Loading [MathJax]/extensions/tex2jax.js

1

2
2

文字

分享

1
2
2

未來的能源:核融合—《寫給未來總統的能源課》

azothbooks_96
・2014/04/02 ・3337字 ・閱讀時間約 6 分鐘 ・SR值 534 ・七年級

kk0371309有個笑話是這樣的:核融合是未來的能源,而且永遠都是未來 的能源。研究核融合的科學家和工程師痛恨這個笑話,他們覺得一 點也不好笑。

不幸的是,這個笑話是有歷史根據的,而且就建立在該領域的科學家們過於樂觀的預測上。早在1955年,印度籍的核子物理大師 霍米‧巴巴(Homi BhaBha)就曾經在一個國際研討會上說:「我大膽預測,我們在20年內就可以找到控制核融合反應以釋出能量的方法。到時候,就可以永遠解決全世界所面臨的能源問題。」【1】

這個預測已經過了將近60年。 根據目前的預測,核融合發電應該會在20年內實用化。這個預測會成真嗎?我認為會,而且應該就在這個世紀結束前。在我們的 有生之年可能就會看到核融合成為主要的商業發電方式,雖然它的發展太緩慢,無法解決我們在能源安全和全球暖化上的燃眉之急。

為何科學家過去會這麼樂觀?核融合反應是太陽的能量來源, 核融合的支持者喜歡強調這點,因為這讓核融合看起來非常自然。 太陽的燃料是一般的氫,宇宙中含量最多的元素。(這就是為何恆 星可以持續燃燒數十億年。)如果你以原子的數量而非總重量來看 的話,氫也是人體裡含量最多的元素。同樣地,以原子的數量來看,氫也是海洋中含量最豐富的元素。我們有用不完的氫燃料,至少幾百萬年內都不用擔心。【2】

-----廣告,請繼續往下閱讀-----

豐富的氫曾經是核融合比起核分裂最大的優點之一,但是後來 人們發現鈾的蘊藏量同樣足以讓我們用上幾百年。而且我們同樣有取之不竭的再生能源,至少只要太陽還在燃燒就不用擔心(目前估計太陽的壽命至少還有50億年)。

核融合的另一個優點是,就放射性而言,比較乾淨。核融合產生具危險性的核廢料非常少。但並不是完全乾淨的能源。最成熟以 及即將用在未來所有大型反應爐的氫核融合反應如下:

氘+氚→氦+中子

在水中就含有大量的氘,但是氚非常稀有。地球海洋中所含的氚只有16磅。核融合反應一開始所需的氚必須裝備在反應爐中,但是之後反應爐中就可以自行「增殖」:讓反應產生的中子轟擊鋰就可以產生氚。

-----廣告,請繼續往下閱讀-----

核融合反應所產生的氦既不危險,也沒有放射性,也是氣球裡填充的氣體。但是反應所放射出來的中子,雖然對氚的增殖也很重要,卻會造成問題。中子會被大多數的材料所吸收,而這些材料在 吸收了中子之後多半會變成具有放射性。雖然放射性很微弱,但是「仍然會產生一些放射性」這一點還是會成為反對者攻擊的目標。 這種恐懼部分源自人們無知地相信所有的放射性都是不好的,而且 以為我們可以也應該要將放射性完全從環境中排除。

還有一些核融合反應並不會產生麻煩的中子。其中最有趣的是氫與硼的反應:

