0

4
0

文字

分享

0
4
0

使用前讓它更安全:基因神剪 CRISPR 還有哪些問題待解?

研之有物│中央研究院_96
・2019/04/30 ・4078字 ・閱讀時間約 8 分鐘 ・SR值 504 ・六年級

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|歐宇甜    美術編輯|林洵安

人體基因編輯的現況與未來

基因神剪 CRISPR 宛如科技魔戒,威力橫掃全球,大多數科學家積極用它改良物種,甚至人類自身。但是編輯人體基因的技術已經足夠安全了嗎?真的毫無副作用嗎?中研院生物化學研究所助研究員凌嘉鴻,站在 CRISPR 研究最前線,非常熟悉這把剪刀的優缺點。因此比起拿起 CRISPR 神剪改造人類,他更想把這把剪刀改得更安全。就讓我們一起問問他對 CRISPR 還有哪些期待!

Q:您是人體基因編輯的專家,去年發生基因編輯寶寶的爭議,您怎麼看?

基因編輯寶寶事件」是中國生物學家賀建奎和他的團隊,利用 CRISPR 技術,修改人類受精卵的 CCR5 基因,目的是讓胚胎在發育過程中對愛滋病毒免疫。

2018 年 11 月,賀建奎宣稱:已有一對基因經過編輯的雙胞胎姊妹誕生。這對姊妹的父親是愛滋病帶原者,但兩姊妹出生後證實均未感染愛滋。

-----廣告,請繼續往下閱讀-----
當父母有一方是愛滋帶原者,胚胎發育的過程中就可能會感染愛滋病毒。賀建奎宣稱,經由剪除 CCR5 基因,可以讓胚胎對愛滋病毒免疫。
示意圖來源│iStock

Q:寶寶不會感染愛滋,聽起來很棒啊,為什麼全世界科學家都跳腳?

主要原因有三:

一、這個實驗是沒有必要的冒險!當夫妻一方感染愛滋病,又想要生下健康寶寶,可以有更好、更安全的醫療方案,不需要進行風險還很大的基因編輯。

二、這次基因編輯的雙胞胎,只有一個實驗成功,另一顆受精卵雖然也放入 CRISPR ,卻沒有切掉 CCR5 基因。但是,賀建奎竟將這顆實驗失敗的受精卵,也放到母體孕育,這讓科學界無法接受!

因為這顆失敗的受精卵,不但沒有達到抗愛滋的醫療初衷,出生的寶寶還必須承受巨大的風險。如果 CRISPR 剪到其他基因,可能為這個新生命帶來難以承受的後果。

-----廣告,請繼續往下閱讀-----

三、雖然剔除基因 CCR5 可能抵抗愛滋病毒,但這個基因會不會有其他重要、人類還沒發現的功能?剪掉這個基因會不會造成嚴重的副作用?目前的科學仍無法預料。

Q:看來基因編輯寶寶現階段還是母湯啊!您目前在改造人類的什麼基因呢?

CRISPR 門檻很低,許多人很快跑到應用面。但我比較關心安全性、副作用等問題。

在細胞裡丟進一把剪刀和 DNA,難道細胞完全沒反應嗎?我不太相信。

最近我的實驗室發現,細胞對外來 DNA 跟 RNA 的免疫反應很激烈:細胞會認出這些 RNA 跟 DNA 不是自己的,產生發炎反應,甚至放出求救訊號:「有奇怪的 RNA 或 DNA 出現!」如果細胞會對 CRISPR 出現發炎反應,未來想在活體上進行治療,問題就很大。

另一個重要的問題:雖然現在有一把精準有效的基因剪刀,但修復過程是細胞在控制,跟剪刀一點關係都沒有。理想狀況下,當 Cas9 剪開 DNA 時,會有機會更改 DNA,但細胞願不願意將正確的 DNA 片段接上去?當細胞已出現發炎反應,它會怎麼修復 DNA?目前仍沒辦法掌握。

-----廣告,請繼續往下閱讀-----

Q:細胞會怎麼修復自己的 DNA?

