0

0
0

文字

分享

0
0
0

2005 YU55小行星即將飛掠地球

臺北天文館_96
・2011/11/08 ・1148字 ・閱讀時間約 2 分鐘 ・SR值 505 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

2005 YU55小行星即將在臺北時間11月9日的上午7:28,以僅約32萬多公里的距離飛掠地球,比平均的地球到月球距離還近,且直徑高達400公尺左右,是近年來近距離飛掠地球的近地小行星中體積最大的,因此全球各地的小行星研究專家莫不把握機會,希望能取得小行星表面的細節,藉此瞭解太陽系演化的其中一段歷史。

天文學家表示:像這樣近距離飛掠地球的事件並不少見,但要是探測科技夠成熟且小行星專家們已準備好觀察,這倒是第一次。前一次像2005 YU55這樣大小的小行星以這麼近的距離飛掠地球,是發生在1976年的2010 XC15,只不過當時的探測技術不若現在,因此根本沒人知道有顆這麼大的小行星飛過去了,一直到2010年才發現這顆小行星,回溯其過去的軌道路徑才知道1976年的驚險事件。而下一次這樣大小、這樣近距離飛掠的事件,將發生在2028年。

右上方是美國航太總署(NASA)深太空監測網(Deep Space Network)金石雷達站(Goldstone)的70米天線,在臺北時間2011年11月8日3:45捕捉到的2005 YU55最新影像,當時2005 YU55距離地球約138萬公里,。這些雷達天線從11/4就開始追蹤觀測這顆小行星,將一直工作到11/10為止,在11/6-10期間,每天至少觀測4小時。

除了金石雷達站之外,位在波多黎各的阿雷西波行星雷達探測設備(Arecibo Planetary Radar Facility)則於每東時間11/8開始探測2005 YU55。

目前天文學家對於2005 YU55的軌道已經掌握得很精確了,最接近地球的32萬4600公里是以地球中心起算的,如果不計金星和火星的話,本次是過去200年來2005 YU55最接近地球的一次。這顆小行星雖是近年來距離地球比較近、體積比較大的的小行星,但對地球而言仍是小得不得了,所以對地球的重力作用幾乎偵測不到,不會引起明顯的潮汐或板塊改變。

關於本次2005 YU55飛掠地球時的軌跡與所經星座、背景資料等,請參見

  1. 天象預報2011/11/8-9 小行星2005 YU55近掠地球(11-12等)
  2. 天文新知2011-05-06 JPL雷達天文學家開始規劃觀測2005 YU55
  3. 天文新知2011-04-09 2005 YU55小行星將在11月掠過地球,但無撞擊威脅

資料來源:

  1. NASA Captures New Images of Large Asteroid Passing Earth[2011.11.07]
  2. http://www.spaceweather.com/ [2011.11.08]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 27 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
準備出國啦!Surfshark VPN 快趁黑五買起來,上網購物最安心
鳥苷三磷酸 (PanSci Promo)_96
・2022/11/01 ・2113字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 Surfshark VPN 贊助。

兩、三年以來的防疫生活,終於迎來全面 0+7 的這一天啦!返國之後不再需要隔離的一天來了,冰友們,你是不是已經收拾好心情、收拾好行李,在進行機+酒的比價了呢?除了規劃好出國行程、找好景點與美食店家,想要讓自己不可或缺的網路生活也更加安全,一定要趁即將到來了感恩節黑五期間,把超優惠的 Surfshark VPN 服務買起來,為自己的網路生活加買最平安的保險!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

在疫情下,網購成為了更多人的日常。不僅各樣的在地購物節為網友帶來眾多優惠,全球化的購物活動,台灣當然也不會缺席!美國感恩節(Thanksgiving)都是 11 月第四個星期四,但是感恩節後的週五,便是聖誕節前的購物佳期啟動日,這一天通常都會業績超標(在收支表上呈現正向收入(顯示為黑色字體,而非赤字的紅色字體),各家的瘋狂優惠都會在黑五祭出!相信許多精打細算的朋友,對黑五購物節絕對不陌生(很可能還搶過很多優惠!!)

網購怎能漏掉「亞馬遜」!

