0

0
0

文字

分享

0
0
0

fMRI腦造影研究全面崩盤?

謝伯讓_96
・2016/07/15 ・3896字 ・閱讀時間約 8 分鐘 ・SR值 532 ・七年級

Researcher-test
圖/By NIMH – US Department of Health and Human Services: National Institute of Mental Health, Public Domain, wikimedia commons.

兩週前,《美國國家科學院院刊》(PNAS)上的一項研究指出,十五年來將近四萬篇的「功能性磁振造影」(fMRI)相關論文可能都有問題!紅透半邊天的 fMRI 腦造影研究,真的只是一種即將崩盤的「新顱像學」嗎?腦造影研究是否會全面崩盤呢?

簡單快速的答案是,不會。那大家為什麼會喊的如此聳動?原文到底說了什麼?腦造影研究究竟有什麼潛在的問題呢?以下就來幫大家分析一下這其中的眉角。

原文說了什麼?

PNAS 這篇文章其實出發點很單純,就是想看看 fMRI 真實資料中出現「假陽性結果」的機率(false positive rate)有多高。這裡所謂的「假陽性率」,就是看起來像是「真訊號」、但其實卻是由隨機雜訊所致的「假訊號」。

檢視假陽性率的做法也很簡單,就是使用「不應該出現任何真訊號的資料」,然後分析看看會跑出多少假陽性結果即可。

-----廣告,請繼續往下閱讀-----

Screen shot 2016-07-15 at PM 02.00.17

原文中的其中一項分析,就是使用這種方法。作者先取得 499 人的腦靜息狀態資料(resting-state fMRI data),然後隨機抽出 20 人為一組,接著用三種大家常用的資料分析軟體、以及各種常用且默認的基本預設參數、並把資料當成「任務式資料」(tasked-based fMRI data)來進行分析並統計結果。(每一種軟體和參數組合,都重複抽算 1000 次)。

由於這些 fMRI 資料是「腦靜息狀態資料」,也就是受試者在沒有進行任何任務或認知活動時的腦狀態,理論上來說,上述的分析結果應該只會有 5% 的大腦區域因為隨機雜訊而出現「假陽性結果」。

但是真正的分析結果一出,眾人傻眼,「假陽性結果」的出現機率竟然高達 70%。

為什麼這假陽性機率這麼高?

關於這一點,基本上是個統計學問題。科學家在測量腦中每一個「體積元素」(voxel,以下簡稱「體素」)是否真的有訊號存在時,必須要把隨機雜訊列入考量。

-----廣告,請繼續往下閱讀-----

有時候,「體素」中根本沒有真的訊號,但是因為隨機雜訊很高,因此會出現假陽性訊號,這也就是統計上的第一型錯誤(Type I error)。

由於雜訊無所不在,因此這種錯誤不可避免,唯一可以做的,就是透過一些假設來算出這種錯誤的出現率。比方說,我們可以假設隨機雜訊是常態分佈,然後估算出各種不同隨機雜訊強度的出現機率。

一般來說,超強隨機雜訊的出現機率都很低,因此如果我們觀察到的訊號越強,它是隨機雜訊的機率就越低。大家常常看到 p<0.01 這樣的門檻值,意思就是:這個結果只有小於 1% 的可能性是因為隨機雜訊所導致的假陽性結果。

p

如圖,雜訊導致的結果呈現高斯(常態)分佈,雖然有時候會觀察到很強的訊號(綠色部份),但它們仍有可能是隨機雜訊所致。

-----廣告,請繼續往下閱讀-----

多重比較問題

好了,上面的方式,就是只有處理單一體素(或單一一項觀察或檢驗)時所用的統計方式。但是當我們必須檢驗好幾次、或同時檢驗好幾個體素時的時候,就又有新的問題出現。

比方說,如果我們同時檢驗 10 萬個體素,由於每個體素都有 1% 的假陽性機率,結果就是 10 萬個之中大約有 1%的體素會出現假陽性,也就是約 1000 個體素,算是非常大的一個數字!