最重要的 DNA 修復方式有兩種:

一種是非同源性末端結合 (NHEJ):直接將 DNA 雙股斷裂的尾端拉近、黏上。如果細胞選擇這條路,就不會接受外來的 DNA 片段。

一種是同源性重組 (HDR):正常的 DNA 有兩副,今天斷在某一副的某個位置,另一副通常不會這麼巧合斷在同一個位置,可以作為修復模板,複製一段正確 DNA,接在 DNA 的斷口處。

細胞修復 DNA 有兩條路,NHEJ 是直接把斷裂處接起來,HDR 是拿另一副 DNA 做模板複製正確的 DNA 片段,接在斷裂處。當細胞選擇走 HDR,才有可能接受外界送入的正確基因。
圖說設計│黃曉君、林洵安 資料來源│凌嘉鴻

當細胞選擇走 HDR 這條路,才有可能接受接受我們送進去的 DNA 片段,完成基因編輯。可惜的是,細胞喜歡走 NHEJ,直接把斷掉的 DNA 兩端接起來,雖然這條路破壞性很大,DNA 序列可能多一些、少一些,無法指揮細胞做出正確的蛋白質。

-----廣告,請繼續往下閱讀-----

Q:細胞為什麼會喜歡這麼破壞性的修補方式呢?

原因可能是:人體 65 億個鹼基序列上,真正存放基因的只有 1~2%,其他 98% 還不清楚有什麼功能。細胞的概念是:DNA 斷在不重要的位置的機率比較高,直接接上至少快。

HDR 雖然可以精準複製 DNA,但其實更危險。因為基因體序列重複性高,胡亂交換 DNA 片段的機率也很高,所以很多細胞寧可不走這條路。

總而言之,每種細胞面對 CRISPR 的反應不太一樣,有些細胞的開關是 HDR 一半、NHEJ 一半。幹細胞或一些免疫細胞,完全是 NHEJ。我們會特地選一些喜歡 NHEJ 的人體細胞做研究,了解細胞做決定的關鍵因素。

凌嘉鴻研究基因編輯的主要關懷,在於降低 CRISPR 這把剪刀放入人體細胞後的安全性、副作用,以及細胞的修復機制等問題,圖中紅色液體就是人體細胞的樣本。
攝影│林洵安

Q:未來 CRISPR 會怎麼治療人體?有可能做成藥劑嗎?

這是另一個技術瓶頸!CRISPR一定要成為藥劑,才能廣泛使用。例如:當病人的心臟有基因突變,不需開刀剖開心臟,只要將 CRISPR 包入膠囊吃下去,或是注射入血液,經過血液循環系統,就能抵達生病的心臟細胞進行治療。

-----廣告,請繼續往下閱讀-----

但這麼一來, CRISPR 必須能「精準」傳送到需要治療的細胞,就像寄包裹,必須抵達正確的地址。

目前最簡單的構想是:用一層膜包起 Cas9 跟 RNA,膜上有一些結構,能夠辨識特定的人體細胞。當這個「包裹」進入血液、組織、器官,找到正確目標(正確地址),才會把 Cas9 跟 RNA 送進細胞。

有人嘗試用病毒來「包裝」 Cas9 與運送,因為大自然中有很多病毒專門攻擊某個生物或器官。有人選擇用奈米材質的包裹,例如:有人的肌肉細胞基因突變,可以把奈米材質包裹注射到肌肉附近,讓它局部擴散,至少可治療某區的細胞。

雖然 CRISPR 比過去的基因剪刀好用多了,但這把剪刀的精準度、後續的細胞反應、DNA 修復方式以及藥物傳送問題……統統需要研究。我希望把 CRISPR 改到沒有副作用,精準、完全交換到正確的 DNA。

Q:如果 CRISPR 沒有副作用、可以做成藥劑,就可以打造完美寶寶嗎?

技術上還是不可能!CRISPR 只是一把精準的基因剪刀,你得告訴它要剪什麼基因。上面說過,我們對人類基因體的了解不夠,可說是非常淺薄,光是改個身高,到底涉及哪些基因?它們怎麼運作?機制完全不清楚。

-----廣告,請繼續往下閱讀-----

更重要的是,一個基因在成長各個階段會扮演不同的角色,或在不同細胞有不同功能,把這些基因一口氣改掉,有什麼影響?會不會有危險?我們都不知道。

另外,許多技術在研究室都可以做,但要應用到人類醫療,會有很多道德問題,這個底線應該是整個社會一起討論,不是科學家決定。

舉例來說:每個孕婦都會做產檢,如果產前就知道寶寶有基因缺陷,每位媽媽一定都會希望在受精卵或胚胎上修好寶寶的基因,以免寶貝出生後受苦。

這條底線可以繼續往前推:未來地球會越來越髒亂、氣候異常,小孩更容易罹癌。有些基因就算沒突變,是不是也能預防重於治療,先改得好一點?