雅虎奇摩之於台灣,就像是亞馬遜(Amazon.com)之於美國那麼的有名!絕對也是什麼都賣、什麼都不奇怪的最佳代表。

如果你平常就很喜愛一些美國品牌,趁著黑五的日子到亞馬遜清空購物車,覺對優惠不會讓你失望。這時候,透過 Surfshark 連線到亞馬遜美國站,絕對會顯示的價格絕對讓你眼睛為之一亮,這時候最新搭載 M2 晶片的 iPad Pro,獨家支援動態島顯示的 iPhone 14 Pro,絕對是最好入手的時機。除此之外,亞馬遜平台經典的 Kindle 閱讀器,也是超合適的禮物,送禮自用兩相宜啊!另外要特別留意,購買時可以確認商品有沒有幫忙送到台灣,如果還沒有,可以先跟美國的朋友確認一下,邀請他們回國時幫你一起帶回來!

跨國追劇最爽快

對於喜愛追劇的朋友,品味可能相當豐富且多元,畢竟欣賞優秀影視作品,不現語言,更是不限地區啊!只不過,若是你訂閱 Netflix 等跨國 OTT 服務,都會有各地不同的上架影視作品,可能會讓你無法在第一時間就能夠立即「追」到劇,讓你等得心癢癢!還好這一切只要連上 Surfshark VPN 都能解決,Surfshark 支援超過 100 國的 VPN 連線,無論你想看韓國、日本還是哪一國的最新戲劇,通通讓你一秒追到最新進度!

Surfshark 黑五限時 18 折折扣,額外加送兩個月

專屬連結:https://lihi2.cc/8XwRN

出差大陸翻牆超方便

在過往出國、返國都需要隔離的階段,肯定讓不少工作上需要經常往返多國之間的朋友,感到生活驟變。所幸,在防疫政策解封之後,一切都可逐漸恢復正常。對於經常有需要到中國大陸出差的朋友,肯定都會感受到網路斷聯的不方便,因為無論是 LINE、Facebook Messenger、YouTube、Gmail 等你可很能天天都在使用的網路服務,大陸都無法使用。這還不打緊,連跟家人、朋友報平安也很不便。這時候 Surfshark 連上,就可以幫助你輕鬆「翻牆」,跟台灣親人網路無距離!

 

上網不留痕跡,不被追蹤最自由

對於一個人來說,最私密的資料之一,除了你的個資,就屬我們每天耗費大量時間逗留的網路。我們所在網路上留下的痕跡,絕對是超真實的自己,當然你不會期待這樣的自己被「搜尋引擎」、「網路廣告」公司了解得太透徹,好像你在網路上的一言一行,都被監視著。

..0000000\0;也可隱藏IP位置,避免被廣告商追蹤;更可以為你我阻擋惡意程式、釣魚軟體等,讓你防止被攻擊,以及被網路充斥的廣告打擾,好處多又多!

如果對於 Surfshark 還覺得不夠熟悉的話,不得不告訴大家,今年 Surfshark 榮獲第六屆 CyberSecurity Breakthrough 頒發的「VPN 年度最佳解決方案」(VPN Solution of the Year),也就是成為今年最推薦的 VPN 方案。CyberSecurity Breakthrough 是全球領先的獨立市場情報組織,致力於表揚當今全球資訊安全市場上的頂尖企業、技術和產品。有了他們「掛保證」,代表 Surfshark 絕對是品質、信譽都讓你安心的VPN 服務。

講了這麼多,是不是讓你感到很心動了。如果你原本就是網路重度使用者,用來上網的設備是樣樣都有,Surfshark 一個帳號就能支援所有設備,CP 值超高!趁著年度超狂黑五購物節的到來,送給你自己兩年安心無虞的網路生活,肯定是送自己的最好禮物!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
1

文字

分享

0
5
1
看不見的歐若拉——物理學家解釋火星上極光的成因
Ash_96
・2022/07/05 ・4548字 ・閱讀時間約 9 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

