0

1
0

文字

分享

0
1
0

2014年10大科學重大突破(上)

李秋容
・2015/01/09 ・3017字 ・閱讀時間約 6 分鐘 ・SR值 560 ・八年級
相關標籤:

每年,《科學》(Science)的編輯群都會選出科學上的年度突破成就,去年入榜的有:上帝粒子-希格斯玻色子(Higgs boson)的發現、癌症的免疫療法和第一個量子儀器等。今年的獲選者同樣表現十分吸睛,而這些成就也再一次的提醒大家,人類的科學素養便是在無邊無際的各個領域上勇於追求進步與真相,曾經我們這麼做,而未來我們也會如此繼續。以下我們簡單扼要地介紹這些入榜者以及它們的小故事。

延伸閱讀:想了解上帝粒子看這邊!

參考資料:


13-5

一、羅賽塔(Rosetta)任務-登陸彗星

這件太空界的大事想必大家都不陌生,歷經延期與更改登陸目標等種種困難,睽違十年後成功登陸的消息讓很多人是既緊張又興奮吧!

-----廣告,請繼續往下閱讀-----

這是歐洲有史以來野心最大的太空任務,研究人員渴望藉由彗星追蹤器羅賽塔(Rosetta)和探測器菲萊(Philae),捕捉遠在火星以外的一系列照片,羅賽塔的運行軌道環繞著編號67P/C–G的格拉希門克(Churyumov-Gerasimenko)彗星,試圖幫助科學家找出地球的生命起源,這也同時宣告了彗星科學的時代已經來臨。

而羅賽塔的命名其實源自「羅塞塔石碑」(Rosetta Stone),這塊石碑上刻有一段古埃及法老托勒密五世的詔書,以古埃及象形文字、埃及草書及古希臘文三種文字對照書寫,而其中法國學者尚-佛罕索瓦.商博良(Jean-François Champollion)認為這是破解古埃及象形文字的關鍵。同樣的,歐洲太空總署希望這趟旅程也能發揮相同的關鍵作用,為科學家們解開太陽系的各種謎團。

延伸閱讀:探測器菲萊成功登陸彗星

參考資料:

-----廣告,請繼續往下閱讀-----

 

13-16
部分恐龍出現羽化的現象如Kulindadromeus,牠被視為和鳥類關係最密切。Photo credit:http://www.sciencemag.org/

鳥的身世之謎

你知道其實恐龍的後裔現在依然存在地球上嗎?你一定也看過牠們!

其實雷克斯暴龍(Tyrannosaurus rex)和敏捷的蜂鳥是近親,今年,演化生物學家終於找出了這種演化過渡時期的模式和步調。

隨著新的化石不斷出土,科學家分析後發現恐龍鳥類出現前,便陸續有羽化的證據出現,且開始發展出飛行、絕緣、展示和平行的功能,並認為鳥類從恐龍滅絕後經歷了爆發式的演進與分化(註1),且雞的基因結構在恐龍滅絕後更是改變極少(註2),因此,目前的研究普遍認為雞跟恐龍的血緣關係最近。

而其中有趣的一件事是,身為世界上體型最精小的鳥類,也是恐龍近親的蜂鳥,有一項「叛逆」的演化(註3),在掌管甜味受器蛋白的T1Rs基因家族(註4)中,T1R1和T1R3負責偵測胺基酸以引起「鮮美」的風味,而T1R2-T1R3則是可偵測糖類並產生想吃甜食的慾望,而古代鳥類受到恐龍祖先的影響,缺乏T1R2基因而對於糖類興趣缺缺,但蜂鳥的T1R1和T1R3基因卻突變轉換成了「香甜」的醣類探測器,使得牠們異於同類反而是「重度嗜甜者」!

-----廣告,請繼續往下閱讀-----

延伸閱讀:鳥羽之謎

參考資料:

  • 註1:Meredith, R. W., Zhang, G., Gilbert, M. T. P., Jarvis, E. D., & Springer, M. S. (2014). Evidence for a single loss of mineralized teeth in the common avian ancestor. Science, 346(6215), 1254390.
  • 註2:Romanov, M. N., Farré, M., Lithgow, P. E., Fowler, K. E., Skinner, B. M., Rebecca, O., … & Griffin, D. K. (2014). Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC genomics, 15(1), 1060.
  • 註3:Baldwin, M. W., Toda, Y., Nakagita, T., O’Connell, M. J., Klasing, K. C., Misaka, T., … & Liberles, S. D. (2014). Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor. Science,345(6199), 929-933.
  • 註4:Bachmanov, A. A., & Beauchamp, G. K. (2007). Taste receptor genes. Annual review of nutrition, 27, 389.
  • Chickens are closely related to dinosaurs, and other insights from the new bird family tree. [December 11, 2014]
  • Most birds can’t taste sugar – here’s why the hummingbird can.[10 September 2014]

三、返老還童,即將成真?