總之,你可以有種種理由推進這條底線,但推到怎樣才算過頭?身高、眼睛、頭髮,什麼都要改嗎?難道真的要改成超級人種?

-----廣告,請繼續往下閱讀-----

另外,這些技術絕對很昂貴,只有少數人負擔得起。

如果富人能隨意改東改西的話,可能更不怕生病,活得更久,或是具特殊優勢。那麼,憑什麼他們可以使用,其他人卻不行?

我認為罕見疾病或致命疾病應該治療,千萬不要走向超級人類或完美寶寶,造成不公平,但這是政府、國家必須立法規範的。

Q:您博士班學的是基礎微生物學,後來為什麼會轉向人體基因編輯研究?

完全是誤打誤撞(哈哈)。原本我在博士班是研究細菌怎麼合成天然物,有次 CRISPR 發明人之一的道納 (Jennifer A. Doudna) 博士到我們學校演講,內容是解蛋白質結構的生化技術。

我對這個主題很感興趣,主動寄信問道納博士能否到她實驗室做研究。面試時,她提到發現 CRISPR 是細菌的免疫機制,剛好我是念微生物學,可以幫得上忙,於是順利錄取了。

沒想到,我正式加入她的實驗室時,碰巧遇上 CRISPR 和 Cas9 研究大突破,成為最熱門的基因編輯技術。結果,面試的東西完全撇在一邊,我也投入基因編輯的研究。那時每天都很忙碌、很像坐雲霄飛車,但非常值得,畢竟這種見證歷史的機會很難得。

Q:您對人體基因編輯還有什麼建議嗎?

請社會大眾不要只是直覺基因編輯好美好、或多可怕,可以多多了解相關知識。有了正確的知識,才能判斷它的底線應該劃在哪裡。

另外,CRISPR 仍有很多瓶頸有待突破,讓這項技術更精準、更安全,這需要很多科學家一起努力,徹底了解這把剪刀,把它改得更好。

最後,我覺得基礎科學很重要,還有很多東西等待發現。

試想,如果過去科學家不曾研究細菌免疫學,就無法發現 CRISPR了。唯有我們對基礎生物學夠了解,才能繼續發現新東西。

凌嘉鴻(右一)本來是微生物學家,博士班畢業後「誤打誤撞」進入 CRISPR 發明人之一的道納 (Jennifer A. Doudna) 博士的實驗室,參與了 CRISPR 的爆炸性發展。現在,他在中研院帶領年輕科學家,繼續努力將這把神剪改的更精準、更安全。
攝影│林洵安

延伸閱讀

本文轉載自中央研究院研之有物,原文為隨心所欲編輯人體基因的時代來了?專訪凌嘉鴻,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3413 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

4
0

文字

分享

0
4
0
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)
PanSci_96
・2023/01/30 ・2348字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在 2022 年裡,我們見證了低軌通訊衛星在戰爭中的作用、Omicron 肆虐與次世代疫苗、韋伯太空望遠鏡捕捉系外生命印記、銀河中心黑洞初次現身、人類精準回擊小行星、台灣 CAR-T 首例、特斯拉的平價人形機器人、與超強的 LaMDA 跟 ChatGPT AI 語言模型!

2023 年能更刺激嗎?有哪些值得我們關注的科學大事呢?

我們綜合整理了 Nature、Science、Scientific American、NewScientist、富比世雜誌、經濟學人雜誌,結合泛科學的觀察與期待程度,提出這份「2023 最值得關注十大科學事件」;今年的科學界將會熱鬧非凡,令人目不暇給!