氫+硼→3氦+伽瑪射線

伽瑪射線不會產生額外的放射性,只是單純攜帶能量。所以這種反應相對而言似乎比較乾淨,至少對恐懼放射性的人來說。不幸的是,要啟動這種反應的困難度高上許多,需要更高的觸發能量,因此大概不會是第一個實用化的技術。在下一節裡我會談到一間正在開發這種技術的公司,這間公司的名字三阿法能源公司(Tri Alpha Energy)就是從三個氦而來(氦原子核又稱為「阿法粒子」)。 最後,我們對核融合的未來感到樂觀的原因是,人類早在1953 年就已經成功在地球上製造出核融合反應,也就是氫彈。我們要做 的就是找出控制核融合反應的方法,可以用更緩慢而非爆炸的方式 來釋放出能量(雖然有人主張可以把許多氫彈放在地底下,在需要的時候引爆,讓水汽化以驅動渦輪)。科學家提出了許多種控制核融合反應以進行發電的方式。下面我會介紹五種最受矚目而且很適合解說的方法。分別是環磁機、國家點火設施、離子束融合、緲子融合與冷融合。

-----廣告,請繼續往下閱讀-----

環磁機

環磁機(tokamak)是前蘇聯在1950年代所發明,原文名稱是「電磁線圈所形成之超環面腔體」(toroidal chamber with magnetic coils)的俄文縮寫。科學家很快就發現環磁機的設計優於其他的方式;過去60年間,環磁機是吸引了最多注意力與最多研究資源的核融合控制技術。

環磁機使用的是極高溫下的核融合反應,也就是所謂的「熱核融合」,與太陽核心以及氫彈內的反應相同。兩個氫原子核碰在 一起時就會發生核融合反應;強大但短距的核力(nuclear force)會 將兩個氫原子核融合在一起並且釋放出能量。問題是兩顆氫原子都 帶正電,因此靠近時會產生非常強的排斥力。在熱核融合裡,高溫 能克服這種排斥力。原子在高溫下會進行高速運動,當速度足以克服排斥力時,核融合反應就會發生。太陽核心的溫度據估計大約是1500萬度。【3】

jet_tokamak_plasma_overlay_1
ITER的最新型環型機

環磁機內部的核融合反應所需的溫度高達1億度,是太陽核心溫度的7倍!溫度這麼高是因為我們的耐心有限,希望能夠快速產生能量。太陽內部製造能量的速率非常低─即使核心中最熱的部 分也只有0.3瓦/公升。這個值比你的身體釋放出來的能量密度還要低(體重75公斤的成人平均會釋放出75瓦的能量,即1瓦/公升)。 太陽巨大的體積再加上所有的熱最後都會擴散到表面,彌補了低能 量密度。但是環磁機的體積有限,所以必須用更高的溫度,以及更容易反應的燃料(氘和氚,而不是一般的氫)來提高核融合的速 率。這些重氫的原子核裡含有額外的中子;中子不會影響排斥力的 大小(因為不帶電),但是會增加核力,從而提高原子核融合的速率。

在溫度高達數百萬度的環磁機裡,沒有東西能維持固態,那我們要如何讓氫在其中反應呢?答案是使用一個以磁場而非物質所形成的容器。這種方式叫磁場局限(magnetic confinement)。這種「磁容器」應該長成什麼樣子並不是那麼顯而易見,而早先嘗試的結果都太過易漏。雖然環磁機也會滲漏,但是滲漏的速度緩慢,因此我們希望氫能夠在其中停留得夠久以進行熱核反應。

-----廣告,請繼續往下閱讀-----

環磁機雖然穩定地取得成功但是進展緩慢。每當密度和溫度 提高時,都會產生新的滲漏問題。但是系統越來越大時,這些問題 便消失了,因為尺寸本身就有助於控制滲漏。最新型的環磁機是國際環磁機實驗反應器(International Tokamak Experimental Reactor,ITER,如圖表III.14)。它原本的名字是國際熱核反應器,但是其中的「核子」嚇壞了很多人)。國際環磁機實驗反應器的目標是產生400秒以上功率500MW的能量,這個能量是環磁機運轉所需能量的10倍。 國際環磁機實驗反應器非常地巨大(60英呎,也就是18公尺高)且昂貴,而且已經嚴重透支最 初預估的成本。它原本估計的 建造成本是50億歐元;到了2009年,這個數字已經上升到100億歐元;一年後更增加到150億歐元。預算追加的幅度比實際的成本還嚇人。如果實驗反應爐這麼昂貴,核融合真的會有競爭力嗎?科學家嘗試刪除一些次要的研究計畫來削減成本,如減少輻射損傷的檢測,但是這種作法令其他的科學家憂心忡忡。他們擔心減少這些檢測,可能會在未來造成更大的問題。如果因輻射而受損的爐壁必須經常更換的話,環磁機的成本大概永遠也降不下來。