這就是統計上的「多重比較問題」(multiple comparison problem),必須要進行額外的校正才行。校正的方法有很多種,其中一種方法,就是去看看這些 p<0.01 的體素有沒有在空間上相連。

這個想法的背後假設是:如果它們真的是隨機的假陽性體素,那麼應該會隨機四散在大腦的三維空間中,相反的,如果它們全都在空間中相連形成聚落(cluster),那麼就比較有可能是真的訊號。

-----廣告,請繼續往下閱讀-----

但是,就算這些假陽性體素真的是隨機四散,它們仍然有可能恰巧在空間中形成聚落不是嗎?

比方說,我在達特茅斯念書時的同班同學班尼特(Craig Bennett),就曾經把死鮭魚放入 fMRI 的機器,然後播放一些圖片給死鮭魚看。當他分析死鮭魚的大腦反應時,竟然發現有些腦區在「播放圖片給死鮭魚看時」比較活躍。

Screen shot 2016-07-15 at PM 01.48.03

很顯然的,因為鮭魚是死的,根本看不到用來刺激大腦的圖片,所以這些活躍的腦區必然只是隨機雜訊所導致的假陽性聚落而已。這項有趣但重要的研究,也讓班尼特拿到了 2012 年的搞笑諾貝爾神經科學獎。

好了,既然這種「假陽性聚落」可能會出現在大腦中,我們當然就得再透過一些假設,來估算一下各種不同大小的「假陽性聚落」的隨機出現機率,然後再加設一個門檻值來進行篩選。

-----廣告,請繼續往下閱讀-----

關鍵的錯誤

而關鍵的錯誤,就是出現在「到底該用怎樣的假設」來估算各種不同大小的「假陽性聚落」的出現機率!?

現在大家所用的分析軟體中,大都採用了高斯隨機場理論(Gaussian random-field theory , RFT),這個理論假設訊號在腦中出現時,會呈現高斯形態分佈,並藉此來估算完全獨立的體素數目以及「假陽性聚落」的出現機率。

沒想到,PNAS 這篇研究在進一步分析後卻發現,腦中訊號的分佈並非總是呈現均勻的高斯形態。也因此,這個可能錯誤的假設,就導致了錯誤的門檻值,使得大家低估了假陽性聚落的出現機率。

這篇文章指出的另外一個問題,則是在其中一個分析軟體(AFNI)中發現的一個已經存在長達 15 年的程式錯誤,這個程式錯誤縮小了搜索的體素數目(低估了多重比較的數目),並因此高估了統計的顯著性。

-----廣告,請繼續往下閱讀-----

quote

腦造影與神經科學崩盤?

好了,以上就是 PNAS 原文的基本發現。我個人覺得,這篇文章算是很不錯的資料模擬分析研究。但是,受影響的研究論文數量真的有 40000 篇嗎?

原文的第二作者尼可斯(Thomas Nichols)很快就在部落格上澄清[3],並把受影響的論文數量下修到 3500 篇,原因就在於,很多研究根本就不是採用上述的「聚落分析」方式來校正。

此外,就算是採用聚落分析,許多研究也不是使用軟體的預設值(例如很多研究使用的第一門檻值可能遠比 p<0.01 更嚴苛)。而且,這 3500 篇研究測量到的效應值如果很大,它是假陽性的機率就會降低。

至於有人擔心整個腦造影領域或神經科學會跟著崩盤。我想這是幾乎不可能。原因如下:

-----廣告,請繼續往下閱讀-----

A. 即使 fMRI 真的有過高的假陽性結果,我們依然可以透過綜合性的分析來預估某項發現真正的假陽性機率,例如,研究A發現X腦區可能與語言有關,而其假陽性機率是 70%,此時若研究 B 也發現 X 腦區可能與語言有關,而其假陽性機率也是 70%,那麼當我們同時看待兩項研究時,這兩項研究同時為假陽性的機率就只剩下 49%,如果有更多的研究也發現同樣的結果,該發現的假陽性機率就會不斷下降。

B. 有些腦造影研究是屬於探索型的,例如想要找出某種前人沒有研究過的認知功能的對應腦區。這樣的研究可能會想要採取較寬鬆的門檻值,以允許科學家在結果中公開較多的腦區讓後來的研究者參考。

C. 就算所有的 fMRI 研究果真的全部有誤,我們還有其他的測量方法來進行驗證。腦造影研究畢竟不是只有 fMRI,還有如 PET 和 MEG 等其他各種測量技術,而神經科學也不是只依賴腦造影,還有行為科學、電生理與細胞生物學等都可以提供佐證。因此,腦造影領域或神經科學幾乎不可能會因此而崩盤。