No.10 病原體通緝名單

2022 年 11 月,法國科學家在 bioRxiv 上發表了從西伯利亞永凍土中復活的多種病毒;這些「殭屍病毒」中最古老的已經有 48500 歲,在溫度升高後,這些病毒都復甦了過來……。雖然這批古老病毒只能感染變形蟲,但也暗示著,冰層之下存在更多正在休眠、極可能對哺乳動物或人類造成危險的病毒。

-----廣告,請繼續往下閱讀-----

隨著氣溫與海溫升高,這些不定時病毒炸彈正在醞釀著。

世界衛生組織將在今年發布修訂後的「重點病原體清單」,至少 300 位科學家嚴謹審查超過 25 個病毒與細菌家族的各種證據,針對目前還未知、但可能造成全球疫情的未知疾病 Disease X 做出預測,擬出一份優先名單。被列入名單的病原體通緝犯將會被重點研究調查,以利未來開發疫苗、治療與診斷技術。

被列入優先名單的病原體將會被重點研究調查。圖/Envato Elements

No.9 新一代 mRNA 疫苗

乘著在 COVID-19 大流行間快速成熟的 mRNA 疫苗研發平台,許多疫苗正蓄勢待發。

BNT 在 2023 年初針對瘧疾、肺結核和生殖器皰疹的 mRNA 疫苗開始了首次人體實驗;也與輝瑞合作,研發能降低帶狀皰疹發病率的疫苗。另一家 mRNA 大廠莫德納,也在研發能預防生殖器皰疹和帶狀皰疹病毒疫苗。

-----廣告,請繼續往下閱讀-----

除此之外,莫德納開發的黑色素瘤 mRNA 疫苗與默克的藥物合併療法,在去年底公布中期臨床試驗結果,顯示能降低 44% 的死亡率及復發風險,臨床試驗也將在 2023 年進入最後階段。

這些將在 2023 年揭曉的成果,將拓展人類使用 mRNA 疫苗對抗疾病的手段。

新一代 mRNA 疫苗正蓄勢待發。圖/Envato Elements

No.8 CRISPR 療法獲批准

由於之前的臨床試驗結果很不錯,CRISPR 基因編輯療法極有可能會在今年首次正式通過批准!

這種 exagamlogene autotemcel(exa-cel)療法,是由美國波士頓的 Vertex Pharmaceuticals 和英國劍橋的 CRISPR Therapeutics 公司共同開發。用超簡化的方式來説,治療方法就是先收集一個人自己的幹細胞,接著用 CRISPR-Cas9 編輯修正幹細胞中有缺陷的基因,最後再把這些細胞輸回人體。

-----廣告,請繼續往下閱讀-----

Vertex 公司預計會在 3 月向美國 FDA 申請批准,讓 exa-cel 療法可以用於治療 β-地中海貧血或鐮狀細胞病的患者。

然而,隨著療法上市,相關的討論預期也將甚囂塵上……。

CRISPR 基因編輯療法極有可能在今年正式通過批准。圖/Envato Elements

No.7 阿茲海默有藥醫

美國 FDA 將在年初宣布,Eisai 製藥公司和 Biogen 生技公司開發的 lecanemab,是否可以用來治療阿茲海默患者。

該藥物就像一台大腦專用的掃地機器人,為單克隆抗體,可以清除大腦中積累的 β 澱粉樣蛋白;在包含了 1785 名早期阿茲海默患者的臨床試驗中顯示,比起安慰劑,能減緩認知能力下降的速度約 27%。不過,有些科學家認為這效果只能說是還好,也有些擔心藥物不夠安全。

-----廣告,請繼續往下閱讀-----

無獨有偶,另一款由美國的 Anavex Life Sciences 開發的阿茲海默藥物 blarcamesine,目前也正在臨床試驗階段;它能啟動一種可提高神經元穩定性及相互連接能力的蛋白質,就像是幫神經元升級了連線速度與品質,估計在今年會持續帶來新消息。

blarcamesine 能幫神經元升級連線速度與品質。圖/Envato Elements

No.6 迷幻療法

2023 年,也極可能立下迷幻藥被用於醫療用途的里程碑。

多個相關臨床研究都進展到第三期,例如為 PTSD 創傷後症候群設計的新療法,結合了心理治療與 MDMA 亞甲二氧甲基苯丙胺,也就是所謂的搖頭丸,在臨床三期中,67% 的患者不再被診斷有 PTSD。

而來自迷幻蘑菇的裸蓋菇素,則被用來治療難治型憂鬱症,其臨床二期結果令人鼓舞。233 名難治型憂鬱症患者分成三組,在服用不同劑量裸蓋菇素後,每一組的憂鬱症量表分數都降低;而劑量最重的那組,其降幅最顯著。

-----廣告,請繼續往下閱讀-----

最後是 K 他命,竟然成為對抗酒精使用障礙的療法!酒精使用障礙包括酗酒、酒精依賴、成癮等,86% 的臨床試驗病人,在接受新療法後六個月,持續戒除酒精。

然而,也有科學家警告這些樂觀訊息中有炒作成份,就讓我們持續關注吧!