根據表定的時程,環磁機將在2019年開始進行熱氣體注入測試,然後在2026年開始進行氫燃料核融合反應,最後在2038年完成計畫目標。到時結果具說服力的話,可能會接著展開商用反應爐的設計。 能源科技經常會遇到一個問題。當這些科技還很遙遠且抽象以取代鈾核分裂,但更加乾淨的能源。但是當一項新技術快要成真時,有時會被重新檢驗並遭到否決。綠色和平組織最近決定反對 國際環磁機實驗反應器,原因是它的造價過於昂貴。綠色和平說, 即使它真的能運作,仍要耗費數十年才能商用化來回應全世界的能源需求(正確無誤)。他們擔心一座無法在未來幾年做出貢獻的機 器,可能無法阻擋全球暖化,因此應該把這些經費花在風力、太陽能以及其他很快就能實用化的再生能源。

(全文未完)

 

註:

-----廣告,請繼續往下閱讀-----
  1. 霍米巴巴在聯合國於1955年在日內瓦舉辦的「Atoms for Peace」研討 會的主席致詞時作出了這個預測。演說全文可參考Bhabha and His Magnificent Obsessions, by G. Venkataraman (Hyderabad, India: Universities Press, 1994)
  2. 第一代的核融合發電廠可能會以氘和氚,而不是一般的氫為燃料。氘是重氫,它之所以比較受重視,是因為原子核裡多了一顆中子。雖 然氘的含量只有一般氫的1/6240,但是可以便宜的方式從水中分離得到。氚是更重的氫(多了兩顆中子),而且非常稀少,因為具有放射性,而且半衰期只有12年;海水中的氚總共只有大約16磅。但是讓核融合電廠中所釋放的中子拿來撞擊鋰靶就可以製造出氚。
  3. 提供我們光亮的太陽表面溫度遠低於核心,只有大約6000度。但是它 擁有來自內部炙熱核心的所有能量。太陽表面不會產生核融合反應, 因為溫度太低了。

 

摘自PanSci 2014四月選書《寫給未來總統的能源課》,由漫遊者文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

15
9

文字

分享

0
15
9
太空種電?不受天氣影響的發電廠登場,人類將迎來能源自由?
PanSci_96
・2023/08/12 ・4585字 ・閱讀時間約 9 分鐘

要核能、綠能、還是天然氣?大家不用吵了,因為讓我隆重介紹,宇宙太陽能準備登場,地球將進入能源自由,人類文明將邁入下一個時代!

雖然只是邁入第一步,但我沒有在開玩笑,美國、日本、歐盟、英國都陸續展開宇宙太陽能計畫,預計在太空中布下大量太陽能板,將取之不盡的能量,不分晝夜、不分天氣地將能量源源不絕的傳回地球。而且第一階段的測試,已經在宇宙中測試成功了!

宇宙太陽能真的可行嗎?我們離能源自由,還有多遠?

為什麼要去太空中進行太陽能發電?地面太陽能的困境

台灣要選擇哪種能源配比,各方論點各有道理。而同樣的問題,不只是台灣,對世界各國來說都是爭論不休的議題。面對這樣的困境,竟然有人提議往太空探索,去太空中進行大規模太陽能發電,並將能量傳回地球,成為宇宙太陽能電廠,一舉解決所有能源問題。可是就算不去太空,在地面上的太陽能近年來成長迅速,安裝量和產量都持續增加,為什麼非得跑到太空中去做一樣的事呢?