極光。圖/envato elements

形成極光的要素有三,其中之一就是磁場。地球具有覆蓋全球的磁場,可以在兩極地區生成北極光和南極光;然而,火星沒有覆蓋全球的磁場,因此火星上的極光並非出現在兩極,只能在特定區域生成。

近期,愛荷華大學領導的研究團隊,根據美國航空暨太空總署(NASA)火星大氣與揮發物演化任務(MAVEN)探測器的數據,確認了火星離散極光是由太陽風和火星南半球地殼上空殘存的磁場相互作用所生成

極光三要素:大氣、磁場、高能帶電粒子

在介紹火星前,讓我們先把鏡頭轉到地球,談談地球上的極光在哪裡形成,以及如何形成。

地球極光出現的區域稱為極光橢圓區(auroral oval),涵蓋北極與南極地區,但並非以兩極為中心;換句話說,極光橢圓區也涵蓋了極圈以外的部分高緯度地區。另外,極光橢圓區的寬度與延伸範圍,會隨著太陽黑子 11 年的循環週期而變動。

當太陽風和地球磁層的高能帶電粒子被地球磁場牽引,沿著磁力線加速往高緯度地區移動,最後和大氣中的原子碰撞時,就會形成多采多姿的極光。

綜合以上所述,可以得知極光的三個要素是:大氣、磁場、高能帶電粒子。

地球上這些「指引我們美妙未來的魔幻極光」,若屬於可見光波段,就能用肉眼觀測,並以相機記錄這夢幻舞動的光線。

極光橢圓區與地理北極、地磁北極相對位置圖。其中紅色實線表示極圈範圍,綠色區域則為極光橢圓區。圖/National Park Service

火星的大氣層、磁場以及離散極光

在介紹離散極光之前,得先介紹它的幕後推手——行星際磁場(Interplanetary Magnetic Field,IMF)。IMF就是太陽風產生的磁場,在行星際空間主導著太陽系系統內的太空天氣變化,並阻擋來自星際間的高能粒子轟擊。

那麼 IMF 是如何產生的呢?當太陽風的高能帶電粒子從太陽表面向外傳播,會同時拖曳太陽的磁力線一起離開;太陽一邊自轉一邊拋射這些粒子,讓延伸的磁力線在黃道面上形成了螺旋型態的磁場。

以蛋糕裝飾來說明的話,太陽就像是在轉盤上的蛋糕,太陽風粒子就是擠花裝飾;而當蛋糕一邊以固定速度自轉,擠花逐漸向外擴散的同時,就會在蛋糕產生螺旋狀的軌跡。

因為太陽一邊自轉,一邊拋射太陽風的關係,IMF的磁力線會扭曲呈現如圖的螺旋狀。圖/維基百科
蛋糕的螺旋狀擠花。影片/Youyube

對太陽風和 IMF 有基本認識之後,讓我們把鏡頭轉向火星,談談火星的大氣層和磁層和地球有什麼不同。

相較地球來說,火星的大氣層非常稀薄。這是因為太陽風的高能粒子轟擊火星大氣層,強大的能量將大氣層的中性原子解離為離子態,導致大氣層的散失;該過程稱作濺射(sputtering),發生在火星大氣層的濺射主要透過兩種方式達成—–第一,在 IMF 的作用之下,部分的離子會環繞磁力線運動,隨著 IMF 移動而被帶離火星;另外一部份的離子則像撞球一般,撞擊其他位於火星大氣層頂端的中性原子,引發連鎖的解離反應。 

MAVEN 任務的領銜研究員 Bruce Jakosky 說明,根據團隊研究的成果,太陽風的濺射效應會將火星大氣層中的惰性氣體氬解離,並將這些氬離子從大氣層中剝離。火星大氣層內氬的同位素(質子數相同,但是質量不同的元素)以氬-38 以及氬-36 為主,後者因為質量較小而較容易發生濺射。

藉由氬- 38 和氬-36 的佔比,Jakosky 的團隊推估火星約有 65% 的氬已經散逸至外太空。基於該研究結果還可以推算出火星大氣層中其他氣體的散逸情形;其中又以二氧化碳為焦點,畢竟行星需要足夠的溫度才能維持液態水的存在,而二氧化碳在溫室效應有很大的貢獻。

