0

0
0

文字

分享

0
0
0

鳥的眼睛有多敏銳?-《鳥的感官》

貓頭鷹出版社_96
・2014/05/19 ・3660字 ・閱讀時間約 7 分鐘 ・SR值 487 ・五年級

-----廣告,請繼續往下閱讀-----

201405鴨子的眼睛在腦袋兩側,牠看到的影像是一個還兩個?灰林鴞的大眼睛跟我們一樣都朝著前方,跟我們一樣只看到一個影像嗎?英國伯明罕大學的馬丁花了多年的時間測量不同鳥種的3D視野,發現視野可以分為三大類。

第一類為典型的鳥兒,例如黑鶇、鴝和鶯:部分的前方視野,以及絕佳的側向視野,但(跟我們一樣)看不到背後的東西。想不到的是,這一群的鳥兒幾乎都看不到自己的喙尖,但有足夠的雙眼視覺來餵食小鳥和築巢。

第二類則包括鴨子和山鷸之類的鳥,眼睛在頭兩側比較高的地方。牠們看不太到前方的東西,大多數也不需要看到喙尖,因為進食時會仰賴其他的感覺,但牠們上方和後方則有全景視野,以便於偵查是否有敵人接近。耐人尋味的是,雙眼看到的東西幾乎不重疊,或許鳥兒會看見兩個分開的影像。

第三類則是貓頭鷹之類、跟人類一樣雙眼向前的鳥。人類非常仰賴雙眼視覺來察覺深度和距離,因此會自動假設其他生物也以同樣的方式受惠。我們賦予貓頭鷹很重大的意義,或許正因為人類對雙眼視覺的依賴,而貓頭鷹能用兩隻眼睛看著我們的一雙眼睛。但外表會騙人,事實上貓頭鷹雙眼所構成的角度比外表看起來更大,所以牠們雙眼視覺的重疊比我們小得多。很多人認為,貓頭鷹適應了夜行生活後,雙眼才會向前,事實並非如此。很多貓頭鷹當然是夜行性動物,但具有第三類視野跟在黑暗中生活沒什麼太大的關係:油鴟和夜鷹屬夜行性,卻有第二類視野。貓頭鷹的眼睛為什麼朝前,馬丁有個很有趣的想法。他認為這是因為貓頭鷹為了在光線不足的時候飛行,所以需要很大的眼睛,再加上牠們需要很大的外耳孔(下一章會討論),頭顱上只剩朝前的地方可以放眼睛。「還有哪裡可以去呢?」他問。你可以從貓頭鷹的耳孔裡看到眼睛的後方,就說明了牠的頭上沒有地方可以同時放下眼睛和耳朵(還有大腦)[1]!

-----廣告,請繼續往下閱讀-----

跟我同一代的讀者若於一九六○年代在英國受教育,就會記得學校很早就把人類眼睛的基本結構灌輸到我們腦海裡:球形器官,直徑大約二.五公分;可讓光線進入的開口(虹膜);可將光線投射到視網膜前的水晶體,視網膜則是眼睛後方的光感覺螢幕。來自視網膜的資訊透過神經網路傳輸,通過視神經到達大腦的視覺中心。我們甚至解剖了牛眼,現在回想起來,那時候還真年少呢:我可著迷了!

研究人員一開始研究鳥類的眼睛,並和人類眼睛比較時,發現了幾處顯著的差異。首先,有些鳥類的眼睛比我們的瘦長,例如大型貓頭鷹。十九世紀有位偉大的鳥類學家紐頓(一八二九至一九○七)說鳥類的眼球就像「觀劇望遠鏡粗短的鏡筒」[2]。第二個差異則是鳥類多了一層半透明的眼瞼,數百年來,養過鳥的人都知道。亞里斯多德提過,腓特烈二世在鷹獵術手冊中也提過:「為清潔眼球,有層特別的膜能快速蓋過前方的表面,又快速拉回。[3]」讓人意外的,這層額外的眼瞼首次正式出現在文獻上,跟一隻獻給路易十四的鶴鴕(食火雞)有關,而那隻鶴鴕於一六七一年死在凡爾賽宮的動物園裡[4]。雷和威勞比在他們一六七八年的那本鳥類百科全書裡寫道:「或許有些例外,但大多數鳥兒都有一層瞬膜……可隨心所欲用來蓋住眼睛,而眼瞼仍保持開啟……並用來擦拭和清潔,也可發揮溼潤之效……」瞬膜一詞來自拉丁文的 nictare,眨眼睛的意思。我們人類的瞬膜只剩下眼頭內側粉紅色的一小片[5]。