-----廣告,請繼續往下閱讀-----

雖然太陽能板的設置成本近年來降低很多,能不能穩定發電卻要看老天臉色,而且需要的佔地面積廣大。世界上只有少數幅員廣大,日照充足的國家可以打造 GW 等級的太陽能發電廠,像是印度,中國,以及中東地區。許多地方例如台灣,多以民間業者小規模發展為主,很難建設大規模的太陽能發電廠,如果要大規模使用農地、魚塭、屋頂種電,也有許多問題等待解決。

不過只要把太陽能搬到外太空,就可以大喊:「解開束縛、重生吧!太陽能,我還你原型!」

首先,太空中可以接收到更多的陽光。由於太空中沒有夜晚,所以軌道上的衛星幾乎可以 24 小時暴露在陽光之下。此外,太空中的陽光不會像地面上的冬天或傍晚,有傾斜入射的問題。太陽能板可以隨時指向太陽的方向,和太陽光的方向保持垂直,接受百分之百的陽光照射。根據計算,同一塊太陽能板放在太空中可以接受到的陽光量至少是地表的三倍以上。

地球上陽光傾斜入射的問題示意圖。圖/PanSci YouTube

另外,地球的大氣其實幫我們阻隔了許多陽光,保護地表上的我們不會被瞬間曬傷。就算是晴朗無雲的日子,大氣層還是會散射掉許多的陽光。太空中的太陽輻射比地表強上不少,大約多了 40% 左右。

-----廣告,請繼續往下閱讀-----

綜合前面所說的,只要把現有的光電材料放到衛星軌道上,就可以輕鬆獲得約四倍的發電量。此外還不需要任何占地,不會對環境生態帶來負面影響。

太空種出的電要怎麼運回地球?

你可能會好奇,在太空中收穫這麼多太陽能,要怎麼運回地球給大家使用呢?難道要存在電池裡再回收嗎?科幻大師艾西莫夫早在 1941 年就想過這個問題了。在他的短篇小說《理性》中,各個太空站會再收集太陽能之後,用微波光束將能量傳送至不同行星,也就是遠距無線傳輸能量。

雖然這種技術在當時屬於科幻情節,但現在的我們知道這樣的技術在原理上可能辦到的。在我們介紹無線獵能手環那集,我們有提到電磁波傳遞能量的問題,就是能量會以波源為中心向外發散,並且能量隨著距離快速衰減。想要高效率傳輸能量,如果不想接條線,就必須使用指向性的波源,將能源都集中到一點。

現在,我們使用多個天線組成陣列,並調整他們的相位,讓各個天線發出的微波產生干涉,形成筆直前進的單方向微波束,將能量精準發射到遠處的一個點。除此之外,因為選擇的電磁波頻段是微波,就像手機訊號可以穿過牆壁到你的手機一樣,特定頻率的微波也能穿透大氣層或雲層的阻擋。即使地球上的我們是下雨天,宇宙太陽能仍能透過微波將能量傳至地表,大幅降低天氣造成的影響。

-----廣告,請繼續往下閱讀-----

所以,只要把所有太陽能板發射到地球同步軌道上,讓它們在軌道中展開,組裝成大還要更大,邊長長達數公里的超大太陽能板。這樣空中太陽能發電廠就會一直維持在天空中的某一點,地面的我們,只要蓋個微波接收站就可以了。當然要將所有設備發射到地球同步軌道上所費不貲,較可行的做法是先用火箭將衛星射入高度較低的低地球軌道中,再利用衛星本身的離子噴射等方式把自己慢慢推到地球同步軌道。

太空太陽能發電廠概念圖。圖/Space.com

這個主意,在 1968 年工程師 Peter Glaser 就在 Science 期刊上提出,還向美國政府申請了專利。當時,美國能源局和 NASA 也覺得這個概念挺「有趣」的,針對宇宙太陽能做了一系列的調查並提出了正式的可行性報告。不過當時各方面的技術未成熟,無法進行測試。最重要的是,要把一整個太陽能發電廠射到太空,實在要花太多錢,產出的電根本就不敷成本。

好消息是,太空運輸成本近年來已經降低很多。SpaceX 的獵鷹九號火箭將每公斤物質運到低地球軌道的成本,只需要約三千美元,是過去使用太空梭運載的二十分之一。這讓宇宙太陽能的可能性,從僅只於科幻,搖身一變成為潛力無窮的未來能源。

宇宙太陽能離我們有多遠?