長生不老一直以來都是人類心裡最深沉的慾望之一,無論東西方自古以來皆然,也因此促成了煉金術(也稱煉丹術)的興起,利用化學方法提煉重金屬以製備靈丹妙藥。不過這些「解藥」通常都含有劇毒,根本無法成功達到它的「目的」,但不可否認的,它的確促進了化學實驗技術和醫藥學等發展。

目前的科學還辦不到讓人類永生,但返老還童的方法卻出現一道曙光!

-----廣告,請繼續往下閱讀-----

由艾美.瓦格薩特(Amy J. Wagers)領導的哈佛大學團隊研究(註1)發現,將年輕老鼠的血輸入年長老鼠的體內,會使年長老鼠的肌肉和大腦出現了逆轉衰老的功效。他們從年輕老鼠的血液中分離出了一種GDF11因子,它可以活化心臟,也能提振肌肉強度和耐力,以及刺激大腦中的神經生長,而無細胞的血漿甚至可以改善空間記憶。

咦?那如果……這項結果在人體上也成立的話,不就……!科學家跟你想的也一樣噢!目前這個想法已經進入測試階段,試圖找出青年血液中可以對抗老化的因子。

延伸閱讀:注入新血:返老還童的關鍵?

參考資料:

-----廣告,請繼續往下閱讀-----
  • 註1:Sinha, M., Jang, Y. C., Oh, J., Khong, D., Wu, E. Y., Manohar, R., … & Wagers, A. J. (2014). Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science, 344(6184), 649-652.

13-2

Bye-bye,人類

今年有數個團隊的研究顯示,即使沒有人類的監督,機器人和機器人之間也可以合作無間。研究人員開發了一套新的軟體使它們可以利用感應器共同完成基本任務,對於未來世界趨勢可能全面機械化來說,這是十分重要的第一步。

還記得電影《機械公敵》(I,Robot)嗎?智慧型機器人的應用遍布未來人類的日常生活中,而在成為不可或缺的生活幫手的同時,機器人卻發展出了人類獨有、也是人類控制機械人的最後一道防線-心智。

而這也似乎是科學家所擔心的,電腦科學家史帝夫.奧姆亨卓(Steve Omohundro)《人工智能實驗與理論》期刊(Journal of Experimental & Theoretical Artificial Intelligence)的文章(註1)中預測:「軍事和經濟壓力促使自動機械系統迅速發展,具有自我意識的殺人機器將無可避免地造成人工智能終結者,結果給人類帶來滅亡。」

然而截至目前,電腦或機器人雖已經可以展現成年人的智力,甚至超越許多領域的頂尖高手,但要具備如一歲小孩的感知與運動能力,仍是十分的困難。在未來機械人高度發展的過程中,許多的倫理問題即將考驗著人類的智慧。

-----廣告,請繼續往下閱讀-----

延伸閱讀:程式碼就是法律:智慧財產權法 或 機器人三大法則?

參考資料:


13-1

晶片,下一個大腦

傳統電腦以美國數學家約翰.馮.諾伊曼(John von Neumann)所提出的理論結構為基礎,執行序列的邏輯運算(如試算表和文字處理),但卻無法解決海量數據如視覺資訊的處理。不過人類的大腦卻十分善於面對這項難題,數以千計的神經元藉由化學訊息互相溝通,使大腦的不同區域能夠分工並同時執行任務。

因此,IBM和其他公司的電腦工程師首次聯合推出了仿人腦的「神經」晶片TrueNorth,晶片包含了54億的電晶體和2.56億的「突觸」,可模擬人類大腦處理訊息,而這款晶片改變了以往電腦應付複雜工作的模式,發展出機器視覺以及環境監測,以達到提高效率卻低耗能的目的。

-----廣告,請繼續往下閱讀-----

延伸閱讀:更聰明的晶片–仿人類神經元的電腦晶片

參考資料:

等不及想知道更多傳送門:2014年10大科學重大突破(下)

文章難易度
李秋容
26 篇文章 ・ 0 位粉絲
愛吃愛玩愛科學,過著沒錢的快樂日子。

0

0
0

文字

分享

0
0
0
預測市場?預測股票?如何讓預測有更高的準確率?——《超越直覺》
一起來
・2024/05/04 ・1635字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

