0

0
1

文字

分享

0
0
1

再看超新星光芒:宇宙的擴張也許不需要暗能量

only-perception
・2011/10/27 ・2849字 ・閱讀時間約 5 分鐘 ・SR值 751 ・高於十二年級

-----廣告,請繼續往下閱讀-----

幾週前頒發的 2011 年的諾貝爾物理學獎,獎落 Type 1a超新星光線的研究,那證明宇宙正以某種加速率膨脹中。源自於那些觀測的知名問題是:這種膨脹進行的似乎比所有已知能量形態所允許的還要快。雖然提出來的解釋不曾短缺 — 從暗能量到修正重力理論(MOG)– 不過對於超新星資料本身的詮釋卻不常見到有誰在質疑。

在一項新研究中,那樣的質疑正是 Arto Annila(芬蘭 Helsinki 大學物理學教授)正在進行的。其立論(發表在最近一期的 Monthly Notices of the Royal Astronomical Society 上)根據在於:光行進通過「不斷演化的宇宙(ever-evolving universe)」的方式亦「不斷改變(ever-changing)」。

“大霹靂宇宙論的標準模型(Lambda-CMD 模型)是種數學模型,而非演化中宇宙的物理寫照,” Annila 表示。”因此,Lambda-CMD 模型在一給定紅移下得到了光度距離(luminosity distance),成為模型參數(例如宇宙常數)的一個函數,而非物理過程的函數 — 在此,量子自超新星爆發中釋出,在擴張的宇宙中消逝。”

“當超新星爆炸時,其能量以光子的形態,開始消失在宇宙中,而當我們觀測到閃光時宇宙已變得更大,也因此更加稀薄,” 他說。”所以,觀測到的光強度與光度距離平方成反比,同時與紅移的頻率成正比。由於這二項因素,亮度 vs. 紅移在雙對數圖上並非一條直線,而是曲線。”

-----廣告,請繼續往下閱讀-----

因此,Annila 爭論,超新星資料並無暗示宇宙正經歷加速中的膨脹。


最短時間原理(The principle of least time)

如 Annila 的解釋,當一道光線從遙遠的恆星傳播到一位觀測者的望遠鏡時,它沿著耗時最少的路徑行進。這個眾所周知的物理學原理稱為費馬原理(Fermat’s principle,費密原理)或最短時間原理。重要的是,最快路徑並非總是筆直路徑。當光線通過不同能量密度的介質時,就會發生從筆直路徑偏離的情況,例如,光通過玻璃稜鏡時因折射而曲折。

最短時間原理是陳述更廣的最小作用量原理(principle of least action)的一種特定形式。據此原理,光,如同所有運動中的能量形態,總是沿著最大化其能量分佈(maximizes its dispersal of energy)的路徑行進。當光從燈泡(或恆星)朝所有可行方向向外發散時,我們能看見這個概念。

-----廣告,請繼續往下閱讀-----

在數學上,最小作用量原理有二種不同形式。物理學家幾乎都用涉及所謂拉格朗日積分(Lagrangian integrand)的形式,不過 Annila 解釋,這種形式只能夠決定位在固定環境(stationary surroundings)內的路徑。因為擴張中的宇宙是一種演化中的系統,所以他指出,最初但較不普遍的形式(由法國數學家 Maupertuis 所提出)能更精確地決定來自遙遠超新星的光線路徑。

利用 Maupertuis 形式的最小作用量原理, Annila 算出,來自 Type 1a 超新星的光線,在行進幾百萬光年抵達地球後的亮度,與宇宙中已知能量總量的觀測一致,而且不需要暗能量或任何其他額外驅力。

“我們人類渴望預測是很自然的,因為預期(anticipations)對我們的存活有所貢獻,” 他說。”不過,自然的過程在本質上是不可計算的(雖然 Maupertuis 正確地將之公式化)。所以,這裡沒有什麼特別的理由,純粹是我們渴望做出更精確的預測,那導致我們避開 Maupertuis 的形式,即便最短時間必須是一種精確的路徑相依過程計算。這種一體化原則(unifying principle)導致將各種微調問題合理化,例如大尺度同質化與宇宙的平坦化。”

光的最短時間路徑(Light’s least-time path)

-----廣告,請繼續往下閱讀-----

究竟光線如何在其最短時間路徑上行進?當光行進時,膨脹中宇宙的密度正在減少中。當光從高能量密度區域朝低能量密度區域穿越時,Maupertuis 的最小作用量原理說,光將藉由減少其動量(momentum)來因應。由於量子的守恆(conservation),光子的波長將增加,而其頻率將減少。因此,在「高密度遙遠過去」期間爆發的超新星,其光線到了今日低密度的宇宙環境時,輻射強度將會減少。此外,當光線通過某個局部能量稠密區域(如恆星)時,光速將會改變,其傳播方向也將會改變。光線的這些變化最終都根源於周遭能量密度的變化。