火星的大氣層因為太陽風的濺射效應逐漸被剝離。圖/NASA

接著,讓我們一探究竟火星磁場與地球有何不同。地球能形成全球磁場的奧秘是什麼呢?這要先從行星發電機理論開始說起,該理論指出行星要維持穩定的磁場有三個要件——導電流體、驅動導電流體運動的能量來源、科氏力。

以地球為例,地核內部保留了地球形成初始的熱能,約有 4000°C 至 6000°C 的高溫。位於地核底層的高溫液態鐵,因為密度下降而上升至地核頂端,接觸到地函時,這些液體會喪失部分熱能而冷卻,因為溫度比周圍環境低,密度變高而下沉;如此不斷的熱對流循環下,讓帶有磁力的流體不斷運動,進而形成電磁感應。另外,科氏力的作用讓地球內部湧升的流體偏向,產生螺旋狀的流動效果,有如電流通過螺旋線圈移動的效果。

在火星所發現的地殼岩石證據顯示,火星在數十億年前曾經和地球一樣具有全球的磁場。科學家對火星磁場消失的原因還不是很清楚,其中一種假說認為可能跟火星質量較小有關,在火星形成之初散熱較快,造成火星外核液態鐵短時間內就凝固,無法像地球一樣,保留高溫地核使液態的鐵和鎳因為密度的變化,不斷從地核深處上升至地函,再冷卻下降,持續進行熱對流。

火星地核內部缺乏驅動導電流體的原動力,導致火星內部的發電機幾乎停止運轉,無法形成全球的磁場。話雖如此,火星仍然具備小區塊的磁場,主要分布在火星南半球留有殘存磁性的地殼上空。

行星發電機理論中科氏力影響行星地核內熱對流的導電流體偏向。圖/Wikipedia

磁層與大氣層相互依存,火星在太陽風不斷吹襲之下,大氣層愈趨稀薄;火星內部又缺乏發電機的動力,無法形成完整的磁層。火星缺乏厚實的大氣層保護,就難以阻擋外太空隕石的猛烈攻勢,因此如今呈現貧瘠乾燥又坑坑疤疤的外貌。

既然這樣,看似缺乏極光形成要素的火星,又是如何形成極光的呢?

雖然火星沒有覆蓋全球的磁層作為保護,但火星南半球仍帶有區域性的磁場。在那裡,磁性地殼形成的殘存磁場與太陽風交互作用,滿足了極光生成的條件。這種極光被稱為「離散極光」,與地球上常見的極光不同,有些發生在人眼看不見的波段(比如紫外線),所以也更加提升了觀測難度。

那麼,研究團隊是怎麼發現這種紫外線離散極光的呢?那就是藉由文章首段提到的 MAVEN 探測器所搭載的紫外成像光譜儀(Imaging Ultraviolet Spectrograph,IUVS)!

該團隊的成員 Zachary Girazian 是一位天文及物理學家,他解釋了太陽風如何影響火星上的極光。

火星離散極光的發現

研究團隊根據火星上離散極光的觀測結果,比較以下數據之間的關係——太陽風的動態壓力、行星際磁場(IMF)強度、時鐘角和錐角[註 1] 以及火星上極光的紫外線,發現在磁場較強的地殼區域內,極光的發生率主要取決於太陽風磁場的方向;反之,區域外的極光發生率則與太陽風動壓(Solar Wind Dynamic Pressure)關聯較高,但是太陽風動壓的高低則與極光亮度幾乎無關。

N. M. Schneider 與團隊曾在 2021 年的研究發表提到,在火星南緯 30 度至 60 度之間、東經 150 度至 210 度之間的矩形範圍內,當 IMF 的時鐘角呈現負值,如果正逢火星的傍晚時刻,較容易觀測到離散極光;也就是說在火星上符合前述的環境條件很可能有利於磁重聯(Magnetic Reconnection)——意即磁場斷開重新連接後,剩餘的磁場能量就會轉化為其他形式的能量(如動能、熱能等)加以釋放,例如極光就是磁重聯效應的美麗產物。