總而言之,一項科學發現如果要能站穩,都得要經過好幾次的實驗重現,以及不同測量方法與實驗典範的驗證才行。

結語:科學數據公開共享與質疑基本假設

PNAS 這篇文章真正值得大家深思和警惕的地方,並不是 15 年來的腦造影發現是否全是垃圾(當然不是),也不是科學家在進行資料分析是否都不夠謹小慎微(其實大部分都很細心)。

我們真正要思索與鼓勵的應該是(1)科學數據公開共享,以及(2)對各種基本假設始終保持存疑。

800px-Open_Data_stickers

過去 20 年來,其實一直都有腦造影科學家在呼籲大家要重視其中的假陽性問題,而大部份的神經造影學者也都非常小心。但是囿於沒有大量的真實數據可以提供適當的參數,科學家也只得無奈的採用理論上的預設參數進行資料分析。

所幸,近年來神經科學家開始自發推動腦造影資料共享計畫,相關的計量與統計科學家才終於可以透過公開資料庫,獲得足夠的腦造影資料,以檢視大家先在分析時所採用的假設。之前可能存在的假設錯誤,也才終於有機會獲得修正。

科學演進的特色之一,就是證據不斷的累積、以及透過發現錯誤來不斷修正假設。從這個角度看,PNAS 這篇研究其實一點都不負面,而可以看成是科學社群自我反省檢驗後向前邁進的一個正面案例。


ps. PNAS 這篇原文中的最大錯誤,應該就是在前言的「重要性摘要」中,砲轟過去 15 年的 40000 篇論文都可能作廢的那句話。但是也因為此言,才招來了噬血媒體的引用並引發廣泛的注視與討論。

這句話,究竟是粗心大意的「敗筆」?還是精心策劃的「勝筆」呢?

參考資料:

1. PNAS 論文原文:Eklund et al. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. PNAS.

2. 死鮭魚的腦造影研究:Bennett, C., Miller, M., & Wolford, G. (2009). Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: an argument for multiple comparisons correction. NeuroImage, 47 DOI:10.1016/S1053-8119(09)71202-9. Poster (PDF):  PAPER (PDF)

3. 原文的第二作者尼可斯(Thomas Nichols)在部落格上的修正文

4. 對「聚落分析」有興趣的話,可以參考:Friston KJ, et al. (1994). Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp. 1(3):210-20. (PDF)

 

本文轉載自謝伯讓的腦科學世界

-----廣告,請繼續往下閱讀-----
文章難易度
謝伯讓_96
25 篇文章 ・ 14 位粉絲
美國達特茅斯學院認知神經科學博士,麻省理工學院腦與認知科學系博士後研究員。曾任杜克─新加坡國立大學醫學院助理教授、腦與意識實驗室主任,現為國立台灣大學心理系副教授。研究主題為人腦如何感知世界。 部落格:The Cry of All。 著作:《都是大腦搞的鬼》《大腦簡史》

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
2

文字

分享

0
1
2
從昏迷到死亡錯覺:摩托車事故後的科塔爾症候群——《大腦獵奇偵探社》
行路出版_96
・2024/08/24 ・3933字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

摩托車事故後的幻覺

一九八九年十月,二十八歲的股票經紀人,姑且稱之為威爾(Will),發生了嚴重的摩托車意外。他腦部受到重創,陷入昏迷,雖然幾天後恢復意識,但他在醫院裡住了好幾個月,治療腦傷以及其他損傷引起的感染。

到了隔年一月,威爾的復原情況非常良好,已經可準備出院。他的身上有些問題永遠好不了,例如右腿行動困難以及喪失部分視覺。但是最困擾他的問題發生在他的腦袋裡:他相當確定自己已經死了。威爾的母親為了幫助兒子早日康復,帶他去南非度假。但南非的炎熱讓威爾相信這個地方就是(真正的)地獄,因此更加確定自己必定是個死人。母親難以置信地問他是怎麼死的,他說了幾個可能的死因。有可能是血液感染(這是治療初期的風險),也有可能是他之前打黃熱病疫苗之後的併發症。此外他也提出自己可能死於愛滋病,雖然他沒有感染 HIV 病毒或愛滋病的任何跡象。