如果這是光線從超新星一路過來的方式,那麼它將告訴我們某些有關「為何宇宙正在膨脹」的重要事情,Annila 解釋。當一顆恆星爆炸而其物質燃燒成輻射時,守恆要求量子的數量維持一致,不管是以物質或輻射的形態存在。為維持束縛在物質內之能量還有以光子形態解放出來的能量之間的整體平衡,一般來說,超新星會以增加至近乎光速的平均速度彼此分裂。如果暗能量或任何額外形式的能量涉入其中,那將會違逆能量的守恆。

上述分析不僅適用超新星,還包括其他「束縛形態(bound forms)」的能量。當恆星、脈衝星、黑洞以及其他天體內的束縛形態能量透過燃燒轉變成電磁輻射時 — 最低的能量形態 — 這些從高能量密度到低能量密度的不可逆轉變,正是導致宇宙膨脹的原因。

“持續膨脹的宇宙並非遙遠過去某些狂烈爆發的遺跡,宇宙之所以膨脹是因為束縛在物質中的能量正被燃燒成自由傳播的光子,那在恆星以及天上其他強大的能量轉換機制中最常看見,” Annila 說。”因此,今日的擴張速率倚賴仍侷限在物質中的能量密度以及目前使物質分解成光之機制的效率。同樣地,過去的擴張速率依賴當時存在的那些機制,正如同未來的速率也將倚賴那些或許在未來會浮現的機制。因為「在最短時間內消耗自由能」時,所有的自然過程都傾向遵循 S 型曲線(sigmoid curves),所以預期宇宙也會以 S 型的方式擴展。”

-----廣告,請繼續往下閱讀-----

並非一招半式闖江湖(Not a one-trick pony)

雖然光的最短時間路徑似乎能解釋超新星資料與其他我們對宇宙所作觀察一致,不過 Annila 提到,若這一個理論性概念能同時解決幾個問題的話,那麼它將會更吸引人。所以,Annila 證明,以此概念來分析重力透鏡時,也許不需要暗物質來解釋這些結果。

愛因斯坦的廣義相對論預測,由於重型天體(如星系)的重力使時空扭曲,會導致光線彎曲,而科學家已觀測到,那正是實際上發生的事。問題在於,此偏斜似乎比所有已知(會發光)物質能造成的偏斜來的更大,這促使研究者研究暗(不發光)物質的可能性。

然而,當 Annila 使用 Maupertuis 的最小作用量原理來分析具某質量的星系應使通過的光線偏斜多少時,他算出的總偏斜要比廣義相對論所賦予的值大約五倍。換言之,所觀察到的偏斜,其所需要的質量比先前所以為的少,而且那完全可用星系中的已知物質來解釋。

-----廣告,請繼續往下閱讀-----

“就愛因斯坦的場方程式(field equations)而論,廣義相對論是一種宇宙的數學模型,但我們需要由 Maupertuis 的最小作用量原理為演化中宇宙所提供的物理學解釋,” 他說。”透過修修補補而獲得進展似乎頗吸引人,但訴諸於任意吸積(ad hoc accretions)時,那很容易變得不一致。Bertrand Russell 對於當代信條(tenet)完全到位,他說:「all exact science is dominated by the idea of approximation(所有精確的科學都是由近似的想法所主宰),」但幸運的是,任何複雜的塑模對於領悟「大自然如何運作」的簡單原理來說,都是次要的。

Annila 補充,這些概念可經過檢測,看看它們是否為分析超新星以及詮釋宇宙膨脹的正確方法。

“由其本質所主張的最短時間自由能消耗原理(principle of least-time free energy consumption)會是普適且不可違逆的定律,” 他說。”所以,不僅僅只有超新星爆發,基本上任何資料都將用來檢測其有效性。此原理的一致性與普適性可以被考驗,例如,透過近日點歲差(perihelion precession)以及星系旋轉資料。又,鑑於微小的參考系拖曳效應(frame-dragging effect,又稱:時空座標系拖曳效應)記錄因大量的不確定性以及無法預測但具啟發性的實驗磨難而受到危害,Gravity Probe B 針對測地線效應(geodetic effect,又稱:重力場彎曲效應)的最終結果,對我來說,無疑好到足以測試這個自然原理。”

資料來源:PHYSORG:A second look at supernovae light: Universe’s expansion may be understood without dark energy[October 24, 2011]

-----廣告,請繼續往下閱讀-----

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

5
2

文字

分享

0
5
2
來自137 億年前的訊息!透過重力波,一窺「宇宙誕生」的真相──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/09 ・4055字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

重力波不只能提供星體的資訊!

