造成熱空氣北移和累積。臺灣的熱浪則是受到副熱帶高壓的影響。
  • 熱浪發生頻率變頻繁且強度變強,與溫室氣體排放造成的全球暖化效應增加有很大的關係。
  • 熱浪事件對生態、糧食、經濟和健康等面向都造成威脅,全球與臺灣熱浪的持續天數和強度都有增加的趨勢。

古代傳說中,后羿射下九個太陽讓地上的氣候適宜、萬物得以生長,古代的預言已經告訴我們,炎熱的氣候條件不利於萬物的生長。而在現今全球暖化的情況下,另外九個太陽會復活嗎?以上雖是玩笑話,但今(2022)年歐洲國家就受到熱浪(heatwave)嚴重影響,葡萄牙與西班牙最高溫度達到 45℃ 以上;英國更出現 54℃ 以上的極端高溫,發布有史以來第一個紅色高溫預警,並進入緊急狀態。

據統計,歐洲各國在 6 月因熱浪死亡的人數高達 2468 人。中國的溫度也突破近 62 年的歷史同期最高夏季平均氣溫,有 23 個省分出現 40℃ 以上高溫,許多地方都出現因熱浪致死的案例。臺灣也在 7 月中出現接近 40℃ 的溫度,並在多地出現 35℃ 左右、維持數天的極端高溫。近年來熱浪的強度和發生頻率不斷提高,造成人員經濟的損傷也愈來愈多,而究竟什麼是熱浪?它形成的背後機制為何?

熱浪是什麼?

「熱浪」是夏季主要造成災害的極端事件之一,根據世界氣象組織(World Meteorological Organization, WMO)的定義:「熱浪現象是指一個地區超過該地區的歷年最高溫度平均值 5℃ 以上,並且持續 5 天以上。」一個地區能維持極端高溫並持續一段時間,背後一定有些天氣系統所導致。

如近年歐洲、北美熱浪頻傳,主要因素就是噴流(jet stream)與熱穹(heat dome)所造成;東亞主要受太平洋副熱帶高壓(subtropical high)影響;印度和亞馬遜等熱帶區域則主要是受到降雨的影響。各區域因為氣候背景與緯度位置不同,造成熱浪的成因也有所不同,接下來我們會依序介紹世界各地氣候與緯度間的相互關係。

-----廣告,請繼續往下閱讀-----

高空之龍所環抱的氣團

當北半球夏季中高緯地區噴流向北蜿蜒形成一個像 Ω(omega)的形狀時,就有可能形成熱浪(圖一),或因為它的特殊形狀而被稱為阻塞高壓(omega blocking)。噴流是一股由西往東的氣流,通常位於對流層頂,它的水平長度達上萬公里、寬數百公里,中心風速有時可達每小時 200~300 公里。

而噴流就像一個在地上亂甩的水管,蜿蜒的波動有時往北有時往南,當噴流在北美或歐洲地區蜿蜒向北時,會形成一個 Ω 的形狀,也會造成反氣旋(順時針)式風切,進而讓大氣產生下沉運動。在此區域內不易形成對流,造成穩定且乾燥的環境,也就是所謂的熱穹,或是阻塞高壓。噴流和熱穹是相輔相成的關係,噴流增強熱穹的下沉機制,將南邊的暖空氣往北傳送,並將熱空氣累積,所以才形成熱浪。

圖一:熱浪形成原理與機制
(資料來源:AFPgraphics)

而在東亞的夏季,氣溫主要受太平洋副熱帶高壓(subtropical high,以下簡稱副高)影響。副高中心約位於太平洋(東經 160 度、北緯 30 度左右),在它的增強過程中會向西伸擴張至中國東南沿岸,而當副高處於增強的狀態時,副高系統會再向西延伸且壟罩整個臺灣。

如上述所說,高壓壟罩的狀況下屬於對流穩定的晴朗天氣,配合上夏季的西南季風,將暖濕空氣往北傳送並堆積在副高所壟罩的區域上,最後在此區域形成熱浪現象。相較於北美、歐洲區域的乾熱浪,臺灣的熱浪屬於濕熱浪(wet heatwave)。除了極端高溫外,還有著高濕度的影響,悶熱的環境對人體有更大的傷害和影響。

-----廣告,請繼續往下閱讀-----

另外,印度和亞馬遜熱帶區域雖屬於終年偏高溫的地區,但仍有熱浪現象產生,主要原因是降雨。熱帶地區主要氣候分為乾季與溼季,溼季通常為該地區的夏天,下雨能有助於該地區降溫,所以當降雨系統未出現、延遲或偏移,就很有可能會造成嚴重的熱浪。