我們發現在足球賽中,只要知道一個簡單的訊息(主隊過去的獲勝機率超過一半),預測力就會明顯好過隨便亂猜。如果再加上第二個簡單的訊息(勝負紀錄較佳的隊伍會略占優勢),可以再進一步提升預測力。除此之外,你可能還想收集其他訊息,像是四分衛最近的表現、球隊有沒有傷兵、明星跑衛的花邊新聞,但這些資訊對預測的幫助不大。換句話說,預測複雜系統這件事依循著「收益遞減定律」:第一個訊息很有幫助,但很快就找不到有幫助的其他訊息。

對於某些事件,我們當然會非常計較預測的準確性,像是投放線上廣告或投資高頻交易(HFT),可能一天內就要預測數百萬、數十億次,而且金額相當龐大。投入極大心力與費用、運用最精細的運算模型來開發複雜的預測方式,在那種情況下或許值得。但在其他商業領域,例如製作電影、出版書籍到發展新技術,只需要一年預測數十次、頂多數百次,而且這不過是整個決策過程中的一部分。這時,我們只要借助相對簡單的方式,就可以讓預測臻至完善。

預測時,不該只根據一人的意見就做決定——尤其是你自己的意見。雖然人們善於察覺與特定問題相關的因素,卻往往不會評估因素之間的相對重要性。譬如,預測電影的首映週末票房時,你可能會認為一些變項都是高度相關,例如製作費、宣傳費、上映廳數、試映會評價。沒錯。但我們要如何權衡「評價不優」與「額外行銷預算:一千萬美元」之間的比重?這沒有一定答案。同樣,在決定分配行銷預算的方法時,要如何判斷多少人會受到網路或雜誌廣告影響,又有多少人會從親朋好友那邊聽到產品訊息?我們也不清楚。唯一知道的是,這些因素都可能相關。

圖/envato

你可能會以為,精準判斷應該是專家的強項。但正如泰特洛克的試驗結果,專家在量化預測上的表現,其實跟普通人一樣糟糕,甚至可能更糟。然而,我們依賴專家之所以會成效不彰,不是因為專家的預測力跟一般人沒兩樣。問題在於,我們通常一次只會諮詢一位專家(否則何必找專家)。但我們應該要綜合多人的意見(無論是專家或非專家)再取平均值。至於要如何達成?這其實沒那麼重要。

-----廣告,請繼續往下閱讀-----

儘管預測市場有各種花俏的噱頭與技術,表現也比民調這類簡單方式好一點,但這種微小差異,還不如採用某種方式簡單綜合許多觀點再取平均。或者,我們也可以直接根據歷史數據,評估各項因素的相對重要性——這實際上就是統計模型在做的事。我必須再強調一次,雖然複雜模型可能會比簡單模型好一點,但兩者的差異小到幾乎沒有差別。到頭來,模型跟群眾所能達到的預測目的都一樣。第一,這兩種預測方式都要靠人為判斷,確認哪些因素與預測相關。第二,兩者皆需要估計、權衡那些因素的相對重要性。正如心理學家羅賓.道斯所言:「訣竅在於,找到要注意的變項,然後知道如何加入它們。」

只要一直使用這個訣竅,一段時間後,就會知道哪一些預測的失誤率較小,哪一些較大。舉例來說,當你要預測一個事件的結果,假如其他條件都相同,那越早做預測的失誤率就越大。不管你用什麼方法預測電影票房,在「剛開拍」時會比「上映前幾週」時要難得多。同樣,如果你想預測尚未上市的新產品銷量,那準確度可能不會高過預測已上市的產品。

你無法解決這個問題,唯一能做的只有:使用其中一種方式,或甚至結合幾種方式,就像我們研究預測市場時的方法,然後隨時觀察、記錄預測的表現。我在第 6 章開頭也提過,一般人通常不習慣追蹤自己的預測。我們做了大量預測,卻很少回頭檢視自己對了幾次。然而,留意並記錄預測成效或許才是最重要的事,唯有如此,你才能知道準確度是多少,進而知道自己預測的可信度。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

一起來
5 篇文章 ・ 1 位粉絲

0

0
0

文字

分享

0
0
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1095字 ・閱讀時間約 2 分鐘

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
三高肥胖注意心房顫動!心房顫動風險、治療解析
careonline_96
・2024/05/03 ・2162字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

林柏霖醫師:他是因為左腰痛,居然是心房顫動造成的血栓打到腎動脈,經過我們的團隊緊急將左腎血栓取出來之後,就接受冷凍導管消融術,最後回到正常心律。

劉育志醫師:大家好,我是劉育志醫師,歡迎林柏霖醫師來到照護線上。

林柏霖醫師:大家好,我是林柏霖醫師。

劉育志醫師:請問心房顫動好發在哪些族群?