說到重力波,一般人可能會想到黑洞、中子星、超新星這三個引發話題的星體。不過,只有在這些星體事件發生的「瞬間」,才會產生重力波,就像宇宙中的一場秀一樣。而當重力波通過後,就無法再偵測到這些資訊。

discoveries GIF
圖/GIPHY

譬如,LIGO 在 2015 年 9 月捕捉到的就是「來自 13 億光年外星體的重力波」。不過,和宇宙年齡相比,這其實是相對較年輕的星體事件。

我們有沒有辦法捕捉到很久很久以前,宇宙剛誕生時產生的重力波,也就是暴脹時期產生的重力波呢?

為什麼宇宙正在急速膨脹?

138 億年前,宇宙在超高溫、超高壓下,以「火球」的樣貌誕生,這就是所謂的「大霹靂」。在這之後,隨著宇宙的急速膨脹,溫度與密度逐漸下降,然後演變現在的樣貌。

這就是大霹靂宇宙論,也是目前多數學者支持的標準宇宙論。

-----廣告,請繼續往下閱讀-----

那麼,為什麼會產生「火球宇宙」這個超高溫、超高壓的世界呢?為什麼宇宙不是一直保持原樣(不是保持相同大小),而是會急速膨脹呢?目前有一個較被接受的說法,那就是前面提過許多次的「暴脹理論

在這個理論中,宇宙初期並沒有任何物質或光,而是一個充滿能量的真空。透過這些真空能量,宇宙用比光速還快的速度,呈指數函數膨脹。

而在暴脹時期結束後,這些真空能量轉變成了光(火球),於是產生了超高溫、超高壓的宇宙,這就是所謂的大霹靂。

目前科學界的研究和觀測結果大多支持大霹靂學說。圖/NASA

不過,如果空間中存在許多能量的話,應該會存在像重力這樣使空間收縮的力才對。為什麼空間會以超越光速的速度迅速膨脹,進入暴脹時期呢?

-----廣告,請繼續往下閱讀-----

學者們用「暴脹子場」這種量子場中的真空能量,說明暴脹時期。

暴脹子場是個未證實存在的純量場。就目前而言,它的存在仍處於假說階段。

目前已知的純量場,譬如 2012 年時,由瑞士日內瓦的歐洲核子研究組織 CERN 在 LHC 實驗中發現並發表,由希格斯玻色子產生的希格斯場。研究者們也因此而獲得 2013 年諾貝爾物理學獎,各位應該還記憶猶新。

137億歲的宇宙,至今仍然不斷膨脹

暴脹子場與希格斯場在質量與粒子的結合力上,都有著很大的差異。暴脹子場的真空中,會產生長時間的負壓。而這個負壓會造成宇宙加速膨脹。

這點與目前的暗能量機制十分類似。有人猜想暗能量可能是未發現的純量場。與暴脹時期相同,目前的宇宙中可能存在著未知純量場的真空能量,就像暗能量般,佔了全宇宙能量的 70%。

-----廣告,請繼續往下閱讀-----

宇宙中佔了 30% 能量之物質,與佔了 0.1% 的光會產生引力,但比不過真空能量所產生的斥力,所以目前宇宙正在加速膨脹。

宇宙仍在不斷的擴大。圖/NASA

順帶一提,即使物質與光的能量佔宇宙的 100%,宇宙也只是減速膨脹而已,並不會收縮回去。因為膨脹初期的速度過快,所以宇宙只會持續膨脹下去。

宇宙誕生的第一步——「原始重力波」

暴脹時期結束後,空間能量會迅速轉變成物質能量,使宇宙轉變成超高溫、超高壓、充滿輻射的狀態。這就是大霹靂「火球」。暴脹理論說明了幾點。

首先是前面提到的「膨脹速度超越光速的宇宙」

-----廣告,請繼續往下閱讀-----

這造成了我們現在看到的(宇宙視界內的)宇宙溫度擁有各向同性,在 10 萬分之 1 的精度下,為絕對溫度 2.723K(約 3K 的宇宙微波背景輻射(CMB))。

在大霹靂學說中,宇宙微波背景輻射是宇宙誕生時所遺留下來的熱輻射。圖/ESA

第二,這個急速膨脹,使宇宙的形狀在幾何學上變得相當平坦,就像膨脹的氣球一樣。

再者,暴脹子場的量子擾動,是宇宙初期物質擾動的來源,也就是3K宇宙微波背景輻射所觀測到的溫度擾動。暴脹子場也含有量子的擾動。這些小小的擾動在短時間內暴脹過程中,急速膨脹,延伸至宇宙視界的彼端,造成現今宇宙中不同區域的密度差異,這也是形成星系的種子