未來研究方向:移居火星

因為火星上離散極光的生成與殘存的磁層有關,而磁層又關乎大氣的保存。所以觀測離散極光的數據資料,也能作為後續追蹤火星大氣層逸散情形的一個新指標。愛荷華大學的研究成果,主要在兩個方面有極大的進展——太陽風如何在缺乏全球磁層覆蓋的行星生成極光;以及離散極光在不同的環境條件的成因。

人類一直以來懷抱著移居外太空的夢想,火星是目前人類圓夢的最佳選擇;但是在執行火星移民計畫之前,火星不斷逸散的大氣層是首要解決的課題。缺乏覆蓋全球的大氣層保護,生物將難以在貧瘠的土壤存活。或許透過火星上極光觀測的研究成果,科學家們將發掘新的突破點;期許在不久的將來,我們能找到火星適居的鑰匙。

  • 註1:IMF 的時鐘角(Clock Angle)與錐角(Cone Angle)

如何判定 IMF 的角度呢?因為磁場空間是立體的關係,我們測量 IMF 方向切線與 X、Y、Z 軸之間的夾角——也就是運用空間向量的概念,來衡量 IMF 的角度。時鐘角是指 Y、Z 軸平面上,IMF 方向與 Z 軸的夾角;而錐角則是在 X、Y 平面上,IMF 方向與 X 軸之間的夾角。

IMF 時鐘角和錐角示意圖。圖/ResearchGate

參考資料

  1. Science Daily. Physicists explain how type of aurora on Mars is formed.
  2. Z. Girazian, N. M. Schneider, Z. Milby, X. Fang, J. Halekas, T. Weber, S. K. Jain, J.-C. Gérard, L. Soret, J. Deighan, C. O. Lee. Discrete Aurora at Mars: Dependence on Upstream Solar Wind Conditions. Journal of Geophysical Research: Space Physics, Volume 127, Issue 4.
  3. Michelle Starr. Mars Has Auroras Without a Global Magnetic Field, And We Finally Know How. ScienceAlert.
  4. Michelle Starr. For The First Time, Physicists Have Confirmed The Enigmatic Waves That Cause Auroras. ScienceAlert.
  5. Southwest Research Institute. SwRI Scientists Map Magnetic Reconnection In Earth’s Magnetotail.
  6. 呂凌霄。太空教室學習資料庫
  7. 頭條匯。火星上的「離散極光」是如何形成的?物理學家有新發現,帶你揭秘
  8. Wilson Cheung。【北極物語】承載北極文化──極光。綠色和平
  9. 大紀元。火星上的極光是如何形成的? 科學家解謎
  10. BBC News 中文。北極光:美國科學家首次在實驗室驗證北極光產生原理
  11. 明日科學。科學團隊藉由 NASA 的太空船所收集的資料得知火星大氣層的流失可能肇因於強烈的太陽風
  12. 台北天文館。NASA 首次繪製火星周圍電流分布圖,證實火星有磁場。科技新報。
  13. 交通部中央氣象局太空天氣作業辦公室。太空天氣問答集
  14. Denise Chow. In an ultraviolet glow, auroras on Mars spotted by UAE orbiter. NBC News.
  15. NASA. NASA Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere.
  16. NASA Goddard. NASA | Mars Atmosphere Loss: Sputtering.
Ash_96
2 篇文章 ・ 2 位粉絲
外交系畢業,很多人看成外文(是不是又回頭看一次? ) 常常在外向與保守的極端之間擺盪;借用朋友說的詞彙,我屬於營業式外向。 喜歡踩點甜點店和咖啡廳,大概是嚮往那種文青都會女子的感覺,或是純粹愛吃。 喜歡k-pop ,跳舞的時候會自動設定為開演唱會模式,自我催眠現在我最帥。

0

6
1

文字

分享

0
6
1
18世紀的金星變形秀:行星凌日與黑滴效應
全國大學天文社聯盟
・2022/06/28 ・3216字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

1761 年 6 月 6 日,歐洲的天文學家們乘船抵達世界各地的天文台,爭相用最先進的儀器紀錄一個罕見的天文現象──金星凌日, 因為此天文現象可以幫助人們精確測算地球與太陽的距離。在英法七年戰爭的氛圍下,兩國的天文學家尤其較勁,都想要第一個量出日地距離,為天文學史畫下濃墨重彩的一筆。然而當大家拭目以待地望向剛與太陽重疊的金星時,卻都露出了驚訝的表情──金星變形了!