威爾康復出院,但堅信自己已經死亡。連他母親帶他去南非度假,都被他認為自己身在地獄。 圖/envato

有一種強烈的感覺纏上威爾,揮之不去─他覺得身旁所有東西都……這麼說好了……不是真的。車禍前熟悉的人和地方,他現在都不太認得,所以他愈發覺得自己住在一個奇怪又陌生的世界。連母親都不像真的母親。其實在南非度假的時候,威爾就曾這麼說過。他認為真正的母親在家裡睡覺,是她的靈魂陪伴他遊歷陰間。

喪失現實感:大腦如何捏造非理性的死亡解釋

四十六歲的茱莉亞(Julia)有嚴重的雙相情緒障礙症(bipolar disorder),入院時她相信自己的大腦和內臟都已消失。她覺得她早已不存在,只剩下一副空殼般的軀體。她的「自我」消失了,所以她(無論從哪個意義上看來都)是個死人。她不敢泡澡也不敢淋浴,因為怕自己空空如也的身體會滑進排水孔流走。

-----廣告,請繼續往下閱讀-----

三十五歲的凱文(Kevin)憂鬱的情況愈來愈嚴重,幾個月之後,腦海中的念頭漸漸演變成妄想。一開始,他懷疑家人正在密謀要對付他。接著,他認為自己已經死了,也已經下地獄,只是身體仍在人間。現在這副身體是空殼,裡面一滴血液也沒有。為了證明自己的想法沒錯,他從岳母家的廚房裡拿了一把刀,反覆戳刺手臂。他的家人明智地叫了救護車,將他送進醫院。

科塔爾症候群患者的大腦顯然有問題。發病之前,通常發生過嚴重的神經系統事故(中風、腫瘤、腦傷等等),或出現精神疾病(憂鬱症、雙相情緒障礙症、思覺失調症等等)。不過這些情況導致科塔爾症候群仍屬少見,神經科學家尚未找到明確原因,可以解釋科塔爾症候群患者的大腦為何如此與眾不同。再加上每個患者的症狀都不太一樣,判斷起來更加困難。話雖如此,有些共同症狀或許能提供蛛絲馬跡,幫助我們了解這種症候群。

科塔爾症候群的患者經常說,他們身處的世界莫名其妙變得很陌生。多數人看到自己曾邂逅多次的人事物時,大腦都能點燃辨認的火花,但這件事不會發生在科塔爾症候群的患者身上。舉例來說,患者可能認得母親的臉,但就是莫名的感到陌生。她似乎缺乏某種無形──但重要的─個人特質,所以患者即使看到這個生命中最重要的人,卻無法產生預期中的的情感反應。

患者也可能會有疏離感,彷彿自己是這世界的旁觀者,而不是參與者。術語叫做人格解離(depersonalization)。此外,周遭的一切都散發超現實的氣氛,讓患者相信自己生活在擬真的夢境裡─這是一種叫做喪失現實感(derealization,亦稱失實症)的症狀。科塔爾症候群患者體驗到的陌生感、人格解離、喪失現實感,都會嚴重扭曲他們眼中的現實世界。不難想像這會讓大腦難以負荷。

-----廣告,請繼續往下閱讀-----

大腦碰到如此矛盾的情況會拚命尋找原因。對大腦來說,能夠合理解釋各種生活事件是非常重要的。若找不到合理的解釋,世界很快就會變成無法預測、無法理解,最終變得無法忍受。因此為了清楚解釋所經歷的事情,大腦會無所不用其極。如果在經驗裡出現大腦難以合理解釋的元素,它會退而求其次:自己捏造合理的答案。

每個人的大腦都會這麼做,而且隨時隨地都在做,只是我們察覺不到。例如有研究發現,我們每天做的決定不計其數─從什麼時間吃點心,到要跟誰出去約會──但我們做這些決定時總是不假思索。我們好像大部分的時間都處於自動駕駛模式。可是每當有人問我們為什麼做這樣的決定時,大腦幾乎總能想出好答案來合理化我們的選擇。但有時候,它想出來的答案完全不合理。