熱浪造成的嚴重影響

熱浪事件對生態、糧食、經濟、健康等面向都造成諸多影響,以下將分為四類說明:

生態浩劫

根據聯合國(United Nations, UN)底下的政府間氣候變遷專門委員會(Intergovernmental Panel on Climate Change, IPCC)第六次評估報告預測,如果到了 2100 年全球的溫度升高達到 2℃,陸地上大約 18% 的物種將面臨滅絕的高風險;如果升溫至 4.5℃,在我們有紀錄的所有動植物物種中約有一半將受到威脅。臺灣也面臨相同的狀況,當熱浪發生的頻率愈來愈高,持續時間和強度也都增加的狀況下,將發生物種多樣性減少、物種的分布改變、增加外來物種入侵機會等情況,對整體生態系平衡或農業生產造成衝擊。

-----廣告,請繼續往下閱讀-----

糧食危機

IPCC 於 2019 年報告中指出,全球主要農產品(如玉米、小麥、大豆)產量都會受到全球暖化影響減產 1.8~4.5%。若情況持續惡化,到 21 世紀中則可能導致產量下降 5~30%。

經濟損害

美國報導指出熱浪會造成極端高溫,進而對人體產生危害,所以對於生產力(gross domestic product, GDP)也有影響。在高於平均水平的夏季氣溫下,每升高 1℃,美國各州的 GDP 就會下降 0.25%。國際信評機構標普全球(S&P Global)的報告預測,氣候變遷恐導致 2050 年前全球每年經濟產出損失 4%,臺灣位處的東亞區域則會有 1% 左右的損失(圖二)。

-----廣告,請繼續往下閱讀-----
圖二:全球GDP損失分布預測
預估全球於 2050 年在中度暖化情境(RCP4.5)下,GDP 因水災、自然災害以及熱浪所造成的損失分布。
(資料來源:S&P Global Ratings, Trucost, 2022)

人體危害

對於人體而言,熱浪最嚴重的傷害為熱衰竭(heat exhaustion)。根據臺灣氣候變遷推估資訊與調適知識平臺計畫(TCCIP)的報告指出,2003 年的歐洲熱浪估計已造成七萬多人死亡;2010 年俄羅斯熱浪則導致超過 5 萬 6000 人死亡。科學家警告:「如果各國家和企業不採取激烈行動來削減溫室氣體排放,2050 年時的英國與高溫相關的死亡人數預計將增加兩倍,而且世界將經歷更頻繁、更強烈、更危險的熱浪危機。」

越來越熱的台灣——極端高溫天氣的頻率增加

熱浪發生頻率變頻繁且強度變強,主要與溫室氣體排放造成全球暖化效應增加有很大的關係。更進一步使用溫度發生機率圖解釋(圖三),若峰值愈接近右邊,代表高溫事件發生的機率愈高;反之,若峰值愈接近左邊,低溫事件發生的機率愈高。當全球暖化效應增強時,就如同圖三所顯示的新氣候,整體機率分布相較於舊氣候來說會往右偏移,往更高溫度的地方移動,造成熱浪事件的發生機率更高。

而實際上全球的變化也是如此,根據科技部、中央研究院環境變遷中心以及國家防災中心的報告,比較全球早期(1951~1980 年)和近期(1981~2010 年)的日最高溫資料(圖四左),在機率分布圖上可以看到往右偏移的情形,表示極端高溫事件的頻率與溫度都有增加的趨勢。

-----廣告,請繼續往下閱讀-----

臺灣的夏季日最高溫度也有相同的趨勢變化,以臺北的資料為例,比對早期(1960~1990 年)和近期(2006~2017 年)的夏季日最高溫度,能發現近期的頻率分布向右偏移,夏季日最高溫度的發生機率增加,平均值也增加近 1℃(圖四右)。全球與臺灣的平均氣溫或極端溫度發生頻率皆有增加的趨勢。

圖三:全球溫度發生機率變化分布圖
若峰值愈接近右邊,代表高溫事件發生的機率愈高;愈接近左邊,低溫事件發生的機率愈高。當全球暖化效應增強時(新氣候),整體機率分布會往右偏移,造成熱浪事件機率增加。而實際上全球的變化也是如此。(資料來源:Matt 科學Taylor, BBC Weather)
圖四:日最高溫與日最低溫觀測頻率分布圖
(資料來源:《臺灣氣候變遷科學報告2017-物理現象與機制報告》)