CMB 觀測到的「溫度擾動」,正是暴脹時期產生之暴脹子場的量子擾動。

-----廣告,請繼續往下閱讀-----

另外,在重力波方面,暴脹時期不僅會產生前述密度(溫度)的擾動,也會產生「時空擾動」。急速膨脹的過程中,真空會一直變化,成對產生重力子,這與黑洞周圍產生霍金幅射的機制類似。

學者們認為這種重力波現今仍存在,稱其為「原始重力波」。因為整個宇宙都存在這種重力波,所以也叫做背景重力波。若能檢出這種背景重力波,不只能成為暴脹理論的證據,也會是宇宙起源相關研究的一大步。

原始重力波就像是背景雜訊一樣,在宇宙四處飄蕩

黑洞雙星的合併會產生重力波,不過當重力波通過地球,被 LIGO 觀測到時,該事件便已結束。不只是黑洞,中子星雙星的合併、超新星爆發也一樣。

不過,暴脹時期產生的重力波並非如此。當時整個宇宙充滿了重力波。不過這種重力波就像白噪音般的存在,很難分析這種波的狀態,所以也叫做背景重力波。若依波的種類來分,可以將其算在駐波。如何找到這種駐波,是我們現在的課題。

-----廣告,請繼續往下閱讀-----
重力波可以分成兩種,來自近期星體活動的重力波,以及來自宇宙誕生的背景重力波。圖/台灣東販

與光波不同,重力波的偏振方式可以分成十字形(+)與交叉形(×)2 種,如下圖所示。十字形的偏振會往縱向與橫向伸縮、交叉形偏振則會往斜向伸縮,如其名所示。這兩種波疊合後,會變成圖中右方的樣子,往外傳播。

隨著時間的經過,來自黑洞的重力波會持續前進;但暴脹時期產生的重力波為「背景重力波」,是一種駐波,就像噪音一樣充滿在整個宇宙中。如果能發現這種波,就能證明暴脹理論。

重力波由十字形、交叉型兩種偏振方式所組成。圖/台灣東販

宇宙之窗:暴脹子場是什麼?

暴脹時期產生的「暴脹子場」究竟是什麼樣的東西呢?

重複一次,暴脹子場被認為是某種未知、很重的純量場,其質量上限在 1013GeV 以下。目前這個低能量宇宙中,已經不存在暴脹子場。即使透過粒子對撞,產生目前可達到的最高能量(數 10TeV,相當於數 10 京度的溫度),也沒辦法產生這種場。

-----廣告,請繼續往下閱讀-----

每種基本粒子都有著伴隨其出現的「量子場」。

譬如希格斯場會伴隨著希格斯玻色子出現。就希格斯場這種純量場而言,其存在機率最高的期望值稱做場值(真空值),是希格斯玻色子的位置。而場值周圍存在所謂的量子擾動。這種量子擾動只有在微觀尺度下有意義。

在我們生活的巨觀尺度下,幾乎察覺不到任何量子擾動,所以我們平常的生活並不會意識到它們。

我們周圍有許多電路會用到二極體。在微觀尺度下看這些電路,會看到粒子般的電子周圍有量子擾動,這種量子擾動對二極體來說相當重要。

在這種量子擾動下,電流只能沿著電路中可跳躍量子擾動的方向流動,二極體才有如此特別的性質,可見量子論也是現代科技中的重要理論。

所以說,考慮初期宇宙中暴脹子場的量子擾動,可以知道當宇宙還很小時,暴脹並非在宇宙中的各個地方同時間發生。宇宙中各個地方開始暴脹與結束暴脹的時間都不一樣。

量子擾動除了會造成時間擾動,在某些條件下,我們也可以在巨觀視界下感受到密度和溫度的擾動。圖/台灣東販

量子擾動會造成時間擾動,不過在暴脹這種急速膨脹後,會轉變成超越視界的古典擾動,所以我們會在巨觀視界下觀察到,各個地方都有著不同的密度。這就是所謂的「密度擾動」或「溫度擾動」。