有一項研究讓男女受試者看兩名女性的照片,請他們選出比較好看的那位。受試者做出決定之後,研究人員隨即將照片放在他們面前,要他們解釋為什麼選這個人。但受試者不知道的是,研究人員會偷偷調換照片(占比約二十%),要受試者解釋自己為什麼挑中這個(他們明明沒挑中的)人。大多數受試者都沒有識破研究人員的詭計。他們通常不會質疑照片上的人不是自己選的那個,而是當場想出合理的答案,說明為什麼覺得眼前照片上的人比較好看,例如「她看起來很辣」,或是「我覺得她比較有個性」(兩張照片差異甚大,所以受試者不是單純的認錯人)。

這種非刻意的捏造叫做虛談(confabulation),大腦做這件事的頻率比你以為的更高。虛談的原因可能有百百種,但這似乎是大腦遇到自己無法明確解釋的事件時,會使用的策略。神經科學家相信,科塔爾症候群患者的大腦也做了類似的事情。從這個角度來說,科塔爾症候群的起點,是前面提過的幾種狀況(例如創傷、腫瘤等等)導致大腦功能異常。

-----廣告,請繼續往下閱讀-----

大腦合理性檢查機制失靈

大腦功能異常導致現實感喪失與人格解離,進而使患者覺得周遭的一切很陌生,欠缺他們預期中的「真實感」。於是患者的大腦努力理解這樣的經驗,瘋狂尋找合理的解釋。基於不明原因,科塔爾症候群患者容易把注意力轉向內在,認為如果外在經驗不對勁,毛病可能出在自己身上。

結果基於某些更加不明的原因,大腦找到的解釋是他們已經死了、正在腐爛、被邪靈附體,或其他稀奇古怪的、與存在有關的原因。這一連串環環相扣的假設聽起來有點誇張。畢竟,喪失現實感這樣的症狀沒那麼少見;很多人(某些估計高達七十五%)會有類似的─但非常短暫的─喪失現實感的經驗。但有這種經驗的人,幾乎都不會認為自己已經死了。

顯然,科塔爾症候群患者的大腦裡還發生了別的事情。神經科學家相信,或許是重要的合理性檢查機制(plausibility-checking mechanism)沒有發揮作用。大腦偶爾會錯誤解讀生活裡發生的事,但我們通常不會想出一個明顯不合理的解釋。

或許是因為大腦錯誤解讀現實,讓科塔爾症患者對現實理解出現錯覺。 圖/envato

大腦似乎有一套用來評估邏輯的機制,確保我們的邏輯可以通過合理性的檢驗。在多數有過喪失現實感或人格解離等症狀的人身上,這套合理性檢查機制能使他們立刻否決「我感覺到自己脫離現實,是因為我已經死了」的想法;大腦認為這個提議很荒唐,很可能再也不會想起它。但是在科塔爾症候群的患者身上,這套合理性檢查機制顯然壞掉了。大腦將脫離現實的感覺歸因於他們已經死了,這個想法不知為何保留了下來,而大腦也認為這個解釋站得住腳。於是在其他人眼中絕對是妄想的念頭,成了他們深信不移的答案。

-----廣告,請繼續往下閱讀-----

醫生在為科塔爾症候群患者(以及後面會介紹的另外幾種行為古怪的精神障礙患者)尋找腦部損傷時,經常發現腦傷位於右腦。神經科學家因此假設合理性檢查機制位於右腦。大腦分為兩半,叫做大腦半球(cerebral hemispheres)。左腦半球和右腦半球的劃分簡單有力,因為有一道裂縫將大腦一分為二。乍看之下,左右兩邊一模一樣,但受過訓練的神經科學家用肉眼就能看出兩者並非完全對稱。透過顯微鏡觀察,差異更加顯著。因此左腦與右腦的功能有差異或許不足為奇。

長期以來,一直有人拿這些差異做文章,用錯誤的方式來解讀左腦和右腦的不同,以偏概全又過於誇大。例如斬釘截鐵地說,有些人較常使用右腦,也就是「右腦人」,所以擅長創意思考,「左腦人」則比較有邏輯。這是大家耳熟能詳的觀念,但神經科學家認為這只是迷思。實際上,我們使用大腦時不會特別偏左或偏右,而是完整使用兩個半腦。不過有些功能(例如語言的某些能力)會比較依賴某一個大腦半球。所以科塔爾症候群與右腦損傷有關的假設,並非全然不可能。

