0

0
0

文字

分享

0
0
0

改造開源機器手臂meArm〈硬體篇〉

馥林文化_96
・2015/08/17 ・2533字 ・閱讀時間約 5 分鐘

文/位明先(技職教育老師)、胡哲瑋(機器人設計工程師)

近年來臺灣的自造者運動漸趨活躍,而在熱情的高雄港都也有一群自造者們會不定期舉辦活動聚會。在一次的因緣際會中,因為我們同時對開放原始碼設計的meArm 機器手臂感到興趣,因此開始合作一同製作這個meArm 機器手臂。由於meArm 採開放式設計, 所以不管任何人都可以在網路上找到它的設計檔,其結構非常簡單,配上現今多元的結構製作方式, 如果再搭配Arduino 控制器, 便可當作機器手臂的實驗器材。但在實際使用後,仍有許多需要改善的空間。

像是組成結構的零件是將螺絲與壓克力直接絞合,鎖得太鬆會讓手臂在移動時產生晃動, 太緊則容易卡死。不只是難以調整,當使用一段時間之後,壓克力上的螺紋也容易磨損使螺絲滑牙。下方轉動底盤的穩定度也不佳,當手臂伸長後會傾斜變得不易轉動。此外,夾爪在夾取物品的設計上仍需改良, 原先所用之SG-90 伺服機扭力過低,種種問題都會使手臂的應用範圍受到限制。因此經過一番討論後,我們決定分別負責機構的改善以及電控的設計,再邀請葛士冬同學分擔製作的工作, 就這樣開始進行meArm 的改造專題(照片1)。

6880783

(照片1) 改造後的meArm 機器手臂。

改善機構

若要讓機器手臂能用得更久, 首先要改善鬆散的結構,我們在原本壓克力骨架的連接處, 加裝垂直連接件(照片2),用螺絲直接鎖在結構上(照片3),以提高結構強度與穩定度。
原來機構上的活動關節則改用自鎖螺帽,以便之後進行旋緊或放鬆的調整,保留零件的連接公差(照片4)。同時因為壓克力不用再負擔螺絲的應力,也不會在長時間的使用後產生滑牙的問題。不過在修改時需注意原本鎖螺絲的孔, 其孔徑大小要再加大3mm ,才能讓螺絲順利穿過。

9487301_orig 7684787_orig 2507846_orig

(照片2) 垂直連接件。(照片3) 用螺絲鎖好結構。(照片4) 活動關節則改用自鎖螺帽,以便之後進行旋緊或放鬆的調整。

迴轉底盤的部分則著重於增加轉動的穩定度,並加強前移與抬升機構的進程,讓手臂伸展到極限時,仍能維持順暢的動作(照片5、照片6)。

6636386_orig 8457534_orig

(照片5) 迴轉底盤。(照片6) 迴轉底盤。

原本的夾爪馬達有效角度大約只有30 度,一旦轉動超過其限制便會卡住無法轉動,對馬達造成損傷。再者,若只用USB 來供電, 也會導致USB 電源保護斷電。便決定將夾爪連桿結構重新設計以便解決這個問題(照片7),不僅增加轉動的角度,也不會再有卡死的情況出現。同時我們也針對驅動夾爪的齒輪組做了些更動,藉由改變齒輪的形狀,增加整個轉動過程中齒輪咬合的面積,讓動作更穩定且不晃動,也可以減少夾取物體時的間隙。

5518974

(照片7)  防鎖死夾爪。

建議使用CNC 雕刻機進行加工,能進一步減少齒輪間隙的公差,讓夾爪的動作更精確。
最後,則是使用扭力更強的伺服機(GS-9025MG)(照片8),同時使用外加直流電源供應,確保在伸長手臂之後,還能有足夠的抬升力量,也不會因為馬達負載電流過大造成USB 自動斷電。

2408855

(照片8) GS-9025MG 伺服機。

改造伺服機

改良機器手臂後,接著就能開始加上學習(Self Learning) 功能, 讓指導者能直接抓著手臂移動來記錄動作,再讓手臂重複做出一模一樣的動作。要達成此功能,必須將一連串的伺服機位置資料記錄在記憶體中。等到要重播動作時,再將資料取出來,好讓伺服機得以依照順序來移動。

若要取得伺服機的位置資料,除了可選擇同步外接角度感測器外,比較簡便的方法則是取出伺服機內部可變電阻的電壓值,再透過Arduino 的類比數位轉換功能,將取得的電壓值轉換成角度。不過, 要取得伺服機的VR 電壓就則必須改造在伺服機的內部稍作修改。首先將伺服機外殼固定螺絲轉拆開(照片9),接著並從在控制電路板上面找到VR 可變電阻的3 個接點(分別是電源、接地與VR 電壓)。

一般來說,仔細觀察電路板便可以發現很容易可以找到這3 個接點,焊點比較大的就是了;而在排在中間的點,通常就是VR 代表的電壓接點腳。如果要再進一步確認,可以將伺服機接上電源,再利用以數位三用電表測量接點與接地點端的電壓,如果轉動伺服機時,電壓會隨著成依比例改變,那麼這個接點即為電壓接腳。