說到金星凌日,大家最有印象的或許是 2012 年的一次金星凌日,從天文學家到各個職業的人們都拿著減光濾鏡共襄盛舉,畢竟下一次的金星凌日要到 2117 年才會再發生。然而在過去,金星凌日並不只是歡樂的娛樂事件,也是非常嚴肅的科學事件。

在十八世紀時,多數天文學家都接受哥白尼的日心說,而克卜勒提出的行星運動三大定律,則可以推導出各行星軌道半徑與地球軌道半徑之間的相對長度,然而最大的問題是當時的人們並不知道地球軌道半徑(地球到太陽的平均距離)的絕對長度。為了解決這個問題,英國天文學家愛德蒙.哈雷於 1716 年提出了使用金星凌日來測量日地距離的方法。如圖一所示,金星凌日的軌跡長短與在地球上的何處觀測有關,在軌跡較長處金星凌日的時間較長,反之則較短,這是因為在地球上不同處觀測金星的視角不同造成的。

假設我們在地球上的 A 與 B 兩處量測金星凌日的時間,我們可以量出兩地觀測金星時的視角差,在知道 A 與 B 間距的前提下,我們可以用視差法量出地球到金星在金星凌日發生時的距離(見圖二)。最後根據克卜勒第三行星運動定律─行星公轉太陽週期平方與行星到太陽的平均距離立方成反比─可以得出金星到太陽的距離約為地球到太陽距離的 0.7 倍,我們也可以得知地球與金星在金星凌日時的距離是地球到太陽距離的0.3倍,由此可以推導出太陽與地球的距離。



圖一(左):金星凌日軌跡。圖二(右):視差法算金星與地球距離。

此方法在當時極大鼓舞了天文學家的士氣,大家都摩拳擦掌的為 1761 年的金星凌日作出準備,共一百多名天文學家乘船至世界各地以測量不同地方金星凌日的時長,其中較為著名的有英國派出的庫克船長於大溪地觀測金星凌日,以及荷蘭則派出的 Johan Maurits Moh 到歷史課本中提過的荷蘭東印度公司巴達維雅總部進行觀測(圖三)。

然而正當金星與太陽重疊時,大家卻不知道何時該按下碼表記錄金星凌日開始的時間,因為金星變形了。圖四是最早關於金星變形的紀錄,在金星靠近太陽的邊緣時金星的旁邊會出現黑色的陰影與太陽邊緣相連接,而這樣的陰影狀似水滴,因此這個現象也被稱作「黑滴現象」

圖三(左):巴達維雅總部,Johan Maurits Mohr 的私人天文台。
圖四(右):於1761年被Torbern Bergman 記錄之黑滴現象。

當時的天文學家們為黑滴現象提出了各種不同的解釋,有些天文學家認為黑色的陰影是金星大氣對太陽光的散射與折射造成的錯覺,也有人認為這是地球大氣擾動造成的現象,還有人認為是太陽光通過金星時繞射所造成的陰影。

前面兩種解釋在 1999 年 NASA 的 TRACE 太空望遠鏡對水星凌日的觀測後被否定,因為太空中沒有地球大氣干擾,水星上則沒有大氣可以散射或折射太陽的光線,而觀測的照片中卻仍出現黑滴效應(圖五)。光的繞射所能造成的影響則不足以產生黑滴現象(繞射影響在約 10^{-9} 角秒,可忽略[1])。

圖五:1999年水星凌日,攝於 NASA’s Transition Region and Explorer (TRACE) 太空船(Schneider, Pasachoff, and Golub/LMSAL and SAO/NASA)

關於黑滴現象的成因一直到 2004 年才得到令人信服的解釋,天文學家 Glenn Schneider 認為黑滴現象是由望遠鏡的點擴散函數(Point Spread Function, PSF)以及太陽的周邊減光造成的 [2]