但科塔爾症候群(可能也包括合理性檢查機制)與右腦的關聯性依然只是假設,只不過許多(但不是所有)神經科學家深入研究過的科塔爾症候群案例,都支持這項觀察結果。無論合理性檢查機制確切位於何處,但在推演患者如何發展出科塔爾症候群的通用模型中,這個假設的機制扮演著重要角色。首先,大腦功能異常造成疏離症狀,例如喪失現實感與人格解離。大腦出於習慣,會先試著為眼前的情況找答案。問題是,仔細檢查並淘汰不合理答案的能力也受損了,於是大腦只好捏造稀奇古怪的答案,告訴自己身體已經死了(或是邪靈附體、正在腐爛等等),而且不會因為這個答案不合理而淘汰它。

有人認為,這種階段性的妄想形成過程也適用於另一些妄想症。這些妄想症的症狀也很古怪,不亞於科塔爾症候群。

-----廣告,請繼續往下閱讀-----

——本文摘自《大腦獵奇偵探社:狼人、截肢癖、多重人格到集體中邪,100個讓你洞察人性的不思議腦科學案例》,2024 年 7 月,行路出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing

0

5
1

文字

分享

0
5
1
在連接體迷宮尋找生命意義——專訪 2023 Taiwan 顯微攝影競賽銀獎得主劉柏亨
顯微觀點_96
・2024/04/29 ・4856字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

擴張顯微術、免疫螢光標記搭配雷射共軛焦顯微鏡,果蠅腦部緻密的多巴胺神經網路展開在我們眼前。初看猶如璀璨星雲,接近端詳就能發現神經束繁複清晰,聯繫著綻放光芒的神經元,猶如從太空站觀看的都會夜景。

這張精彩的作品「Wiring the Brain」,是以果蠅大腦探索連接體學,尋找腦部運作奧秘的路線圖之一,由清華大學腦科學中心的博士生劉柏亨拍攝。獲得 2023 Taiwan 顯微攝影競賽銀獎,不僅是劉柏亨在追求科學真相途中的額外收穫,也是他對自己多元興趣的重要實踐。

從材料工程到腦神經 追求變化的躍動旅程

大學時主修材料科學的劉柏亨,從「自修復材料」開始,研究興趣逐漸從工程領域轉向仿生(Bio-inspired)科技。他的碩士班題目是以生物晶片模仿心臟,作為藥物篩選平台。對他自己和指導教授都是嶄新的題目。

-----廣告,請繼續往下閱讀-----
清大腦科學中心是劉柏亨建立神經生物學知識與系統性思考的地方
清大腦科學中心是劉柏亨建立神經生物學知識與系統性思考模式的殿堂,也是每天磨練科學技藝的工作坊。 攝影:楊雅棠

「我是個很好動的人,因此選擇了一個全天都在活動的器官。」

——劉柏亨說,當時雖有學長研究細胞遷移,但對他來說還不夠「動感」,因此選擇團隊中沒有先例的心臟作為研發目標。

以仿生材料模擬心臟的過程中,劉柏亨意識到,「我對細胞、組織的基本原理還不夠了解,容易以工程師的觀念模擬心臟特性,有時會違反真實、整體的生理學。」他因此萌生了建立生醫知識基礎的求知慾。

劉柏亨想要挑戰更複雜的器官,進入江安世院士領導的清華大學腦科學研究中心攻讀博士,將短期具體研究目標放在「腦神經的影像化」,長期的探索方向則是「系統性地理解『生命現象』」。

電子顯微鏡下的果蠅
電子顯微鏡下的果蠅。果蠅的基因與人類同源性高,遺傳工程易於操作,並能呈現複雜多樣的行為,是研究腦科學的關鍵模式生物。Courtesy of Wellcome Collection.

無畏複雜 以系統視野理解生命

劉柏亨說明,上一階段的生命科學著重精準分析特定分子的功能,逐步研究細胞生理的單一面向。但人體不只由數種分子或細胞組成,而是上兆個細胞形成群體、互相影響,才展現出人類個體的生命表現。

系統生物學(Systems Biology)觀念,整合地理解人類生命,是劉柏亨著迷的目標。他說,因為分子與細胞生物學研究充分累積,現今的生醫知識基礎與技術成熟,已形成科學家投入系統生物學的良好時機。

-----廣告,請繼續往下閱讀-----

其中最吸引他的,是呈現腦神經系統的「連接體(Connectome)」及探究其整體運作的「連接體學(Connectomics)」。

連接體學是探究精神官能症狀、神經性疼痛、認知退化等腦部相關疾病的最新路徑。解碼線蟲、果蠅等模式生物較為簡單的神經連接體,將能推動對人類腦部運作方式的理解,也是神經生物學與醫學的關鍵方向。