從美國、英國、歐盟到日本,都已經放話要加入這場全新的太空能源競賽。領跑者之一是日本的太空機構,宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組,是有生之年就能看到的成果!

-----廣告,請繼續往下閱讀-----
從宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組。圖/PanSci YouTube

這個時程也不是信口開河,日本在 1980 年代左右便開啟了宇宙太陽能計畫。經過數十年的規劃與研發, JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。這個實驗相當重要,因為在發射成本的問題解決之後,宇宙太陽能要面對的下一個難題,就是如何有效地從外太空軌道遠距送電。雖然我們已經知道可以透過干涉的方法,讓微波束直線前進,但實際運作時,還是會有一個很小的發散角,不會完全平行。

JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。圖/PanSci YouTube

失之毫釐。差之千里。地球同步軌道離地表可是有三萬六千公里,小小的發散角到地面就會嚴重發散,地面的接收天線尺寸也不可能無限擴張。這任務的難度差不多等於要從操場的一端用雷射筆打到另一端的蚊子,非常困難。JAXA 的天線雖然目前還未達到需要的準度,但是發散角已經能控制在 0.15 度左右,足以從較低的低地球軌道傳輸能量回地球,做初步的測試。

從還處在規劃階段的日本,瞬間移動到地球的另一端,美國的研究團隊,在這個月已經宣布取得重大突破。加州理工學院的宇宙太陽能計畫在今年初,成功讓一個小型測試模組,乘著 SpaceX 的獵鷹 9 號前進低地球軌道,進行太空中的實際測試。這個小型模組包含三個小實驗。第一個實驗是測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。第二個實驗則是要在 32 種不同的光電材料中,找出哪種在太空中效果最好。第三則是要測試微波傳輸能量在太空中的可行性。

測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。圖/caltech.edu

就在今年的 6 月 1 號,團隊宣布他們設計的可彎曲天線陣列,在太空中成功傳送能量到三十公分外的接收天線,點亮了 LED 燈。雖然距離只有短短的 30 公分,但是整個實驗暴露在外太空的環境中進行,證明他們的設計可以承受最嚴苛的環境條件。做為測試,他們也嘗試讓天線發射能量到遠在地球表面,大學實驗室的屋頂上。並且,還真的被他們量測到了數值。儘管規模不大,但這是宇宙太陽能第一次的軌道測試,結果相當振奮人心。

-----廣告,請繼續往下閱讀-----
可彎曲天線陣列。圖/PanSci YouTube
右方為可彎曲天線陣列(發射端),左邊為接收端的 LED 燈泡。圖/caltech.edu

如此看來,技術的發展似乎相當樂觀。可是要用於民生發電,成本是很大的重點。宇宙太陽能真的符合經濟效益嗎?或是我們該把資源留給其他選項呢?

宇宙發電廠符合經濟效益嗎?