鳥類的瞬膜在眼瞼下方,在照片中最容易看見。如果你在動物園近距離拍鳥的照片,我打賭你一定會拍到鳥兒的眼睛看似乳白色,不知怎地有點朦朧,但在拍照時卻看起來好好的。通常,模糊不清是因為眼睛上的瞬膜快速水平或斜線移動,快到幾乎看不見,但照相機卻能拍得到。腓特烈二世也發現,瞬膜能夠清潔眼部,也能提供保護。每次鴿子低頭啄地上的東西,瞬膜就會在眼睛上移動,免得眼睛被樹葉或草刺到。猛禽在撞到獵物身上的時候,瞬膜會立刻蓋住眼睛,鰹鳥在衝入水中的時候,瞬膜也一樣會蓋上。

人類跟鳥類眼睛的第三個差別則是叫作梳膜的結構。因為很像梳子(拉丁文的 pecten)而得名,應該是在一六七六年由貝侯(一六一三至一六八八)發現,他是法蘭西學術院數一數二的解剖學家[6]。梳膜顏色很深,外表有皺褶,鳥種不同,皺褶數也不一樣,從三到三十都有。曾有一度,鳥類學家希望梳膜或許能跟其他結構特性一樣,提供重大的資訊,告訴我們不同種間有什麼關係。事實不然。然而,在猛禽般視力最為敏銳的鳥兒身上,梳膜是最大最複雜的。的確,一開始大家以為鷸鴕完全沒有梳膜,但在二十世紀早期,伍德發現鷸鴕有梳膜,其構造非常簡單[7]。

-----廣告,請繼續往下閱讀-----

乍看之下,梳膜像根粗大的手指頭,伸到眼後房中,看似對視線並無幫助,反而會造成阻礙。但是細看之後,包括伍德在內的解剖學家才發現它的位置很巧妙。梳膜的陰影會落在視神經上,也就是視網膜的盲點上,因此不會阻礙視覺。梳膜有什麼用途?為什麼我們沒有呢?鳥類的梳膜似乎會為眼後房提供氧氣和其他養分。與人類和其他哺乳類不同的是,鳥類視網膜中沒有血管,而由一團血管組成的梳膜就是很聰明的供氧裝置。除此之外,皺褶也增大了表面積,讓眼睛內的氣體得以交換(吸入氧氣,吐出二氧化碳),眼睛便能呼吸。

人類的中央窩,也就是眼睛後方影像最鮮明的重點部位,是在一七九一年發現的。接下來,形形色色的動物體內也發現了中心凹,但要到了一八七二年,人類才找到鳥類的中央窩[8]。過了不久便有人注意到,雖然大多數的鳥兒跟人類一樣,只有一個圓形的中央窩,但蜂鳥、翠鳥和燕子,以及猛禽和伯勞鳥,都有兩個。值得注意的是,包括家雞在內的少數幾種鳥則完全沒有中央窩。有些鳥有線狀的中央窩,也有些鳥兩者兼具。包括大西洋鸌在內的許多海鳥則有水平的線狀中央窩,應該可以用來偵測地平線。

隼、伯勞鳥和翠鳥之類的鳥類體內所擁有的兩個中央窩,分別稱為淺中央窩和深中央窩[9]。淺中央窩和只有一個中央窩的鳥兒眼球內的一樣,提供單眼視覺,主要是看近距離的東西。然而,深中央窩則在頭側呈四十五度角,構成視網膜上的球狀凹陷,作用像望遠鏡頭裡的凸透鏡,有效增加眼球的長度和放大影像,提供很高的解析度[10]。深中央窩在眼睛裡的位置也表示猛禽有某種程度的雙眼視覺,能幫牠們判斷出迅速移動的獵物距離有多遠[11]。如果你觀察過圈養的猛禽,會發現牠們看著你走過來的時候,會上下左右移動頭部。這是因為牠們在切換兩個中央窩上的影像,淺中央窩負責特寫,深中央窩負責距離。跟我們的眼睛相比,鳥類的眼睛在眼窩裡比較固定(空間和重量的限制,減少了移動眼睛所需要的肌肉,省下不少重量),因此日行性猛禽和夜行性的貓頭鷹在細細查看時,特別需要轉動頭部。