總而言之,最初產生量子擾動後,隨著空間的急速膨脹而迅速延伸,轉變成了空間性的密度擾動。

備註

  • 暴脹理論與大霹靂的名稱

1981 年,佐藤勝彥在大統一模型的框架下,提出真空相變會造成宇宙呈指數函數膨脹的理論。同年,古斯也發表了同樣的想法。自宇宙誕生的瞬間起(依大統一理論,約為 10−38 秒後~10−36 秒後)宇宙會以超越光速的速度,呈指數函數膨脹,然後轉變成大霹靂的「火球」宇宙。

1980 年時,為修正愛因斯坦的重力觀點,學者們提出了以指數函數膨脹中的宇宙。

而在 20 世紀初,多數學者認為「宇宙永遠不會改變」(宇宙穩態論),沒有開始,沒有結束,大小也永遠不會改變。不過宇宙穩態論的擁護者霍伊爾(Fred Hoyle)曾在某個廣播節目中說「宇宙的開始?那是大霹靂的觀點(the ‘big bang’ idea)」,於是「大霹靂」這個名稱就定了下來。

當時連愛因斯坦都相信宇宙穩態論,否定膨脹宇宙。不過在觀測結果陸續出爐後,哈伯(Edwin Hubble)、勒梅特(Georges Lemaître)等人成功說服了愛因斯坦接受宇宙正在膨脹。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

0

7
5

文字

分享

0
7
5
宇宙「新」光──新星、超新星與千級新星
全國大學天文社聯盟
・2022/03/30 ・4272字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/語星葉,與一隻米克斯黑狗簡單地生活在新竹,正在努力成為天文學家。

看星星,是大多數人接觸天文的契機。現今,看見滿天星斗對於被光害荼毒的都市人而言是一種奢侈,相較於古時夜無燈火,總有許多靜謐無光的夜晚,能讓人們一同仰望星空,思索空中的奧秘。多數星星安靜地閃爍,被人類賦予神話故事,成了現在為人所知的「星座」。另外,有少數幾顆不安分地移動著,它們的移動方式看似有規則,有時候卻會逆行,這些在天空中漫遊的星星,我們就稱之為「行星」 。

在極少數的情況,我們會發現過去未曾注意到的星點,猶如初來乍到的旅客,古時中國稱之為「客星」 [註一]。現在我們知道,這些看似新生的星,實則氣數已盡。利用強大的各波段望遠鏡,人類偵測到大量「新」光,並提出多種機制來解釋星光快速且劇烈改變的現象。

本文將介紹 3+1 種天文現象,分別為「新星(Nova)」、「超新星(Supernova)」和「極亮超新星(Superluminous supernova / Hypernova)」,以及「千級新星(Kilonova)」。前兩者的觀測歷史源遠流長,後兩者則歸功於現代發達的觀測技術,才讓我們得以一探究竟。

蟹狀星雲,古時中國稱之為天關客星,為西元 1054 年的超新星爆炸殘骸。圖/NASA, ESA, J. Hester and A. Loll (Arizona State University)

新星:我可一點都不年輕!

新星(Nova)來自拉丁文,有 「new」 之意。過去,人們仰望寧靜無波(一成不變)的星空時,若是偶然發現從未見過的星星,便稱之為「新星」。但如今我們知道,新星其實不是剛誕生的星,而是古老的小質量恆星,會在它們的生命終章──白矮星時期,突然變得異常明亮。

-----廣告,請繼續往下閱讀-----

白矮星是小質量恆星死亡後的產物,緻密、溫度高,但亮度低,平常不易觀測。一般而言,白矮星是非常穩定的天體,但如果身邊有個伴,情況就不同了。若是白矮星和伴星互繞的距離過近,使得伴星的氫被吸向白矮星表面,並在其表面點燃核融合反應,產生劇烈的光度變化,讓白矮星成為用肉眼可見的「新星」。

近年,天文學家發現,新星的出現經常伴隨強烈的伽瑪射線,推測是來自新星爆發時產生的衝擊波。後續研究指出,新星的高光度也是以衝擊波作用為主,而不是來自表面的核融合反應,打破了以往既有的觀點。

藝術家繪製的假想圖。右側的白矮星吸走左側伴星的氫,成為亮度極高的新星。圖/NASA/M.Weiss

超新星──宇宙中的燦爛花火

超新星(Supernova)顧名思義是新星的 Super 版,比「新星」更亮的星星──天文名詞總是取得如此淺顯易懂。超新星的光度遠超越新星,其形成機制也有所不同。

目前科學界認為超新星有兩種不同的形成機制,分別為「熱核超新星(Thermonuclear supernova)」與「核心塌縮超新星(Core-collapse supernova)」。