根據美國能源情報署 EIA 的資料,1GW 發電容量的發電廠,傳統燃煤發電廠的初期建設成本,大約是一千億台幣,核電廠大約是兩千億台幣。那宇宙太陽能呢?每 1kW 的發電需要二十公斤的材料,1GW 就需要兩萬公噸。目前 SpaceX 獵鷹重型火箭運送每公斤材料進入軌道,需要三萬台幣。也就是說,光是將設備全部送上太空的運輸成本,就需要六千億的驚人花費。再加上太陽能板與相關設備的建置成本,以地面型太陽能發電廠為參考的話,大概還要多花500億台幣。而 JAXA 方面的預估,打造第一座 1GW 宇宙太陽能至少需要一兆兩千億日圓,雖然比我們用獵鷹重型火箭預估的還要低,但仍是一筆龐大費用。

各種發電方式的成本與性能表現。圖/美國能源情報署 EIA

那宇宙太陽能真的只是將鈔票往太空撒,空有理想的計畫嗎?當然不是,有兩個讓科學家不放棄的理由——首先是未來建造成本一定會下修。太空的發射成本相比 50 年前,已經少了兩個零,在 SpaceX 的發展下,還在持續地快速減少。另一方面,太陽能材料的輕量化工程也持續在進行,每 kW 發電重量只有十公斤或以下的太陽能材料已經不是虛構。新式的太陽能材料,我們未來也會陸續介紹。這兩個因素加乘在一起,一兆兩千億日圓的成本,很有機會在幾年內就減少為十分之一或更少。

發射火箭的成本逐年降低。圖/futuretimeline.net

更重要的是,宇宙太陽能一但建置完成,就會成為可做為基載能源的再生能源,減少對石化燃料的依賴。甚至因為主要設備都在太空,地面只需要建設接收站,可能將解決許多偏遠地區的能源問題,一舉改變全世界的能源型態。而且與許多八字還沒一撇的發電方式相比,宇宙太陽能已經算是距離現實很接近的選項,也難怪各個國家紛紛搶著要發展這塊領域。不過雖說是永續能源,還是有許多方面值得深入研究。例如要把幾萬公噸的材料射到軌道中,需要排放多少的火箭廢氣?一但規模化,這些巨大的宇宙太陽能板是否會成為小行星的標靶,或在一次的太陽風暴過後,讓軌道中堆滿太空垃圾?

-----廣告,請繼續往下閱讀-----

宇宙太陽能究竟能不能成為可靠的新興未來能源,從想都不敢想,到開始精算成本,相信我們很快就會知道答案。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

1

14
4

文字

分享

1
14
4
核融合發電有望實現?從美國 NIF 的最新研究看未來發展——《科學月刊》
科學月刊_96
・2023/05/13 ・3291字 ・閱讀時間約 6 分鐘

  • 張博宇/目前專研於高能高密度電漿、電漿推進、核融合等領域。

Take Home Message

  • 美國國家點火設施(NIF)在去年使用慣性控制核融合,首次在可控的核融合反應中,令能量的輸出大於輸入,朝核融合產能邁進了一大步。
  • NIF 將 2.05 百萬焦耳(MJ)的雷射能量注入靶材,經過核融合反應產生了 3.15 MJ 的能量,靶材增益為 1.5。但若將產生雷射能量的耗能考慮進去,則並沒有真正的能量輸出。
  • 臺灣各學校的物理系、核工系、電漿所其實都有學者針對核融合投入理論、模擬、實驗的研究,期望這次NIF的成果能推動相關領域進展。

去(2022)年 12 月,美國能源部(Department of Energy, DOE)、DOE 所屬的國家核安全管理局(National Nuclear Security Administration, NNSA)、勞倫斯利佛摩國家實驗室(Lawrence Livermore National Laboratory, LLNL),以及 LLNL 所屬的國家點火設施(National Ignition Facility, NIF)召開了一場記者會。

在記者會中,他們共同宣布在實驗中實現增益值(gain)大於一的結果,意即實現了第一次在可控的核融合(controlled nuclear fusion)反應中,輸出的能量大於輸入的能量,朝核融合產能邁進了一大步。然而,這項結果是否代表著核融合發電即將被實現?