在未來(21 世紀中後期)趨勢的變化中,研究學者利用模式推估,指出以現在的熱浪門檻為標準,未來若是能將全球暖化程度控制在低暖化情境(RCP2.6),則臺灣地區的熱浪不管是在頻率、持續時間或強度上,和現今的差異不大。相反的,在高暖化情境(RCP8.5)情境下,21 世紀末臺灣整個夏季都可能處於熱浪狀態。未來若暖化情況持續增長,熱浪的發生將成為常態,而且持續天數和強度也有增加的趨勢。

TCCIP 計畫依據 IPCC 所設定的溫室氣體排放情境,進行臺灣地區的溫度模擬:在高暖化情境(RCP8.5)推估下,世紀末可能增溫超過 4℃,而北部地區增溫較南部嚴重,高溫有可能影響農作物生長與收成。臺灣在未來將面臨更嚴重的熱浪衝擊,對於能源使用、公共衛生健康等都可能帶來前所未有的考驗,而這急迫性的問題,就像電影《普羅米修斯》(Prometheus)裡女主角說的:

「如果不阻止它,我們就會無家可歸!」(If we don’t stop it, there won’t be any home to go back to!)

溫室氣體排放情境假設:「RCP」

IPCC 的報告中長使用到的濃度路徑「RCP」為 representative concentration pathways 的英文縮寫,代表不同程度暖化路徑的人為溫室氣體排放量的「情境假設」,其中假設四種不同暖化情境,由輕微到最嚴重分別為 RCP2.6、RCP4.5、RCP6.0、RCP8.5,分別代表的意義如下:

-----廣告,請繼續往下閱讀-----
  • RCP2.6:增溫最小且緩慢的情境,輻射強迫力先在 21 世紀中期達到最大值 3 Wm-2,大約和二氧化碳濃度 490 ppm 相似,然後再緩慢下降到 21 世紀末。
  • RCP4.5:輻射強迫力會在 21 世紀末達到一個穩定狀態的情境,約為 4.5Wm-2,和二氧化碳濃度 650 ppm 相似,代表世界各國會想盡辦法做到溫室氣體減量的目標。
  • RCP6.0:和 RCP4.5 相似,但輻射強迫力為 6 Wm-2,約為二氧化碳濃度 850 ppm,代表世界各國並沒有盡全力積極做到溫室氣體減量的目標。
  • RCP8.5:輻射強迫力持續的增加到大於 8.5 Wm-2,即二氧化碳濃度會大於 1370 ppm,代表世界各國並無任何減量的動作。
圖五:輻射強迫力隨時間的變化圖
(資料來源:TCCIP; Representative Concentration Pathway, GRID-Arendal/Studio Atlantis, 2021)
  • 〈本文選自《科學月刊》2022 年 11 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
南北有差 東西有別-都是海流搞得鬼
大海子
・2012/01/20 ・1815字 ・閱讀時間約 3 分鐘 ・SR值 535 ・七年級

「哇!北部好冷喔!你們南部現在很冷嗎?」住在北部的家人如是問
「嗯!還好呀!只是風比平常大了一些。」

台灣島季節性的溫度變化受到洋流的季節變化的影響
台灣島季節性的溫度變化受到洋流的季節變化的影響(圖得來源取自於水試所與中央氣象局)

每當大陸冷氣團入侵台灣時,往往造成台灣北部氣溫劇烈下降,流行感冒趁機發威、四處作虐,讓北部的居民有雪上加霜的痛苦;然而台灣南部雖略有寒意,但氣溫卻往往與北部地區相差至少5℃以上;有時當北部人都開始穿上羽毛衣保暖時,南部人白天還是薄衣短褲,嫌天氣不像冬天還有點熱呢?若是由南部北上出差洽公,當走出台北車站大門之際,瞬間就會感受到寒氣咄咄逼人,令人冷不防地打了個冷顫。反之,走出高雄火車站時,若不先行脫掉厚重的外套,走不到三五步,就會熱汗直流了。冬天氣溫之所以如此明顯的差異,乃因冬季進入台灣的冷氣團範圍大小不同,簡單來說,若冷氣團襲擊的範圍只限於台灣中北部並未南下至台灣南部,台灣南北部的溫度就有明顯的差異了。