迷幻藥能有效治療病情!?圖/Envato Elements

看到這你可能會想,第六到十名怎麼都是跟醫療健康有關的大事件呢?別急!在下一篇中,我們接著介紹更精采的第五到第一名!

也歡迎大家跟我們分享,你知道的、即將在 2023 年發生的科學大事件!

-----廣告,請繼續往下閱讀-----
期待在 2023 年即將發生的科學大事件!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

1

2
3

文字

分享

1
2
3
你知道基因改造,那知道「基因編輯」技術嗎?讓專家一次告訴你!
台灣科技媒體中心_96
・2022/06/29 ・3505字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

英國環境食品與鄉村事務部(DEFRA)於 2022 年提出的《基因技術(精準育種)法案》。
圖/envato

英國環境食品與鄉村事務部(DEFRA)於今(2022)年 5 月 25 日提出的《基因技術(精準育種)法案》(Genetic Technology (Precision Breeding) Bill),6 月 15 日已過二讀討論,6 月 28 日將進入下一個審議階段。該法案針對精準育種的動植物,以及由這些動植物生產出的食品與飼料,提供開放銷售相關的風險評估。

台灣科技媒體中心邀請專家說明目前的研究與技術,4 位專家皆解釋精準育種技術更能縮短育種作物的時程,並指出該法案可供臺灣參考的面向。

法案修訂,提升糧食生產策略的重要性

臺灣大學生物科技研究所教授 兼 生物資源暨農學院副院長 劉嚞睿 表示,目前各國用基因編輯技術,做為基礎開發的新興精準育種技術產品,管理方式並不一致。所以目前國際上,是否以基因改造生物的規範來管理新興的精準育種技術產品,仍未達成共識,會影響新興精準育種技術產品的開發。

成功大學生物科技與產業科學系副教授 郭瑋君 指出,過去,美國對科技作物相對開放,而多年來歐盟強力反對。英國作為歐洲的三大強權之一,提出此修訂案,開放精準育種作物的產業研發及銷售,反應出此技術不再只是美國自身的國際貿易考量,而是提升未來糧食生產的重要策略。

-----廣告,請繼續往下閱讀-----
英國開放精準育種技術,可能是提升糧食產量的重要策略。圖/envato

郭瑋君認為,這對全球有顯著的指標作用,相信此舉也會帶動歐盟未來思量修改相關法案。但郭瑋君也指出,該法案所提的專一基因編輯,在臺灣的精準育種技術只在研究單位進行,以分析作物的基因功能為主,目前仍未發展於產業育種。

郭瑋君表示,精準育種技術可以直接修改植物的基因,因此最大的潛力是可以去除造成植物生長弱勢的基因,而提高生長能力及永續栽培方法的應用。她說,精準育種技術可以顯著縮短育種時程,從 10 年縮短到 1 年半,這在因應氣候變遷造成每年極端氣候,加快培育有抗性的作物品種,有極大的助益。

郭瑋君舉例,自精準育種技術於 2013 年成功改變植物基因後,2017 年美國食品藥物管理局(FDA)即已核準了精準育種可抗旱的大豆、増加含油量的亞麻,及不會變黑的蘑菇上市。

臺灣大學農藝學系副教授 蔡育彰 表示,英國提出修訂精準育種法案,是繼美國、澳洲、日本等國之後,將基因編輯作物與基因改造作物做出區別。

-----廣告,請繼續往下閱讀-----

目前已訂定法規中允許的精準育種作物,主要是影響作物本身特定的基因表現。

精準育種可以大幅縮短育種時程、因應快速來臨的極端氣候。圖/envato

蔡育彰認為,這種改變原本特定基因表現的作物,與現行一般育種方法所育成的作物相似,若再輔以目前成熟的全基因組定序分析技術,可完整的比對出精準育種作物與對照品種的基因組序列差異,後續相關安全性評估可與過去一般品種育成的流程相似。

臺灣海洋大學水產養殖學系副教授/前系主任 龔紘毅,同時也是執行科技部、農委會與多項產學合作的計畫主持人。龔紘毅指出,精準育種技術幫助我們減少對農藥及抗生素的依賴,減少對環境的影響並改善動物福利,增加動植物的營養價值,從而提高糧食系統的生產力、復原力及可持續性。