產生能量的核融合反應

在核融合反應中,若兩個較輕的原子核可以融合成一個較重的原子核,且反應之後的總質量減少,那麼根據愛因斯坦(Albert Einstein)質能互換的關係(E = mc2),減少的質量將會轉換成能量。

-----廣告,請繼續往下閱讀-----

最容易產生的核融合反應是將氫(1H)的兩個同位素氘(2H,或稱為 D)及氚(3H,或稱為 T)的原子核融合,產生一個 α 粒子(即氦原子核,4He)加一個中子(neutron, n),同時產生 17.6 百萬電子伏特(MeV)的能量:

D+ T+ α2+ n ——公式一

在公式一的核融合反應中,兩個帶有正電的原子核必須互相靠近才能融合在一起。然而,兩個帶正電的粒子互相具有排斥力,而且愈靠近排斥力就愈大。因此,除非這兩個粒子互相靠近的速度快到排斥力無法阻止它們相撞,核融合才能發生。除此之外,還必須要考量到庫倫散射(Coulomb’s scattering)的現象——若兩個帶正電的原子核沒有正面對撞,則兩者會因為排斥力的原因轉向——更增加了兩者靠近的難度。

因此,只能把氘與氚氣體加熱到高溫,長時間侷限這些高溫的燃料,讓極少數高速的原子核有機會互相靠近並發生核融合反應、產生能量。但即便是最容易發生的氘加氚核融合反應,也需要將燃料加熱到 50 千電子伏特(keV,約為 5.8 億 ℃)才能有最高的反應速率。

-----廣告,請繼續往下閱讀-----

有什麼方法可以將燃料加熱到所需要的溫度呢?看回公式一,氘與氚的核融合產物中具有能量為 14.1 MeV 的中子,及 3.5 MeV 的 α 粒子。我們可以讓高能的中子將能量攜出後再轉換為電能,但讓帶有較少能量的 α 粒子保留在系統中加熱燃料。因此普遍實現核融合產能的系統,目標都是將燃料加熱到溫度約 10 keV(約為 1 億 ℃),讓核融合產生的 α 粒子能繼續加熱燃料。

帶來重大進展的核融合研究

目前國際間研究的核融合反應主要可分為磁場控制核融合(magnetic confinement fusion)與慣性控制核融合(inertial confinement fusion),NIF 去年的實驗便是使用間接驅動(indirect-drive)的慣性控制核融合。

在這次的實驗中,當 2.05 百萬焦耳(megajoule, MJ)的雷射能量注入環空器(hohlraum)1並加熱中間的球殼靶材後,經過核融合反應產生 3.15 MJ 的能量,意即靶材增益(target gain)約為 3.15 / 2.05 = 1.5,是人類首次在可控的核融合反應中,輸出的能量大於輸入的能量。

然而,若將產生 2.05 MJ 的雷射能量考慮進去,需要耗掉的能量約為 300 MJ;換言之,這次實驗的真正能量增益(energy gain)約為 3.15 / 300 ≈ 0.01,並沒有真正的能量輸出。

-----廣告,請繼續往下閱讀-----

不過,NIF 使用的是 90 年代的雷射技術,它的建造目的是為了國防研究所需,因此並不是最適合核融合的研究場域,在雷射技術上還有很大的進步空間。再者,回顧 NIF 從 2011 年開始進行的核融合實驗,歷經了超過十年終於第一次實現靶材產生的能量超過了雷射的能量,對 NIF 而言可說是向前邁進了一大步。

更重要的是,在去年的實驗中,靶材都進入了 α 粒子能夠繼續加熱燃料的燃燒電漿(burning plasma)範圍,是過去核融合研究從未達到的條件,只要稍微最佳化實驗條件便能讓輸出能量有顯著的提升。因此,這次的重大突破顯示了核融合的可行性並非天方夜譚。

臺灣的核融合相關研究發展

核融合研究本身是一個複雜的系統,在科學上及工程上都有許多的挑戰,許多名字上並沒有「核融合」的研究,其實也都間接與核融合相關。以這次的慣性控制核融合為例,相關的研究就包含了雷射技術、靶材製作技術、粒子量測技術、高速攝影技術等。

