Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

用十分鐘向 nand2tetris 學會設計處理器

PanSci_96
・2016/03/12 ・97字 ・閱讀時間少於 1 分鐘

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2413 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
1

文字

分享

0
3
1
Google Tensor 處理器是什麼?厲害在哪?
PanSci_96
・2023/04/08 ・2920字 ・閱讀時間約 6 分鐘

 Google 新出的 Pixel 7 Pro,其核心繼續沿用上一代開始自行研發的晶片,並且升級為 Google Tensor G2。

由 Google 開發、號稱專為 AI 設計打造的 Tensor 晶片,尤其著重在 TPU。打開處理器 Google Tensor 一探究竟,裡面放著 CPU、GPU,以及擁有 AI 運算能力的 TPU(Tensor Processing Unit)張量處理單元。

什麼是 TPU?與 CPU、GPU 有什麼不同?要了解 TPU,先來看看他的前輩 CPU 和 GPU 是如何運作的吧!

TPU 處理器晶片是什麼?先從了解 CPU 開始!

不論手機、電腦還是超級電腦,當代計算機的通用架構,都是使用以圖靈機為概念設計出來的馮紐曼架構,這個程式指令記憶體和資料記憶體合併在一起的概念架構,從 1945 年提出後就一直被使用到現在。

除了輸入輸出設備外,架構中還包含了三大結構:記憶體 Memory、控制單元 CU 與算術邏輯單元 ALU。在電腦主機中,控制單元 CU 和算術邏輯單元 ALU 都被包在中央處理器 CPU(Central Processing Unit)中;記憶體則以不同形式散佈,依存取速度分為:暫存器(Register)、快取(Cache)、主記憶體(Main memory)與大量儲存裝置(Mass storage)。

-----廣告,請繼續往下閱讀-----
馮紐曼架構(Von Neumann architecture)。圖/Wikimedia Commons

算術邏輯單元 ALU 負責運算,透過邏輯閘進行加減乘除、邏輯判斷、平移等基礎運算,透過一次次的運算,完成複雜的程式。有了精密的算術邏輯單元,還有一個很重要的,也是控制單元 CU 最主要的工作——流程管理。

為了加速計算,CU 會分析任務,把需要運行的資料與程式放進離 ALU 最近、存取速度最快的暫存器中。在等 ALU 完成任務的同時,CU 會判斷接下來的工作流程,事先將後面會用到的資料拉進快取與主記憶體,並在算術邏輯單元完成任務後,安排下一個任務給它,然後把半完成品放到下一個暫存器中等待下一步的運算。

CPU 就像是一間工廠,ALU 則是負責加工的機器,CU 則作為流水線上的履帶與機械手臂,不斷將原料與半成品運向下一站,同時控制工廠與倉庫間的物流運輸,讓效率最大化。

然而隨著科技發展,人們需要電腦處理的任務量越來越大。就以照片為例,隨手拍的一張 1080p 相片就含有1920*1080 共 2073600 個像素,不僅如此,在彩色相片中,每一個像素還包含 R、G、B 三種數值,如果是有透明度的 PNG 圖片,那還多一個 Alpha 值(A值),代表一張相片就有 800 萬個元素要做處理,更不用說現在的手機很多都已經能拍到 4K 以上的畫質,這對於 CPU 來說實在過於辛苦。

-----廣告,請繼續往下閱讀-----
很多照片都有 4K 以上的畫質,這對於 CPU 來說實在過於辛苦。圖/Envato Elements

由於 CPU 只有一條生產線,能做的就是增加生產線的數量;工程師也發現,其實在影像處理的過程中,瓶頸不是在於運算的題目過於困難,而是工作量非常龐大。CPU 是很強沒錯,但處理量能不夠怎麼辦?

那就換狂開產線的 GPU!