鳥類眼睛的大小跟基本構造只提供了一些資訊,但視網膜的顯微構造透露了更多。猛禽絕佳的視力主要是因為視網膜中的感光細胞密度很高。感光細胞也叫光感受器,有兩種主要的類型:桿狀細胞和錐狀細胞。桿狀細胞可以比擬成老派的高速黑白底片:能偵測很低的光度。另一方面,錐狀細胞則像低速(ISO,感光度)的彩色底片(或數位相機上的低ISO設定):高清晰度,在明亮的光源下表現最佳。

-----廣告,請繼續往下閱讀-----

我們只有一個中央窩,也就是視網膜上稍微凹陷的地方,這裡的錐狀光感受器非常密集,每個光感受器都有自己的神經細胞,傳輸資訊到大腦。在眼睛裡的其他地方,每個光感受器(同時包括桿狀和錐狀)則共用神經細胞,就像很多人透過同一條電話線把電腦連到網路上─慢到令人沮喪。中央窩內光感受器和神經細胞一對一的關係,表示錐狀細胞會將獨立的訊息送到大腦,提供來源更加準確的信號,並解釋了為什麼中央窩是解析度最高和彩色成像的地方。

有好幾個因素影響了鳥兒能看見什麼:眼睛的宏觀結構跟大小、視網膜光感受器的密度和分布,以及大腦如何處理從視神經傳來的資訊。雖然三個因素彼此相關,只看其中一個因素,並不能完全看出鳥類的視覺敏感度,或是鳥類能看得多細。

日行性猛禽的眼睛具備出色的視覺敏銳度─能明察秋毫。另一方面,貓頭鷹的眼睛具備出色的感光度─能在昏暗的光源下看得一清二楚。沒有眼睛能兩者兼具,就像照相機不能同時具備廣角和景深。物理定律就是這樣。視覺生物學家馬丁和歐索里歐說:「這兩種基本的視覺能力(感光度和敏銳度)之間總有取捨:如果影像中的資訊量很少(由於光線不足,視覺資訊稀少),解析度就不高;就算是眼睛本身能達到很高的空間解析度,在暗淡的光線下仍做不到。[12]」視覺敏銳度以眼睛的基本構造為基礎,包括大小(因為這決定了投射到視網膜上的影像大小)和視網膜本身的設計。可以拿照相機來打比方:鏡頭的品質決定影像的品質,底片的感光度(顆粒)或數位相機上的ISO設定決定重現影像的正確度。猛禽視網膜中的錐狀細胞占了優勢,尤其在每個中央窩裡面,每一平方毫米就有一百萬個錐狀細胞(人類大約只有二十萬個)。因此,猛禽的視覺敏銳度大概超過人類的兩倍。

 

摘自PanSci 2014五月選書《鳥的感官》,由貓頭鷹書房出版。

-----廣告,請繼續往下閱讀-----

註:

  1. Martin (1990).
  2. Newton (1896: 229).
  3. Wood and Fyfe (1943: 60).
  4. Perrault (1680).
  5. Ray (1678).
  6. Perrault(1676,Cole (1944) 曾引用並圖解說明)。
  7. Newton (1896); Wood (1917).
  8. Soemmerring – 在Slonaker (1897) 中引用。
  9. 也稱為顳部的和外側的;深中央窩和淺中央窩。
  10. Snyder and Miller (1978).
  11. 也請參見 Tucker (2000) 和 Tucker et al. (2000)。雙眼視覺(兩隻眼睛同時看著同一個物體)是否給鳥類深度知覺(立體影像),目前沒有答案 (Martin and Orsorio, 2008)。
  12. Martin and Osorio (2008).
文章難易度
貓頭鷹出版社_96
62 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
不為人知的鳥秘密?全都藏在羽毛裡——《五感之外的世界》
臉譜出版_96
・2023/09/19 ・2471字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