「熱核超新星(Thermonuclear supernova)」前身和新星一樣是白矮星,差別在於熱核超新星爆炸極具毀滅性。當白矮星的質量增加到「錢德拉賽卡極限(Chanfrasekhar limit)」,也就是臨界值時,引爆其核心的碳元素將劇烈爆炸,將使白矮星灰飛湮滅。質量增加是因為白矮星身邊有個伴,可能是兩個白矮星白頭偕老、最終合併,也可能和新星一樣是老少配,然後白矮星吸走年輕伴星的表面物質。但究竟是哪種配對導致熱核超新星爆炸,天文學家還在熱議。

-----廣告,請繼續往下閱讀-----

「核心塌縮超新星(Core-collapse supernova)」則來自大質量恆星核心塌縮後造成的熱壓爆炸。當大質量恆星的核心燃料用罄,無法支撐極強的重力而塌縮時,就會產生巨量的熱能,並向外爆發。整個過程僅以秒計。爆發後,周圍形成漂亮的超新星殘骸,核心則塌縮成中子星或黑洞。

值得一提的是,超新星是少數能夠串聯古今天文學的研究領域。歷史上數個著名的超新星爆發事件,在世界各地的文明史料中皆能發現記錄。目前推測人類文明見過最亮的超新星事件是 SN1006(西元 1006 年),最亮時甚至比啟明更亮 [註二],即使在白天仍可用肉眼看見,而且持續長達數星期。著名的梅西爾天體 M1(蟹狀星雲)也是超新星爆炸後的殘骸,自 1054 年的超新星爆發中產生,相關記錄散見史冊,而且至今仍是天文界炙手可熱的研究對象。

蟹狀星雲之心。 圖/NASA and ESA

+1 的部分:極亮超新星

現代觀測技術的進步使超新星事件變得常見,有多部自動望遠鏡凝視著宇宙虛空,在星際間搜尋著超新星的亮光,這類計畫稱為巡天(Survey)計畫。在眾多的觀測數據中,天文學家注意到一類特別明亮的「極亮超新星」(令人不禁想吐槽天文學家如此單純的命名邏輯),這些超新星比一般情況亮了 2 個數量級以上,並且非常罕見。

到 2017 年止,人類僅觀測到約 100 顆極亮超新星。由於數據過少,天文學家對其形成機制的想像可謂瞎子摸象、暫無定論,目前仍歸類為超新星。那麼,極亮超新星究竟是超新星的超級版,抑或是來自不同的形成機制,唯有持續探向更遙遠無垠的古老宇宙,才有機會揭發這個謎團了。

-----廣告,請繼續往下閱讀-----

千級新星──看見宇宙之音

「千級新星」是非常新的天文研究領域,研究過程也極具戲劇性。故事得從科學家研究重力波開始說起。

重力波是重力作用產生的時空漣漪。百年前,愛因斯坦的理論便預測其存在,但重力波非常微弱,連愛因斯坦本人都不相信人類有朝一日能偵測到重力波。直到 2015 年,人類才首次「聽」到兩顆黑洞合併產生的重力波 [註三]。不過,重力波的訊號指向性不佳,難以「聽音辨位」,也就是用重力波訊號回推事件發生地點。若我們能同時「看」到電磁輻射訊號(該事件發出的電磁波),便可蒐集更多更精確的數據,以了解究竟是在宇宙何處發生了什麼事。

令人難過的是,兩顆黑洞合併幾乎不會產生電磁輻射,因此無法用上述的方法獲得更多資訊。

後來,科學家發現,當兩顆中子星合併、或一顆中子星與一顆黑洞合併時,發出的重力波訊號雖較兩顆黑洞合併更弱、也更難偵測,但這兩種事件不只會產生重力波,也會發出電磁輻射,因此是重力波干涉儀的重要偵測目標。2010 年,天文物理學家探討了這兩種合併事件可能的電磁輻射樣態,得出的結論是和新星事件一樣會有劇烈的光度改變,而且最大亮度約是新星的千倍,於是命名為「千級新星(Kilonova)」。

藝術家以動畫展示兩顆中子星通過重力波合併,然後爆炸成千級新星的過程。影/ESO/L. Calçada.