龔紘毅說明,臺灣現在發展的精準育種技術有「基因體選育」(Genome selection)與「基因體編輯技術」,前者需要有明顯不同性狀的族群樣品並選育物種,但相對也會投入很高的成本,較適合少數高產量與高經濟規模的物種。

-----廣告,請繼續往下閱讀-----
臺灣現在發展的精準育種技術有「基因體選育」(Genome selection)與「基因體編輯技術」。
圖/envato

龔紘毅表示,臺灣在農業基因體學和遺傳技術有豐沛的能量及基礎研究,可借鏡英國法規,制定輕度監管的方式,釋放研發及促進農業產業發展的能量,且制定符合台灣最大效益的規則。龔紘毅提到,日本專家及政府在制訂精準育種法規的前瞻性、推廣經驗與鼓勵新創,也值得臺灣加以借鏡學習。

他指出,日本與臺灣均為水產消費大國,日本雖然在基因改造生物(GMO)法規上嚴格管理,但學界與政府認為基因編輯技術在精準育種具有龐大的發展潛力,因此在基因編輯法規超前部署,制定明確且兼顧產業發展與生物安全的法規制度。同時在科學教育及注重新興技術與民眾溝通、宣導和知的權利。

精準育種,相對縮短培育時程

劉嚞睿說明,依臺灣「食品安全衛生管理法」定義,基因改造是指使用基因工程或分子生物技術,將遺傳物質轉移或轉殖到活細胞或生物體,產生基因重組現象。基因改造技術食品含有外源基因,對人體健康與環境生態可能有影響。

不過他舉例,三種基因編輯技術中,其中兩種技術的衍生產品,不含有外源基因。所以除了歐盟仍以基因改造生物的規範進行管理以外,大多數國家認定風險與安全性應與傳統育種無異,故認為不屬於基因改造產品。

-----廣告,請繼續往下閱讀-----

劉嚞睿指出,基因編輯技術可在不含外源基因的情況下,精準快速的改變生物體內特定的基因序列,大幅縮短育種時間,帶動新興精準育種技術的發展。但此精準育種技術,透過人為的操控物種基因體,甚至影響物種的基因多樣性,仍引起諸多道德倫理與社會價值的矛盾與衝突。

用人為方式改變生物基因的精準育種技術,仍有道德倫理上的疑慮。圖/envato

蔡育彰說明,精準育種使用的基因編輯技術,與傳統基因改造不同,傳統基因改造是經由外加的基因。他指出,實際應用的困難在於,精準育種此技術應用在不同作物、品種和品系上,效率也都不同。由於目前法規允許的精準育種技術有限制 DNA 序列的變異型式,應用於許多現行栽培的作物種類上可能預期效果較有限。蔡育彰也提醒,精準育種技術的應用也需要對目標作物的基因組序列有完整的了解。

郭瑋君指出,基因改造主要技術核心是,永久放置「非植物」的基因片段於農作物體內,如抗病或抗蟲或抗農藥基因,可能來源是昆蟲或細菌,以提高基因改造作物的產量。因此這些外來基因在作物內會產生外來的蛋白質,可能栽種時造成其它生物如昆蟲的生長或演化上的變異,在食用時可能成為人類食物的過敏源。

郭瑋君解釋,精準育種技術是直接去除或變異「植物」本身的基因片段,最終的育種作物不會有外來的基因或蛋白質。

-----廣告,請繼續往下閱讀-----
與基因改造不同,精準育種的基因編輯技術,只會剔除、不會新增外來基因到農作物體內。圖/envato

龔紘毅解釋,精準育種中的基因編輯技術,讓科學家能幫助農民和生產者開發出有益處的植物和動物品種,這些也能通過傳統育種和自然過程發生,但基因編輯可以更有效和更精準的大幅縮短選育新品種所需的時間。

台灣科技媒體中心表示,目前英國的精準育種技術仍屬於基因改造生物(GMO)法規的監管下,若此法案通過,將有利於精準育種技術與產業發展,但是,使用精準育種技術的作物是否納入或獨立於「基改作物」的法規規範,仍待持續關注與討論。雖然英國、紐西蘭、澳洲等都有專家長年持續的討論基因改造作物與基因編輯作物的技術,但在臺灣仍十分缺少對此科學議題的專業看法與討論