林柏霖醫師:特別是年長者,或者是有三高患者,特別是像高血壓、心臟衰竭。還有甚至像是甲狀腺亢進,或者是最近非常熱門的議題,就是肥胖,也是一個危險因子。

-----廣告,請繼續往下閱讀-----

劉育志醫師:請問心房顫動在台灣的盛行率為何?

林柏霖醫師:在台灣的盛行率大概是 1-2%。特別是台灣要進入到高齡化的社會,會隨著年紀越來越高的時候,它的風險性,它的盛行率也會越來越高。

劉育志醫師:請問心房顫動可能出現哪些症狀?

林柏霖醫師:大部分大概 20% 的病人可能會沒有症狀。但是因為當心房顫動發作的時候,心跳速度會快快慢慢,會出現不一樣的症狀。特別像腦部可能就會頭暈;心臟來講可能就會有喘、胸悶、心悸等等的症狀;其中最嚴重的併發症就是血栓,因為心房顫動一旦發作的時候,它的左心房的速度會到 400 到 600 下左右,會造成血液在我們左心房滯留進而產生血塊。如果血塊打到腦就是俗稱的中風,打到心臟就是心肌梗塞,打到腳就是我們常見的腳中風。

-----廣告,請繼續往下閱讀-----

劉育志醫師:請問要如何及早發現心房顫動?

林柏霖醫師:在醫院上面來講,我們有傳統上 12 導程的心電圖或者是有 24 小時的霍特心電圖,甚至我們的節律器或者是我們植入性的心臟監測儀都可以發現。但是如果在居家的時候,我們有一些血壓器也具備心律不整的監測功能,或是現在非常流行的智慧型手環或手錶也都有類似這樣的功能。

劉育志醫師:請問目前主要的治療方式為何?

林柏霖醫師:心房顫動的治療方式,我們通常用 ABC 的一個 Pathway。A 就是抗凝劑;B 就是 Better Rhythm Control,我們可以用藥物或者是手術的方式來治療心律不整,特別是心房顫動,包含手術方式就是有傳統的電燒手術或者是冷凍導管的消融術;C 就是 Comorbidity,就是同時有心房顫動的時候,我們要治療他的共病症,包含三高。

-----廣告,請繼續往下閱讀-----

劉育志醫師:請問手術治療會如何進行?

林柏霖醫師:我們會半身麻醉,特別是我們從腳的股靜脈會伸導管到我們的右心房,必須從右心房再做一個穿刺到左心房。傳統上來講,就是過去的傳統電燒是用點狀燒,燒我們的四個肺靜脈,可能會耗時比較久。如果我們是心室的冷凍導管消融術,他是用氣球,就是放到我們的肺靜脈,他會造成一個連續性電訊號的破壞。

劉育志醫師:請問冷凍導管消融術的成效與安全性?

林柏霖醫師:傳統電燒手術是我們用點狀的電燒。新式的冷凍導管消融術,他是用一個球狀,注入液態的一個冷凍劑,可以讓球囊的溫度下降到零下 30 到 50 度,它會造成一個連續性的電訊號阻斷。它的優勢就在於它的手術時間會縮短到一半,大概約兩個小時左右,所以手術時間短,它的安全性就會提高,也可以降低病人在手術時間,因為時間過久而造成不適感。

-----廣告,請繼續往下閱讀-----

劉育志醫師:針對手術治療心房顫動的時機,醫師會如何建議?

林柏霖醫師:我想給大家一個觀念就是 Early,就是早期診斷跟早期治療。早期診斷可以利用很多健康檢查的方式,去提早發現心律不整;早期治療就是說,當如果已經有心房顫動,特別是陣發性的心房顫動,或者是心房顫動已經造成有症狀了,或者是這個是很早期的時候,可以去利用藥物或甚至是用手術的方式,把這樣的心房顫動解決掉。

林柏霖醫師:我想跟大家分享一個特別的案例,是一位 40 歲的男生。到我們醫院的時候,他是因為左腰痛,居然是心房顫動造成的血栓打到腎動脈,經過我們的團隊緊急將左腎血栓取出來之後,就接受冷凍導管消融術,最後回到正常心律。因為這樣可以降低他未來再血栓的風險。

林柏霖醫師:心房顫動會造成五倍以上的中風率,所以它其實是一個非常需要大家重視的疾病。特別是在年輕人,或者是你本身已經是陣發性的心房顫動合併有症狀的時候,更應該要及早去做診斷跟治療。

-----廣告,請繼續往下閱讀-----

劉育志醫師:感謝林醫師來到照護線上,我們下次再見,掰掰。

林柏霖醫師:掰掰。

討論功能關閉中。