比孔雀還要顯眼、高調的鳥類並不多,但如果可以的話,我想請各位先忽略牠那華麗又色彩斑斕的尾羽。我們要將關注焦點放在孔雀頭上形成冠羽的那些硬挺羽毛。

細節藏在羽毛的「振盪頻率」裡

這些長得像鍋鏟的羽毛雖然也很醒目,卻常常被忽略。蘇珊.阿瑪德.康恩(Suzanne Amador Kane)從專門繁殖鳥類的鳥舍與飼養員那裡找來了一些孔雀,再加上一隻來自動物園、曾經不小心飛進北極熊圍欄裡的倒霉孔雀,想要研究孔雀冠羽的用途。

她的學生丹尼爾.凡.貝爾倫(Daniel Van Beveren)在孔雀冠羽上裝設了機械振盪器,並且觀察冠羽的擺動。當機器的振盪頻率為二十六赫茲時──也就是一秒振盪二十六次──冠羽擺動得特別劇烈。這是會令孔雀冠羽產生共鳴的頻率,也正好是雄孔雀求偶時擺動尾羽的頻率,因此康恩對我說:「這不可能只是巧合。」

孔雀冠羽產生共鳴的頻率,正好是雄孔雀求偶時擺動尾羽的頻率。圖/pexels

凡.貝爾倫對著架設好儀器的孔雀冠羽播放各種錄音,假如播出的是真正的孔雀搖動尾羽的聲音,冠羽就會產生共鳴;若是播放其他聲音,例如 Bee Gees 的〈Staying Alive〉,就沒有這種效果。

-----廣告,請繼續往下閱讀-----

該研究結果顯示,站在求偶的雄孔雀面前的雌孔雀或許真的能夠感知到雄孔雀尾羽製造出的氣流。除了看見雄孔雀賣力的求偶動作以外,雌孔雀或許也能感覺到這一番努力。(這種現象也會反過來,有時候雌孔雀也會對雄孔雀展現自己。)

康恩想要拍攝真實的孔雀求偶時冠羽的模樣,觀察牠們擺動冠羽的頻率是否真和尾羽相同,藉此證明她的論點。假如真是如此,就表示孔雀求偶的過程中除了有浮誇的視覺效果以外,其實還存在著人類一直以來都沒注意到的元素;而我們會忽略這些細節,是因為缺少適當的配備。

假如連大自然中如此耀眼浮誇的行為展演中,都有被我們忽視的環節,我們到底還錯失了多少東西?

孔雀細小的纖羽會告訴我們答案

從孔雀冠羽底部細小的纖羽(filoplume)就能找出線索。纖羽的樣子就像一根尖端為簇狀的茅,還能做為機械性受體之用。

-----廣告,請繼續往下閱讀-----

當空氣流動擾動了冠羽,便會擠壓到纖羽,進而觸發神經。大部分的鳥類都有纖羽,而且幾乎都會伴隨其他羽毛一起發揮作用。

鳥類可以透過纖羽掌控羽毛的狀態,因此或許能夠在鳥羽澎亂時即時整理羽毛,重整態勢。不過纖羽還有一項最重要的功用──幫助鳥類飛行。

從孔雀冠羽底部細小的纖羽就能找出線索。圖/pexels

避免失速墜落技巧

鳥飛行的樣子看起來是如此地輕鬆自在,因此我們很可能根本想不到那是一件多費力的事。為了維持在空中飛行,鳥必須一直調整翅膀的型態與角度。如果一切都對了,氣流就能順著翅膀流動,鳥類的身體也就能順利抬升至空中。

然而如果鳥的翅膀角度太大,原本順暢的氣流會形成擾流,抬升的力量也就隨之消失,這種現象叫做失速(stalling)。一旦鳥無法避免這種狀態產生或即時修正,就會從天上掉下來。不過這不常發生,一部分原因是因為纖羽能為鳥類提供必要資訊,因此能夠因應各種情況快速調整翅膀的狀態,避免不幸。