系統生物學重視聯繫與整合的思維,不僅是劉柏亨追求知識的途徑,也延伸了他對生物學專業與社會的觀點。

這位接連跨足不同領域的博士生說,擷取腦神經影像的程序從前端的生物材料製備,到後端影像系統的工程科技都不可或缺,不是一個人的專業能力能夠包辦。

-----廣告,請繼續往下閱讀-----

他因此體悟,每張顯微影像都結合多種專業,而生物學的每一步進展也是不同領域科學家努力的整體成果,並非一個天才在單一領域獨力鑽研而成。

「許多不同的神經細胞彼此透過突觸聯繫彼此,建構出有神奇功能的腦。就像是人與人建立連結,建構社群與社會。」

——劉柏亨在頒獎典禮現場如此介紹自己獲獎的顯微影像。
果蠅腦連接體
果蠅幼蟲腦連接體的全腦圖譜,終於在 2023 年上旬由霍華.休斯醫學研究所、約翰.霍普金斯大學與劍橋大學的團隊合作完成。加入線蟲、海鞘幼蟲(Ciona intestinalis larva)、沙蠶幼蟲(Platynereis dumerilii larva)等生物的行列,達到突觸等級的完全連接體地圖。 Courtesy of Science

工程師的生物學 如調酒般逐步改良

這張螢光染色的果蠅腦神經多巴胺網路圖,輸出到超過人腦的截面積,依然清楚呈現星羅棋布的迴路與神經元。跨越繞射極限的清晰成像,要歸功於擴張顯微術(Expansion Microscopy)與劉柏亨逐步改良工法的耐心。

劉柏亨解釋,擴張顯微術中「分解」步驟對螢光訊號最為關鍵。蛋白酶能夠有效分解(digest)樣本的蛋白質骨架,讓樣本順利擴張,但是會犧牲不少螢光蛋白與解析度。

替代方法是以藥物促使蛋白質變性(denature)降低張力,維持螢光訊號強度,但是樣本擴張過程會有較多阻撓,導致結構變形。劉柏亨說,

-----廣告,請繼續往下閱讀-----

「結構變形,就不是原本要追求的東西,訊號再強也沒有用。」

劉柏亨與擴張後只有灰塵大小的果蠅腦樣本。
劉柏亨與擴張後依然只有灰塵大小的果蠅腦樣本。 攝影:楊雅棠

他笑稱自己「『像個工程師』地追求實驗最佳化,把兩種分解途徑混成雞尾酒,每一杯都稍微調整改良。」他調和兩種分解概念,嘗試不同藥劑濃度、工序、實驗溫度;或以生物素化(Biotinylation, 在樣本擴張前使用), 鍵擊化學(Click Chemistry, 在樣本擴張後使用)放大螢光訊號。

經過了近四十份的樣本製作與拍攝,終於得到滿意的影像。他敘述製作過程的語氣輕快,其實每一次擴張顯微術的製備與拍攝,都是漫長嚴謹的科學工作。

每一組樣本(大約十顆果蠅腦)的免疫螢光染色工期大約一週,擴張過程耗時三至四天;以轉盤式共軛焦顯微鏡拍攝單顆擴張的果蠅腦樣本,則需要 18 小時左右;接著要花上一整天,等待軟體拼接壓縮上萬張圖片。

獲獎的「Wiring the Brain」就是超過 10 萬張顯微照片的拼接疊合而成,包含將原本立體的影像透過專用軟體壓縮成平面。劉柏亨譬喻,「打開全新的 iPhone15 Pro,按住快門連拍直到記憶體滿載罷工,就是一張果蠅連接體影像需要的容量。」

-----廣告,請繼續往下閱讀-----

繁密的連接體影像,不僅讓劉柏亨在連接體學的迷宮中前進,也能滿足他對美感與藝術的追求。在實驗室外也是攝影愛好者的劉柏亨,本學期正在修習清大科技藝術研究所曹存慧老師的生物藝術課程。