千級新星的發光機制和超新星不同:超新星的光度主要來自爆炸產生的放射性鎳元素衰變,而千級新星則主要來自兩顆中子星,或中子星與黑洞碰撞合併時,大量發生的核反應——「中子捕獲作用」,此類核反應僅在極端物理環境下產生,是形成金、銀、鉛等重元素的重要機制。過去科學家認為宇宙中重元素的生產者是超新星,然而超新星爆炸的觀測數據卻發現,超新星事件發生的中子捕獲作用的「產能」並不足以支撐現有的重金屬比例,因此千級新星便躍上研究舞台,被認為是重元素的主要產地。

-----廣告,請繼續往下閱讀-----

2017 年,LIGO 及 VIRGO 重力波干涉儀共同偵測到人類史上第一場雙中子星合併事件 GW170817。當時,世界各地的望遠鏡幾乎都暫時放下常規任務,爭相投入這場觀測馬拉松。最終的成果令人振奮,不但同時偵測到重力波與相應的電磁波源,分析結果也與千級新星理論預測的訊號相符,這代表我們首次觀測到了千級新星!

重力波 GW170817的可見光訊號。圖/Soares-Santos et al. and DES Collaboration

這場盛會更昭示了「多信使天文學」時代的來臨 [註四]。重力波探測與多波段電磁觀測的結合,替人類的宇宙探索之旅翻開嶄新的一頁。今日,科學家們正期待著下一對共舞的緻密天體搖響精密儀器的銀鈴,讓更多未解之謎得以撥雲見日。

藝術家繪製的 GW170817 雙中子星合併事件想像圖。圖/LIGO-Virgo/Frank Elavsky/Northwestern University

宇宙看似恆常不變,然而在無盡好奇的驅使下,人類以最新科技突破既有的感官極限。我們洞見宇宙深邃瞬變的幽光,聆聽時空悠遠微弱的呢喃。宇宙「新」光的無盡奧秘,還有待來日的勤奮深掘。

註解

註一:客星指新出現的星,意義上包含彗星等在太陽系內遊走的天體,惟不在本文範疇。

註二:金星是地球的夜空中最明亮的星,清晨及黃昏也可見。古時稱金星出現於黃昏為「太白」、「長庚」,出現於清晨為「啟明」。

-----廣告,請繼續往下閱讀-----

註三:人類聽見的聲音主要來自空氣分子的震盪,只要震盪頻率在 20~20000 Hz 的範圍,並且經由介質傳遞使耳膜震動,我們就能聽見。雖然重力波是時空震盪,無法直接以耳朵聽見,但概念上類似,因此常見到科學家將重力波訊號轉換成「音訊」,方便人們感受。

註四:多信使天文學(Multi-messenger astronomy)指利用多種訊號探索宇宙的現象。不同於早期僅以可見光探看宇宙,人類如今能夠探測光子、電磁波、微中子、重力波和宇宙射線等高能帶電粒子。透過這些訊號,可以傳達不同面向的資訊,協助我們拼湊出單一宇宙現象更細緻的原貌。GW170817 事件除了以重力波和電磁輻射觀測,亦有微中子觀測站參與,只是沒有找到相關聯的微中子訊號,因此理論在這方面尚未證實,有待解惑。

延伸閱讀

參考資料

  1. Li, KL., Metzger, B.D., Chomiuk, L. et al. (2017). A nova outburst powered by shocks. Nat Astron 1, 697–702. https://doi.org/10.1038/s41550-017-0222-1
  2. Aydi, E., Sokolovsky, K.V., Chomiuk, L. et al. Direct evidence for shock-powered optical emission in a nova. Nat Astron 4, 776–780 (2020). https://doi.org/10.1038/s41550-020-1070-y
  3. Gal-Yam, A. (2019). The most luminous supernova. Annual Review of Astronomy and Astrophysics, 57, 305–333. https://doi.org/10.1146/annurev-astro-081817-051819
  4. Metzger, B.D., Martínez-Pinedo, G., Darbha, S., Quataert, E., Arcones, A., Kasen, D., Thomas, R., Nugent, P., Panov, I.V., Zinner, N.T.. (2010). Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Monthly Notices of the Royal Astronomical Society, 406(4), 2650–2662. https://doi.org/10.1111/j.1365-2966.2010.16864.x
  5. Smartt, S., Chen, TW., Jerkstrand, A. et al. (2017). A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 55175–79 . https://doi.org/10.1038/nature24303

1

10
2

文字

分享

1
10
2
多重宇宙存在嗎?物理學的探索極限——《解密黑洞與人類未來》
天下文化_96
・2022/01/02 ・1880字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者 / 海諾.法爾克 (Heino Falcke)、約格.羅默(Jörg Römer)
  • 譯者 / 姚若潔