比起增加算術邏輯單元的運算速度,不如重新改建一下原有的工廠!在廠房中盡可能放入更多構造相同的流水線,而倉庫這種大型倉儲空間則可以讓所有流水線共同使用,這樣不僅能增加單位體積中的運算效能,在相同時間內,也可以產出更多的東西,減少一張相片運算的時間。

顯卡大廠 NVIDIA 在 1999 年首次提出了將圖形處理器獨立出來的構想,並發表了第一個為加速圖形運算而誕生、歷史上第一張顯卡—— GPU(Graphics Processing Unit)NVIDIA GeForce 256。

在一顆 GPU 中會有數百到數千個 ALU,就像是把許多小 CPU 塞在同一張顯卡上;在影像處理的過程中,CU 會把每一格像素分配給不同的 ALU,當處理相同的工作時,GPU 就可以大幅提升處理效率。

-----廣告,請繼續往下閱讀-----

這也是為什麼加密貨幣市場中的「礦工」們,大部分都以 GPU 作為挖礦工具;由於礦工們實際在做的計算並不困難,重點是需要不斷反覆計算,處理有龐大工作量的「工作量證明機制」問題,利用 GPU 加速就是最佳解。

不過,影像處理技術的需求隨著時代變得更加複雜,這就是人工智慧的範疇了。以一張相片來說,要能認出是誰,就需要有一道處理工序來比較、綜合諮詢以進行人臉辨識;如果要提升準度,就要不斷加入參數,像是眼鏡的有無、臉上的皺紋、髮型,除此之外還要考慮到人物在相片中的旋轉、光線造成的明暗對比等。

人臉辨識是人工智慧範疇。圖/Envato Elements

每一次的參數判斷,在機器學習中都是一層不同的過濾器(filter)。在每一次計算中,AI 會拿著這個過濾器,在相片上從左至右,從上至下,去找相片中是否有符合這個特徵;每一次的比對,就會給一個分數,總分越高,代表這附近有越高的機率符合過濾器想找的對象,就像玩踩地雷一樣,當這邊出現高分數的時候,就是找到目標了。

而這種方式被稱為卷積神經網路(Convolutional Neural Networks, CNN),為神經網路的一種,被大量使用在影像辨識中。除了能增進影像辨識的準確度外,透過改變過濾器的次數、移動時的快慢、共用的參數等,還可以減少矩陣的運算次數、加快神經網路的計算。

-----廣告,請繼續往下閱讀-----

然而即便如此,工作量還是比傳統影像處理複雜多了。為應對龐大的矩陣運算,我們的主角 TPU(Tensor Processing Unit)張量處理單元就誕生了!

TPU 如何優化 AI 運算

既然 CNN 的關鍵就是矩陣運算,那就來做一個矩陣運算特別快的晶片吧!

TPU 在處理矩陣運算上採用脈動陣列(Systolic Array)的方式;比起 GPU 中每個 ALU 都各做各的,在 TPU 裡面的資料會在各個 ALU 之間穿梭,每個 ALU 專門負責一部分,共同完成任務。這麼做有兩個好處,一是每個人負擔的工作量更少,代表每個 ALU 的體積可以再縮小;二是半成品傳遞的過程可以直接在 ALU 之間進行,不再需要把半成品借放在暫存區再拿出來,大幅減少了儲存與讀取的時間。

在這樣的架構下,比起只能塞進約 4000 個核心的 GPU,TPU 可以塞進 128*128 共 1.6 萬個核心,加上每個核心負擔的工作量更小,運算速度也就更快、耗電量更低。我們經常使用的 google 服務,許多也是用了 TPU 做優化,像是本身就是全球最大搜尋引擎的 google、google 翻譯、google map 上都大量使用了 TPU 和神經網路來加速。

-----廣告,請繼續往下閱讀-----
Google 服務大量使用了 TPU 和神經網路來加速。圖/GIPHY

2021 年,Google 更把 TPU 導入到自家手機產品中,也就是前面我們提到的 Google Tensor;今年更是在 Pixel 7 中放入升級後的 Google Tensor G2。

Google 表示新款人工智慧晶片可以加快 60% 的機器學習速度,也加快語音助理的處理速度與增加功能、在通話時去除雜音增進通話品質等,不過最有感的還是圖像處理,像是透過 AI 多了修復模糊處理,不僅可以修正手震,還能把舊相片也變得清晰。

現在新款的手機為凸顯不同,越來越強調自家晶片設計與效能的差異;除了 Google 的 TPU 外,其他公司也朝著 AI 晶片的方向前進,包括蘋果、高通、聯發科、中國的寒武紀等,也都發表了自行研發的神經網路處理器 NPU。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----