藝術家的生物學實驗室:向外延伸感官 向內反思存在

劉柏亨興奮地分享,他正與組員規劃虛擬展覽「藝術家的生物學實驗室」,模擬一個身懷生物科技的藝術家,會如何規劃他的實驗室。

腦機介面、組織再生、基因工程,是三個劉柏亨想要優先呈現的技術。

從編輯 DNA,改變蛋白質,最後型態出現差異,基因工程是現代生物技術的基礎。組織再生可以展現生物體修復能力與生醫工程的可能性。腦機介面則是最直接觸及心智能力、感官範疇,也結合最多精密工程技術的領域。

-----廣告,請繼續往下閱讀-----

「這個藝術家本身帶有基因或感官的缺陷,試圖用生物科技延伸他的感官。參觀者能體驗生物科技延伸感官、改變身體的能力,並從中反思我們作為個體存在於環境中,與環境互動的關係。」

——劉柏亨解釋藝術計畫的初衷,一如對顯微技術的投入。
劉柏亨善於以日常生活譬喻科學知識。圖為20203顯微攝影競賽作品展覽現場
劉柏亨善於以日常生活譬喻科學知識。圖為 2023顯微攝影競賽作品展覽現場。攝影:林任遠

與藝術學院同學合作的過程中,劉柏亨發現組員們對生物學的知識足夠,較為不同的是,藝術領域的組員對於色彩組合或實驗操作,常常比科學領域的學生更加直覺,帶來浪漫的不確定性及意外的創造性。這種風格能與劉柏亨的藝術追求產生共鳴,但是科學研究必須要求精確,在浪漫與精確之間拿捏,也是他練習的目標。

另一方面,藝術學院的組員也常引導劉柏亨設計出更簡潔的生物學科普展示;或是透過討論,讓他想傳達的科學概念更具體明確。

使新奇成為日常元素 顯微鏡是好奇心泉源

從攝影、腦神經到生物藝術,劉柏亨喜歡讓心智保持活躍與好奇。他形容自己,「每天我都需要新的刺激,我喜歡讓學習新事物成為生活的常態。」他對顯微技術的投入,也是由碩士班期間的好奇心開啟。

當時的實驗室備有共軛焦顯微鏡,劉柏亨並不負責保養,也不須理解光路,但是好奇心驅使他向前來校正的工程師陳正義學習。劉柏亨說「正義哥算是我的顯微技術啟蒙老師,只要他出現在實驗室,我就會站在旁邊追問。」

-----廣告,請繼續往下閱讀-----

現在劉柏亨遇到超越既有能力的顯微技術問題,不僅會和團隊成員討論,也會向其他實驗室的技術人員,甚至教授求教。參與不同團隊合作架設光學系統的過程,讓他深入了解雷射共軛焦顯微技術的原理,並體驗以精密工程逐步實現理論。

劉柏亨認為,顯微技術不僅是延伸感官的工具,更提供理解周遭世界的全新方式。隨著理解方式改變,好奇心與探索的內在動力會源源不絕地湧出。

「顯微鏡其實是激起好奇心的動力引擎。」

——劉柏亨認為從日常生活進入微觀世界,最重要的回饋是對人內在的激勵,不只是外在的觀察。

從機器管家出發 追問生命的意義

對自己的研究目標轉換,劉柏亨說「心臟的細胞運作起來具有高協同性,像是訓練有素的樂儀隊。但腦神經的運作瞬息萬變,隨時變化,更像是社會中的人際連結。」儘管像是越級打怪,他仍想探索更複雜的生命系統。

說到自己對生物學的內在動機,劉柏亨回憶,「我一直記得電影《機器管家》(Bicentennial Man,1999 年上映)。透過機械工程組合無機的零件,可以模擬一個真實的人類,與人建立感情。其中一定需要對生命原理的了解,非常神秘。」

對複雜生命現象進行整合研究,進而建立精密的仿生系統,這個系統不僅可能成為藥品篩選、器官再生平台,在更遠的未來可能成為人的延伸,甚至模仿人的整體生命表現。

機器管家
《機器管家》以晶片使機器得到情感能力的技術令人神往,同時也不斷促使觀眾反思「人」與「生命」的定義。 Courtesy of Wikipedia

這個猶如科幻小說楔子的目標,由劉柏亨敏銳的好奇心與多元的科學技藝積累堆砌而成。他說,

「在理解、實現這個系統的過程中,我會掌握生命的意義。」

參考文獻

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。