若以磁場控制核融合來說,也包含了高溫超導、微波技術、高壓脈衝技術、粒子加速器等科技。當然,最重要的就是電漿科學、電漿加熱、電漿量測技術等研究,因為任何材料在高溫的條件下,都會變成電漿態。 

-----廣告,請繼續往下閱讀-----

在臺灣各個學校的物理系、核工系、電漿所分別都有 1~2 位老師在研究電漿相關的領域,尤其成功大學的太空與電漿科學研究所,更有針對核融合投入理論、模擬、實驗的研究。然而,相較於國外蓬勃發展核融合的環境相比,臺灣投入核融合研究的人數仍然明顯不足。

期盼這次NIF的實驗成果,能夠吸引更多臺灣的學生及研究人員投入核融合的相關研究,更刺激政府、民間團體投入更多的資源在核融合研究上。

兩種不同的核融合方式

當物質被加熱到 1 億 ℃ 時,原子內部帶負電的電子便會脫離帶正電的原子核,形成帶負電的電子及帶正電的原子核混合在一起的狀態,稱為電漿(plasma)。我們可以利用帶電粒子的特性侷限高溫的電漿,目前廣泛被研究的核融合反應可分為磁場控制核融合與慣性控制核融合,它們的原理有哪些不同?

磁場控制核融合

-----廣告,請繼續往下閱讀-----
熱核融合反應器。圖/科學月刊。

其中一種方式便是藉由稱為「托卡馬克」(tokamak)的環形容器產生核融合。透過環磁場線圈及延著環形方向的電漿電流(plasma electric current),在環磁場線圈的內部形成一個扭曲但繞著環磁場線圈的螺旋磁力線(helical magnetic field),讓電漿不斷延著螺旋磁力線移動,被侷限在環磁場線圈形狀的真空腔中但不與真空腔的腔壁接觸。

最後,再將電漿加熱到 10 keV的溫度。此核融合的方式能透過磁場將低密度(接近真空)的電漿侷限在真空腔中上百秒或更久的時間,讓高溫的氘、氚原子核有機會互相靠近並發生核融合反應。

慣性控制核融合

慣性控制核融合是利用電漿本身的「慣性」來侷限電漿。由於粒子本身的質量不等於零,所以離開系統需要時間,只要燃料在離開系統前反應完畢,那是否被持續侷限就不重要了。

因此,慣性控制核融合必須將氘與氚的燃料加熱到近 10 keV,並壓縮到高壓力(約千兆大氣壓,gigabar)及高密度,讓粒子間碰撞的頻率在極高的密度下大幅度提升,增加核融合發生的頻率。因此僅需要將系統維持/侷限在奈秒(ns)內,同樣能將燃料燒完。

-----廣告,請繼續往下閱讀-----

慣性控制核融合可分為直接(direct drive)或間接驅動,不過兩種驅動方式都是為了快速加熱球殼外層。當球殼中心的氘及氚溫度達到 10 keV 時,核融合反應便會從中心開始發生,產生的能量可以由內而外藉由核融合反應燃燒球殼。

因為球殼本身的慣性向外推,因此產生能量。圖/科學月刊。

球殼內部在前述的過程中因為壓縮產生高壓,外部的雷射也會停止使得外部的壓力減少,因此球殼又會被向外推。然而,因為球殼本身的慣性,被向外推較為耗時,因此只要向外燃燒球殼的速度大於球殼被向外推的速度,便能將整個球殼再被外推前燃燒殆盡,產生能量。

註解

  • 〔註 1〕環空器是一種腔壁與腔內達到輻射熱平衡的空腔,在慣性控制核融合實驗中燃料球會被放入環空器,再於環空器兩端孔洞射入雷射提供能量。
  • 〈本文選自《科學月刊》2023 年 4 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
所有討論 1
科學月刊_96
249 篇文章 ・ 3744 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。