-----廣告,請繼續往下閱讀-----

老實說,這種能力實在相當驚人。我記得有次站在船上看著一隻海鷗緊跟船身飛行;那天風很大,而我們──也就是我坐的船和那隻海鷗──都在高速移動。當我伸出手感受從手上與指間吹過的風時,不禁讚嘆海鷗的翅膀竟然也能產生同樣的作用,讓鳥類能夠在天空中飛翔。

如果一切都對了,氣流就能順著翅膀流動,鳥類的身體也就能順利抬升至空中。圖/pexels

然而我當時我根本不知道鳥類還會運用纖羽判讀氣流,在飛行時不斷微調姿態。法國的眼科醫師安德烈.羅尚-杜維尼奧(André Rochon-Duvigneaud)曾描述鳥是「一對靠雙眼引導方向的翅膀」,不過這個說法還不夠正確──鳥的翅膀其實會為自己找到方向。

蝙蝠翅膀長得不一樣,功能卻一點都不差

蝙蝠的翅膀也是如此。牠們翅膀的薄膜雖與鳥羽構造大不相同,敏感度卻不相上下。蝙蝠的翅膀薄膜上布滿有敏銳觸覺的毛髮,這些毛髮從小小的半圓球狀上凸出,並且連接著機械性受體。

蘇珊.斯德賓發現這些毛髮大多數只會對來自蝙蝠背後往前吹拂的氣流有反應,而這種現象通常在蝙蝠快要失速時才會出現。因此蝙蝠其實就跟鳥類一樣,都能感覺出快要失速的狀態,也能夠及時採取行動修正。

-----廣告,請繼續往下閱讀-----

多虧這些毛髮,蝙蝠能以陡峭的角度飛行、在空中盤旋和後空翻,捕捉在尾巴附近的昆蟲,甚至還能以頭下腳上的姿態降落。當斯德賓以除毛膏去除蝙蝠翅膀上的毛髮,並讓牠們飛過障礙物後,可以發現毛髮消失對牠們產生的影響非常明顯。

蝙蝠翅膀的薄膜雖與鳥羽構造大不相同,敏感度卻不相上下。圖/pexels

牠們雖然不會墜落,卻會選擇與周邊的物體保持相當的距離,轉彎的角度也比平常更大,姿態更笨拙;反之,假如牠們翅膀上的毛髮完好無缺,就能夠以離物體僅僅幾公分的姿態飛行,還能做出過髮夾彎一般的飛行動作。

對牠們來說,氣流感受器的存在與否決定了牠們只能用一般方式飛行,還是能夠進一步做出各種飛行特技。

對於其他動物來說,這些感受器的存在很可能更是存亡與否的關鍵。這或許就是為什麼它們會演變為這世上數一數二敏感的器官。

-----廣告,請繼續往下閱讀-----

——本文摘自《五感之外的世界:認識動物神奇的感知系統,探見人類感官無法觸及的大自然》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

臉譜出版_96
84 篇文章 ・ 254 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

0
1

文字

分享

0
0
1
人類是少數能看見斑馬條紋的物種!人類的視力到底有多好?——《五感之外的世界》
臉譜出版_96
・2023/09/18 ・1882字 ・閱讀時間約 3 分鐘

長久以來,生物學家一直都在探討為什麼斑馬會有如此奇怪的黑白斑紋,直到他們談話的當下,卡羅依然在探究這個問題。他告訴梅林,其中最早出現、最廣為人知也令人意外的推測,是認為這些斑紋其實是斑馬的保護色。斑馬身上的黑白條紋毛色能夠擾亂掠食者(如獅子、鬣狗)的視線,讓牠們看不清楚斑馬的輪廓,也可以讓斑馬的身影融入周遭聳立的樹木之間,又能夠在斑馬跑動時讓其他動物感到視線模糊。

斑馬身上的斑紋在其跑動時會讓其他動物感到視線模糊。

但梅林對這些說法抱持著存疑的態度,她回想自己當初的反應:「我那時候表情應該很怪。我對他說:『大部分的肉食性動物都是在夜晚獵食,而且牠們的視覺根本不如人類靈敏,因此很有可能根本看不到那些斑紋。』」提姆這時驚訝地忍不住脫口而出:「什麼?」