為了簡單瞭解他所提出的概念,大家可以將大拇指與食指放在一光源之前漸漸靠近(直視強光源會傷害眼睛,請注意光源強度不可以太強),在兩指快要靠在一起時,可以看見兩指中間突然浮現出一段陰暗的橋將兩指相連(如圖六)。

這是因為非點光源會在兩指的邊緣製造出模糊的陰影,而人眼對模糊的陰影並不敏感,因此直到兩指特別靠近時,兩指的陰影重疊導致陰影變明顯才看得出來。圖七與圖八中的兩塊陰影可以幫助大家更好地破除這個錯覺,圖七單純顯示兩塊模糊的陰影,而圖八將陰影的等暗度線畫出來。比較兩圖我們可以發現雖然圖七中兩塊陰影像是連接在一起,然而實際上圖八卻顯示兩陰影並沒有連接在一起 [3]

圖六(左):大拇指與食指之間的暗橋。圖七(中):兩個模糊陰影 [3]。圖八(右):同中間圖,但是增加了等暗度線 [3]

金星凌日所產生的黑滴效應也是透過類似的方式產生的,不過金星模糊陰影與太陽邊緣模糊的成因不同。金星陰影在望遠鏡的觀測中,會因為望遠鏡的點擴散函數而在成像時顯得模糊。望遠鏡的點擴散函數,指的是一望遠鏡在觀測點光源時成像的樣子,不同望遠鏡的點擴散函數有所不同,但通常口徑小做工差的望遠鏡會有較大之點擴散函數,點光源被模糊化的程度也越高,看的也就越不清晰。

回到金星的陰影,當古代人們用做工差且口徑較小的望遠鏡觀測金星時,其陰影非常模糊、黑滴現象較現在的望遠鏡明顯的多,這也是為什麼各地回報黑滴現象的次數隨著望遠鏡的進步逐漸地減少 [4]

太陽邊緣的模糊則主要是因為太陽是一團沒有銳利邊緣的發光電漿。如圖九所示,假設每單位體積電漿能發出的光相同,我們可以看到往太陽邊緣的線上通過的電漿比往太陽中心的線上通過的電漿要少,這也代表著往太陽中心看去的光線較亮,而越往太陽邊緣看去亮度會逐漸減少。圖十是一個比較誇張的示意圖,圖中一模糊的黑影為金星,一模糊的白色邊緣則代表太陽邊緣,即便兩者的邊緣沒有接觸,我們仍能看到金星的邊緣伸出了黑影,與太陽邊緣相連接,這便是黑滴現象的由來。

圖九(左):太陽周邊減光成因示意圖。圖十(右):黑滴現象示意圖。

回到日地距離的問題上,難道在這兩百多年的時間中沒有其他方式能量測金星與地球的距離嗎?實際上在雷達與遙測技術的加持下,人們早在 1964 年就能夠以高精度量測地球到金星間的距離了,因此如今的日地距離測量早已與金星凌日無關。

不過黑滴現象這一歷史悠久的問題,仍在一代一代天文學家的不懈努力下被解決了;時至今日,我們仍面臨著宇宙的諸多未知,而我由衷的期待這些現在看似無解的問題,能在未來的某一天被解決,無論花上幾十年、幾百年的時間。

參考資料:

  1. The Transit of Venus and the Notorious Black Drop, Schaefer, B. E. (2000) https://ui.adsabs.harvard.edu/abs/2000AAS…197.0103S/abstract
  2. TRACE observations of the 15 November 1999 transit of Mercury and the Black Drop effect: considerations for the 2004 transit of Venus, Glenn Schneider (2004) https://www.sciencedirect.com/science/article/pii/S0019103503003841?via%3Dihub
  3. Stackexchange, Why do shadows from the sun join each other when near enough? (2014) https://physics.stackexchange.com/questions/94235/why-do-shadows-from-the-sun-join-each-other-when-near-enough
  4. The black-drop effect explained, Jay M. Pasachof (2005) https://ui.adsabs.harvard.edu/abs/2005tvnv.conf..242P/abstract
全國大學天文社聯盟
7 篇文章 ・ 13 位粉絲