台灣科技媒體中心總結,透過科學家說明目前的研究與技術,能幫助在科學技術被誤解之前,提供正確的資訊以利討論。雖然這次是在英國提出的精準育種法案,但未來臺灣若有相關發展,也可以做為參考的資料。

所有討論 1
台灣科技媒體中心_96
46 篇文章 ・ 327 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。

0

4
4

文字

分享

0
4
4
霍亂也有自己的免疫系統?想要入侵人體,卻不想被感染!
寒波_96
・2022/05/19 ・3396字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

由霍亂弧菌(Vibrio cholerae)引發的霍亂,是常見的人類傳染病。有意思的是,霍亂弧菌這般能入侵生物體的細菌,本身也會被病毒等異形入侵,有免疫的需求。

引起霍亂的霍亂弧菌。圖 / Wikimedia

在最近發表的論文中,霍亂向我們展現了以前未知的免疫手法,不但能抵抗病毒,還能對付「質體」。霍亂究竟如何避免成為宿主的命運?質體又是什麼呢?[參考資料 1, 2]

細菌 vs 質體 vs 病毒大亂鬥:細菌也不想被寄生

細菌和人類一樣,都是用染色體上的 DNA 承載遺傳訊息。不過除了染色體以外,細菌也常常配備額外的「質體(plasmid)」,它們是 DNA 圍成的圈圈,獨立於細菌的染色體之外,具有自己的遺傳訊息,會自己複製。

細菌的遺傳物質,除了自己的染色體外,時常還額外攜帶數量不一的質體。圖/Bacterial DNA – the role of plasmids 

質體如果單方面依賴細菌供養、當個快樂的寄生蟲,那麼對細菌來說,質體就是個占空間的東西,只會耗費宿主的資源,對細菌是最差的狀況。但是,質體上也有基因,如果那些基因具備抗藥性等作用,那質體便對細菌有利。換句話說,質體和細菌的關係並不一定,有可能是有利、有害,或是沒有利也沒有害,視狀況而定。

細菌有時候具備攻擊質體的能力,例如近來作為基因改造工具而聲名大噪的 CRISPR,原本便是細菌用來抵禦病毒、質體的免疫系統。神奇的是,許多攻擊目標為質體的 CRISPR 套組,本身就位於質體上頭,令人懷疑其動機不單純。

-----廣告,請繼續往下閱讀-----

比方說,A 質體攜帶一套攻擊 B 質體的 CRISPR,那麼 A 質體的目的,到底是保護自己寄宿的細菌不被 B 質體入侵,或是維護自己的地位不要被 B 質體搶走呢?不好說,不好說。

細菌對付質體的手段除了 CRISPR,還有一招是利用「Argonaute」蛋白質,啟動針對質體的排外機制;有時候兩者兼備,就是不給質體活路。[參考資料 3]

了解上述資訊,便能體會霍亂新研究的奧妙:質體無法生存的霍亂弧菌,既沒有 CRISPR,亦沒有 Argonaute,卻有以前不知道的另外兩招。

沒有質體的霍亂弧菌

儘管大家的印象中,霍亂就是一款危害人類的傳染病,不過野生的霍亂弧菌有很多品系,除了 O1 和 O139 兩個亞型之外,大部分其實不怎麼會感染人類。歷史上霍亂有過七次大流行,目前第七次大流行的型號為 O1 旗下的 E1 Tor,也稱作 7PET。

-----廣告,請繼續往下閱讀-----

過往導致大流行的型號以及野生霍亂品系,細菌中一般都帶著質體,可是如今廣傳的 E1 Tor 卻常常沒有。假如人為將質體送進細菌體內,一開始倒是沒什麼阻礙,可是複製繁殖十代以後的細菌,卻幾乎不再擁有質體。

因此我們可以假設,霍亂第七次大流行的主角,可能比同類們多出些什麼,讓它新增了排除質體的能力。既然不是其餘細菌使用的 CRISPR 與 Argonaute,應該是某種目前未知的手段。

研究者一番搜尋後,從霍亂基因組上找到 2 處有關係的區域,稱它們為 DdmABC 和 DdmDE(Ddm 為 DNA-defence module 縮寫),兩者各自都有排擠新質體的能力,一起合作效果更好。

霍亂弧菌有 2 個染色體(左、右),DdmABC 位於第一號染色體(左)的 VSP-II 區域(圖中寫成 VSP-2),DdmDE 位於 VPI-2 區域。圖/Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae

兩套手法獨立運作,就是不要讓質體留下!