在夏季,無論南來北往,或跨越中央山脈之間的東西部之旅,各地氣溫就沒有如此明顯的差異,差異範圍大都在1-2℃之內,因此不會有被老天耍了的受騙感覺。台灣南北氣溫在冬夏兩季有如此鮮明的差異,除了與氣候有關之外,其實與台灣海域附近錯綜複雜的海流不無關係,這些流經台灣附近海域的海流在台灣的氣候上扮演著關鍵性的角色。

-----廣告,請繼續往下閱讀-----

台灣附近海域有三個主要的海流,其中以東部的黑潮最為知名,它是源自於赤道的一條暖流,沿著北太平洋邊緣終年川流不息,台灣是它流經亞洲地區其中的一站,黑潮水溫多在25℃以上,許多海洋生物都隨著它洄游至各地;冬季時黑潮部份分支流會穿過巴士海峽之後,迴轉北上出現在台灣西南部海域,讓台灣西南部浸泡在溫暖的海水中,且又與南下入侵台灣中北部海域的低溫大陸沿岸水在台灣海峽中部(雲彰地區附近海域)對峙交鋒,相互較勁,互不相讓;此時台灣東部溫暖的黑潮可說是東部海岸在寒冬中的海洋暖暖包,因此當東北季風凛冽呼嘯之際,台灣西南部與台灣東部無論是氣溫還是水溫卻都不冷不熱,相當宜人;反觀首當其衝的台灣北部地區,當大陸冷氣團發威南下時,除了氣溫急劇下降之外,台灣北部沿海的水溫,也因大陸沿岸冷水團的大舉入侵而隨之驟降,這股源自於長江口鹽度較低的冷水團最低溫度可以到達15℃,因此台灣北部地區在冷氣團的淫威下又同時遭受低溫海水的侵襲,此種情形好比一個人身體浸泡在冰水裏,頭上還有冷氣呼呼地吹,怎麼能不冷呢? 簡直是「酷」斃了。

台灣夏季艷陽高照,西南季風盛行,驅動南中國海表層溫暖的水層北上,這股平均水溫在28℃左右的水層,流經台灣西部經由澎湖與台灣中部之間狹窄的黑水溝,順地形由深至淺扶搖直衝進入平均水深只有60公尺的台灣海峽,伴隨而行的西南季風溫熱且潮濕,直撲台灣而來;另終年流台灣東部海域的黑潮亦不相讓,自始至終「熱」情依然不減,因此夏季的台灣島可說是烈陽當空高高掛,地表濕熱季風陣陣吹,全島東西兩側又被兩股暖呼呼的海流團團圍繞,想要不熱也真難了。仔細觀察全省的氣象預報圖就可以發現夏季台灣全島各地之間的氣溫相差無幾,幾乎都是同步在飆高溫,因此將夏季的台灣島比喻成是一個暖呼呼、熱烘烘的火燒島可說是一點都不為過;縱使偶而遇上颱風豪雨的侵襲,氣溫也只略略下降1-2度而已,並沒有太大的降溫效應,畢竟颱風只是一時路過,而台灣四周海域海水的加溫作用卻持續不斷,從未因此而消退。

無可諱言,溫度是影響生物地理分布的重要環境因子。每年冬至前後來自北方的烏魚南下至台灣西南海域尋找冷暖水團所形成的鋒面繁衍後代,為台灣南部帶來的豐富的漁產,更孕育了烏魚文化;但每年冬季西南部水產養殖業常遭受到冷氣團侵襲造成瞬間養殖水溫驟降的寒害(如澎湖寒害),水產品市場價格也常隨之上下大幅波動,間接影響民生經濟;冬季時流行性感冒在北部地區橫行霸道,令人苦不堪言,而南部流行的疫情卻正好相反,反而是酷暑期間盛行的登革熱疫情,卻仍在秋風蕭瑟的十月大行其道,這些都要拜台灣周圍海域海流季節變化,導至台灣南北部溫差大所賜。

台灣附近的海流靜默地在季風變化的掩護之下,隨著季節更替上演不同的劇碼,導致台灣各地氣溫亦隨之翩翩起舞,不僅長年影響著台灣人民的身心健康與日常生活起居,更是孕育台灣海洋文化多樣性的一股不可忽視的推動力。

-----廣告,請繼續往下閱讀-----
文章難易度
大海子
53 篇文章 ・ 3 位粉絲
希望以人文關懷的觀點,將海洋生物世界中的驚奇與奧妙, 透過多媒體的設計與展現,分享個人心得給社會大眾, 期望能引起更多人關心海洋的公共議題, 為保護海洋略盡一份心力。