在今天已經建立的宇宙模型中,我們對無限的窺視終止於大霹靂。大霹靂開啟了我們的時間和歷史;所有將會發生的事物都包含在裡面。大霹靂是一種超額的密集能量。我們現在看見的所有事物(所有形式的物質或能量,甚至我們自己),最終都可以追溯回到這份原始能量。

現今宇宙中的各種天體、物質與能量,都可以追溯到大霹靂這份原始能量。圖/WIKIPEDIA

一個近乎無限小的空間忽然在 10−35 秒內指數膨脹。純能量和光的原始閃電誕生,基本粒子的量子糖漿從閃電中開始結晶成形。質子和電子形成,物質有了基本構成單元。過了三十八萬年,質子和電子配對形成氫,充滿了宇宙。物質和光忽然彼此區分,走向各自不同的道路。暗物質在自身的重力影響下變得集中:暗星系從大霹靂的殘骸中出現,並把氫聚集到自己周邊。星系就此形成,產生了發光的星星,創造出新的元素,並透過巨大的爆炸再度把這些元素擲回太空。

從這最早的恆星之灰中,誕生了新的恆星、行星、衛星與彗星。星辰的生命循環開始,最終也誕生出我們的地球。水落在地球上匯聚起來,加上星塵,形成了菌類、單細胞動物,還有植物。這些新生命改變了世界,大氣開始形成,雲朵綻開,動物演化。最後出現了人類,在日、月、眾星的俯視之下繁衍,征服地球,建造都市,瞭解世界、時間、太空,並寫了關於這一切的書——這都要感謝大霹靂帶來的宇宙級大騷動。

描述大霹靂後宇宙膨脹的藝術構想圖。圖/WIKIPEDIA

我們的宇宙竟然能夠運作,整件事實在太過驚人、太過不可思議。宇宙的產生就像是走在物理學的鋼索上,需要微妙的平衡。如果重力再強一點,恆星都會塌縮成黑洞;如果再弱一些,暗能量會使所有東西分崩離析。如果電磁力更強,恆星就不會發光。宇宙機制的各個齒輪彼此相互影響,而生命竟可能在此出現,是恆久以來最偉大的奇蹟。如果有人可以目睹大霹靂並預測自己將會從那堆混亂之中誕生,一定會被視為瘋子。物理學教科書不允許物質忽然開始思索自我,形成個性與觀點,甚至發揮創意——儘管如此,我們就在這裡。

-----廣告,請繼續往下閱讀-----

這道謎題有個解釋相當受人歡迎,就是宇宙實際上不只一個,而是許多個,它們就像原野上的花朵那樣誕生又凋零,只是每個宇宙都略為不同。我們只是正好出現在這裡,生活在這一個誕生了生命的宇宙,因為這是我們唯一可見的宇宙。

我們能否更把思考尺度變得更大?我們有沒有可能在自己的宇宙裡找到古老宇宙的遺跡,例如兩個宇宙相互碰撞後留下的大型結構?我自己願意如此猜測:超超大質量(hypermassive)的黑洞有可能是古宇宙留下來的化石——畢竟,像我們這種宇宙最後殘留下來的,應該就是超超大質量黑洞。目前為止還沒有人找到任何證據。不過,也還沒有任何跡象顯示平行宇宙真的存在,可以讓我們觀測。

黑洞, 黑色的, 洞, 虫洞, 虫, 量子, 物理, 爱因斯坦, 星系, 大量的, 无穷, 空间, 星光体
如果能找到超超大質量黑洞,或許能證明古老宇宙或是多重宇宙的存在。圖/Pixabay

另外,只因為我們的宇宙非常不可能存在,就要推論「必定有許多宇宙存在,才讓我們宇宙的存在成為可能」,這樣的關聯不見得正確。如果我的鄰居中了樂透,不表示他一定已經買過百萬次彩券。我們頂多可以說自己正好住在那個真實幸運兒的隔壁。如果我們只買過一張彩券,又不太清楚它的運作方式,那我們並無法論斷買了彩券的人有多少——或者有多少宇宙存在。

由於無從得知多重宇宙的證據,倒是引出這樣的問題:多重宇宙的存在與否,究竟屬於物理學還是形上學的問題?我們既無法回溯得比自己宇宙誕生的奇異點更早,也無法看穿宇宙的邊緣。就算主張多重宇宙不只是妄想,而是真實的物理學,這個問題仍然未解:多重宇宙是哪裡來的?我們所做的,只不過是把自己的無知推到物理學的無人之境。

——本文摘自《解密黑洞與人類未來》/ 海諾.法爾克、約格.羅默,2022 年 1 月,天下文化

-----廣告,請繼續往下閱讀-----
所有討論 1
天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。