DdmABC 與 DdmDE 都能替霍亂細胞排除質體,但是運作方式不同。

-----廣告,請繼續往下閱讀-----

DdmDE 會直接攻擊,令質體無法繼續在細菌體內生存,尤其容易攻擊比較小的質體;這個攻擊過程中,應該有其他蛋白質參與,不過詳細機制仍有待探索。

負責打擊質體的 DdmDE,其基因周圍還有兩套免疫系統的基因:R/M 與 Zorya,它們的任務都是消滅入侵的噬菌體(感染細菌的病毒)。因此霍亂的染色體上,這些基因共同構成一組對抗外來異形的陣地,稱為防禦島(defence island)。

DdmABC 則似乎更傾向「促進選汰」的手法,霍亂如果攜帶質體,不論質體自身大小,DdmABC 都會產生毒性;這使得質體數目較少的細菌,繁殖時產生競爭優勢,多代以後脫穎而出的霍亂,將剩下不再攜帶質體的個體。

有意思的是,霍亂細胞的 DdmABC 能排擠質體,也能屠殺入侵的噬菌體。所以它是一套雙重功能的免疫系統,同時防禦噬菌體和質體這兩種異形。

-----廣告,請繼續往下閱讀-----
霍亂弧菌中 DdmABC 與 DdmDE 為兩套獨立運作的免疫系統,DdmABC 能排除入侵的病毒和質體,DdmDE 會直接攻擊質體。圖/參考資料 2

演化上 DdmABC 與 DdmDE 從何而來呢?在資料庫中比對 DNA 序列,ABCDE 這 5 個基因都找不到非常相似的近親基因,所以本題暫時不得而知。

其餘霍亂同類都沒有這兩串基因,所以它們是 E1 Tor 品系新獲得的玩意;幾個新基因組合形成新功能,或許有助於 E1 Tor 當年在霍亂內戰中勝出,成為第七次大流行的主角。總之,它們都通過長期天擇競爭的考驗,贏得一席之地。

質體對細菌可能有害也可能有利,若是通通不要,等於是徹底斷絕獲利的機會。如今廣傳的這款霍亂,為什麼演化成這般樣貌,值得持續探索。

一隻細菌配備對付不同入侵者的多款免疫系統,一如一艘巡洋艦配備的多款防禦系統,不論敵人從陸地、海面、空中發射飛彈,或是從海底用魚雷攻擊,都有防守的應變手段。然而,再怎麼周詳的防禦設計,都有被突破的機會。圖/wiki

戒備森嚴,多重防禦的細菌免疫

由這些研究我們可以觀察到,細菌儘管是只有一顆細胞的簡單生物,也配備多重免疫系統,抵抗各種入侵者。以極為成功的霍亂 E1 Tor 品系來說,它配備 R/M、Zorya、DdmDE 三款防禦病毒的機制,以及 DdmABC、DdmDE 兩套排擠質體的手法,能夠全方位對抗試圖入侵的病毒和質體。

-----廣告,請繼續往下閱讀-----

霍亂弧菌之外的許多細菌,又配備記錄入侵者遺傳訊息的 CRISPR 系統,精準識別目標並且攻擊,類似人類的後天免疫。CRISPR 此一特質,使它變成智人的基因改造工具。

而類似先天免疫,無差別切割入侵者的 R/M 系統,其各種限制酶(restriction enzyme),早已從 1970 年代起成為常見的基因改造工具,可謂分子生物學實驗的元老。

新發現霍亂的 DdmABC、DdmDE 免疫系統,除了增加學術知識,也有應用潛力。探索細菌、質體、病毒間的大亂鬥,不只能認識更多免疫與演化,也可能找到對付細菌的新招,還有機會啟發分子生物學的新工具。

延伸閱讀

參考資料

  1. Jaskólska, M., Adams, D. W., & Blokesch, M. (2022). Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature, 1-7.
  2. Cholera-causing bacteria have defences that degrade plasmid invaders
  3. Kuzmenko, A., Oguienko, A., Esyunina, D., Yudin, D., Petrova, M., Kudinova, A., … & Kulbachinskiy, A. (2020). DNA targeting and interference by a bacterial Argonaute nuclease. Nature, 587(7835), 632-637.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1018 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。