網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

使血液凝塊可見的新奈米粒子

peregrine
・2011/02/13 ・1904字 ・閱讀時間約 3 分鐘 ・SR值 556 ・八年級

本文轉載自PEREGRINE科學點滴

這樣一來,醫生就能清楚判別血液凝塊的位置了。(圖片取自原文網站)

近20年來,心臟病學家們已搜尋了多種在引發心臟病發作前,發現可能造成傷害之血液凝塊的方法。

目前,美國密蘇里州聖路易斯市華盛頓大學醫學院(Washington University School of Medicine in St. Louis)的研究人員們報告,他們已設計出找尋血液凝塊,並使其在新型X-射線技術下可見的奈米粒子。

根據巴恩斯猶太醫院(Barnes-Jewish Hospital:美國華盛頓大學醫學院附設教學醫院)心臟病學家Gregory Lanza博士的說法,此些奈米粒子能免除,在認定因胸痛來到醫院之病患是否實際罹患心臟發作上的揣測。

身為內科學教授的Lanza宣稱:「每年,有數百萬人因胸痛來到急診室。醫師們知道,其中一些病患不是因為他們的心臟。不過其中多數,醫師們並不確定。」當有任何疑惑時,病患必需住院並接受檢查,以排除或證實心臟病發作。而那些檢查既花錢且費時。

無需過夜來確保病患是穩定的,該項新技術能在數小時之內揭露血液凝塊的位置。

此些奈米粒子旨在與有能力發現金屬色彩的新型電腦斷層掃瞄儀(CT scanner)一起使用。該被稱為光譜電腦斷層掃瞄(spectral CT)的新技術,使用X-射線束的全光譜來區別,使用僅看見黑與白之普通電腦斷層掃瞄儀,難以分辨的物體。

Lanza表示,該種新掃瞄儀利用了,天文學家們用來探索出自恆星的光及辨別恆星含有什麼金屬的相同物理特性。

Lanza宣稱:「他們正進行X-射線光譜(X-ray spectrum)的探索,而X-射線光譜能告知他們存在什麼金屬。那正是他們所想要的。」

在此情況下,正被討論的金屬是鉍(bismuth)。內科學的研究助理教授Dipanjan Pan博士設計了一種,含鉍量足以被光譜電腦斷層掃瞄儀發現的奈米粒子。

Lanza宣稱:「每一奈米粒子含有百萬個鉍原子。」由於電腦斷層掃瞄是種相對上不敏銳的造影技術,因而十足的金屬數量是此些粒子能被該種掃瞄儀發現所必需的。

不過Pan表示,鉍是種有毒的重金屬,不能單獨被注入人體中。因而,Pan使用了一種由鉍原子附著於脂肪酸鏈所形成,而在人體中不會分離的混合物。之後,將該種混合物封裝於磷脂膜(phospholipid membrane)中。

於老鼠的模型體中,證實此些奈米粒子的設計,能於體內破裂開並以安全的方式釋出內部的鉍混合物。

一旦此些奈米粒子含鉍量足以被光譜電腦斷層掃瞄儀發現時,Pan於此些粒子表面添加了一種能找尋出被稱為血纖維(fibrin)之蛋白質的分子。血纖維是血液凝塊中常見的一種蛋白質,不過於脈管系統中的其他地方未被發現。

Lanza宣稱:「當心臟病發作時,冠狀動脈的襯裡已破裂,因而會形成凝塊來加以修補。不過這種凝塊開始縮窄血管,因而血液逐漸無法通過。目前,他們擁有了能發現那種凝塊的奈米粒子。」

藉由鎖定血纖維之鉍奈米粒子的光譜電腦斷層掃瞄影像,能提供傳統電腦斷層掃瞄之黑與白影像的相同資訊。不過,於任何血液凝塊中的血纖維,會以諸如黃或綠的色彩呈現出。這解決了,於傳統電腦斷層掃瞄儀中常見的鈣干擾問題。

於該項研究中使用的光譜電腦斷層掃瞄儀,仍然是由位於德國漢堡市之飛利浦研究實驗室(Philips Research in Hamburg, Germany)所研發的原型儀器。此些奈米粒子僅在兔子及其他動物模型中試驗過,不過初期的結果證實,成功地從鈣干擾中區分出血液凝塊。

不只能輕易地確認心臟病發作,此些新型奈米粒子及光譜電腦斷層掃瞄儀也能呈現出血液凝塊的確切位置。

當今,即使醫師們診斷病人罹患心臟病發作,倘若病人未在心導管室(cardiac catheterization lab)注入染劑來找尋變窄的動脈,醫師們也無法指出血液凝塊的位置。不過Lanza表示,找到狹窄的動脈並未解決所有問題。

Lanza宣稱:「具有極狹窄通路的動脈不是令人擔心的動脈。因為他們能撐開,於心導管室被發現的那些動脈。」

令人擔心的是,當血液於此些動脈中自由流動時,於動脈壁上有不穩定的斑塊(plaque)。也就是Lanza所謂的中度級病變(moderate-grade disease)。

Lanza宣稱:「多數人的心臟病發作或中風是起因於,使動脈破裂或突然間阻塞的中度級病變。因而,人們需要某種,即使血管不是極狹窄時,也能告知可能有破裂凝塊的方法。」

由於這種奈米粒子找到並附著於血管中的血纖維上,因而能使醫師們得以發現先前難以或不可能察覺的問題。

利用該項造影技術,Lanza預言了諸多治療冠狀動脈疾病的新方法。並未阻礙大量血流的不穩定凝塊無需昂貴的支架來撐開血管。因而,Lanza預見諸多於血管壁中,可能起如同護創膠布(Band-Aids)將易破點加封起來之作用的技術。

Lanza宣稱:「目前,人們不知道於何處黏上護創膠布。不過,藉由鉍奈米粒子的光譜電腦斷層掃瞄造影能顯現凝塊於血管中的確切位置,因而有可能防止造成危害之不穩定凝塊的破裂。」

該項研究是由來自美國心臟協會(the American Heart Association)、美國國家癌症研究所(National Cancer Institute)、生物工程研究合作聯盟(Bioengineering Research Partnership)及美國國家心、肺暨血液研究所(National Heart, Lung and Blood Institute)的補助金所資助。

原文網址:http://news.wustl.edu/news/Pages/21824.aspx

翻譯:peregrine

文章難易度
peregrine
38 篇文章 ・ 0 位粉絲


0

9
3

文字

分享

0
9
3

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》