斑馬紋隱身術

人類視覺處理細節的能力幾乎比其他任何動物都來得好;梅林也發現,正是因為這種特別敏銳的視力,人類才成了少數能夠看見斑馬條紋的物種。她和卡羅找了個光線明亮的日子,計算出擁有絕佳視力的人類能夠在一百八十二公尺左右之外的距離就分辨出斑馬身上的黑白條紋,獅子則得拉近到八十二公尺左右的距離才看得出來,鬣狗更是要到四十五公尺左右的距離才看得清楚。一旦到了掠食者最常打獵的黃昏或清晨時分,牠們則得再拉近約莫一半的距離才能看見斑馬身上的紋路。

所以梅林的想法沒錯:斑馬身上的條紋不可能是牠們用來匿蹤的保護色,因為掠食者都得靠得很近才看得到這些紋路,然而假如真的距離這麼近,這些天生的獵人早就聽見或聞到斑馬的蹤跡了,實在無需仰賴視力。在肉食動物與斑馬平時間隔的距離之下,這些紋路其實根本都融成了一片灰濛濛的顏色;對正在打獵的獅子來說,斑馬看起來跟驢子其實也沒什麼不同。

-----廣告,請繼續往下閱讀-----

人類其實視力超好的?

動物的視覺敏銳度以單位視角週期數(cycles per degree)為測量單位——這個概念剛好可以用剛剛的斑馬條紋來做例子。各位伸出手臂並豎起大拇指,你的指甲大約可以代表一單位視角;以你的手臂為距並涵蓋四周三百六十度的距離範圍來說,各位應該可以在指甲上畫了六十至七十條黑白條紋的情況下,依然辨識得出黑白條紋之間的區別。因此人類視覺敏銳度的單位視角週期數便約為六十至七十;目前的最高紀錄是來自澳洲的楔尾鵰(Aquila audax),牠們的視覺敏銳度之高,單位視角週期數高達一百三十八。

楔尾鵰擁有動物世界中最細的光受體,這也使牠們的視網膜裡可以密密麻麻地塞滿大量光受體;有了這些細窄的感光細胞,楔尾鵰敏銳視力的畫素大約是人類的兩倍,也因此可以在大約一點六公里之外的距離看見小小一隻大鼠。

然而老鷹和其他猛禽卻是少數視覺比人類敏銳得多的物種。感官生物學家愛倫諾.凱福斯(Eleanor Caves)搜羅了上百種動物的視覺敏銳度,發現人類的視力幾乎超越了所有物種。除了猛禽以外,就只有其他靈長類動物的視覺敏銳度能與我們比肩了。

人類的視力幾乎超越了所有物種。圖/pixabay

各種動物的視覺敏銳度以單位視角週期數表示如下:章魚為四十六、長頸鹿為二十七、馬為二十五、獵豹為二十三,視力表現還算不錯;而獅子卻只有十三,僅略高於人類法律中定義為全盲的單位視角週期數:十。然而其實除了上述物種之外,大部分動物的視覺敏銳度都低於人類視為全盲的門檻,其中包括半數的鳥類(令人意外的是,蜂鳥和倉鴞都在此行列之中),大部分的魚類與所有昆蟲;例如蜜蜂的單位視角週期數竟只有一,這也就表示你伸出去的那隻大拇指在蜜蜂眼裡就代表著一個畫素,至於拇指上畫的其餘細節在牠們眼中都是一團模糊。另外還約有百分之九十八的昆蟲視力比這還要更弱。

-----廣告,請繼續往下閱讀-----

凱福斯說:「人類真的很怪。我們的其他任何感覺根本連摸都摸不到可以稱為頂尖的邊,卻唯獨在視覺敏銳度上傲視群雄。」矛盾的是,人類雖有優良的視力,卻也因此失去了能夠欣賞其他環境界的視野,因為「我們以為自己看得到的,其他物種一定也能看見;認為那些對人類來說顯而易見顯眼的事物,對其他動物來說也一定難以忽視。但實際上卻並非如此。」凱福斯如此說道。

——本文摘自《五感之外的世界》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

臉譜出版_96
84 篇文章 ・ 254 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。