6438741

(照片9) 將伺服機外殼固定螺絲轉拆開。

用烙鐵將一條導線焊到電壓接腳上(照片10),便能取得馬達轉動時的電壓變化。不過,還得要在外殼上鑽一個小孔讓導線通過外殼(請依所用導線粗細來選擇鑽孔大小)(照片11)。最後將改造過後的伺服機裝到手臂上(照片12、照片13)。

8995522_orig6102219_orig

(照片10) 將導線焊到電壓接腳上。(照片11) 在外殼上鑽一個小孔讓導線通過。

6738309_orig468053_orig

(照片12) 改造完成的伺服機。(照片13) 將改造過後的伺服機裝到手臂上。

取得電壓後, 將伺服機接上電源,再將電壓輸出端接到Arduino 的類比數位轉換腳位上(照片14)。經實際的測量,伺服機由0 度轉動到180 度時, 其數值則會由117 變化到557。因此,可推得兩者的轉移函數為:

角度=((AD轉換值-117)*180)/440

這樣就能得到伺服機相對應的位置資料了。

6917307

(照片14) 取得電壓後連接到AD 轉換輸入。

學習功能的另一個關鍵則是要把設定好的手臂位置儲存起來,以便教導手臂後可反覆取出,控制手臂的動作。Arduino 可使用SD 卡或內部的EEPROM 來儲存資料,為了方便,我們使用了I2C 介面的EEPROM 當作儲存元件,因為它可以在電源拔取後移給另一個手臂讀取同樣的動作,價格也比SD 卡便宜。硬體的改造就到此告一段落,下次會針對電路與程式設計的部分做介紹。

文章原文刊載於《ROBOCON》國際中文版2015/9月號

相關標籤:
文章難易度
馥林文化_96
54 篇文章 ・ 6 位粉絲
馥林文化是由泰電電業股份有限公司於2002年成立的出版部門,有鑒於21世紀將是數位、科技、人文融合互動的世代,馥林亦出版科技機械類雜誌及相關書籍。馥林文化出版書籍http://www.fullon.com.tw/

0

0
0

文字

分享

0
0
0

殭屍真菌的心智操控術!被附身的螞蟻變成「孢子釋放機」——《真菌微宇宙》

azothbooks_96
・2021/09/25 ・1691字 ・閱讀時間約 3 分鐘
  • 作者 / 梅林.謝德瑞克
  • 譯者 / 周沛郁

最多產、最能有創意地操控動物行為的,是一群住在昆蟲體內的真菌。這些「殭屍真菌」改變寄主行為的方式,得到明確的好處──真菌綁架一隻昆蟲,就能散播孢子,完成自己的生命週期。

研究最透徹的殭屍真菌是偏側蛇蟲草菌(Ophiocordyceps unilateralis),這種真菌的一生都繞著巨山蟻(carpenter ant)打轉。巨山蟻受真菌感染之後,會失去自己怕高的本能,拋下相對安全的巢,爬上最近的植物──這症狀稱為「登頂症」(summit disease)。在適當的時候,真菌會迫使巨山蟻用大顎鉗住那株植物、「死命一咬」,菌絲體從巨山蟻腳上長出來,把巨山蟻固定在植物表面。真菌接著消化巨山蟻的身體,從巨山蟻頭上發出菇柄,孢子撒向經過下方的巨山蟻身上。如果孢子錯失了目標,就會產生次生的黏性孢子,在作為引線的細絲上向外延伸。

受到蛇形蟲草(zombie fungus)感染的巨山蟻。圖/AntWiki by João P. M. Araújo

殭屍真菌極為精準地控制它們寄主昆蟲的行為。蛇形蟲草(Ophiocordyceps)會強迫螞蟻去溫度、溼度剛好的區域死命一咬,讓真菌結實──就在森林離地二十五公分高的地方。真菌利用太陽的方向來引導螞蟻,在中午時分同步感染螞蟻。螞蟻不會咬進葉背的任何老位置。百分之九十八的情況下,螞蟻會咬住主脈。

殭屍真菌如何控制寄主昆蟲的心智,一直令研究者大惑不解。二○一七年,真菌操控行為的一位頂尖專家大衛.休斯(David Hughes)帶領的一支團隊,在實驗室裡用蛇形蟲草感染了螞蟻。研究者在螞蟻死命一咬的那一刻,把螞蟻的身體保存起來,切成薄片,重建真菌住在螞蟻組織中的三維圖像。他們發現真菌變成螞蟻體內的一個假體器官,占據螞蟻身體的程度令人不安。受感染的螞蟻生物量之中,高達百分之四十是真菌。菌絲從頭到腳蜿蜒鑽過螞蟻的體腔,纏住螞蟻的肌纖維,透過互連的菌絲體網絡來協調螞蟻活動。然而,螞蟻的腦中居然沒有菌絲。休斯和他的團隊完全沒料到這情況。他們預期螞蟻的腦部會有真菌,才能那麼精細地控制螞蟻的行為。

結果真菌似乎是採用藥理學的方式。研究者懷疑,真菌雖然沒有實際存在於螞蟻腦部,但還是靠分泌化學物質,影響螞蟻的肌肉和中央神經系統,進而操控螞蟻的行動。但究竟是哪些化學物質,還不清楚。也不知道真菌能不能切斷螞蟻腦部和身體的連結,直接協調螞蟻的肌肉收縮。不過,蛇形蟲草和麥角菌是近親,瑞士化學家艾伯特.赫夫曼(Albert Hofmann)最初正是從麥角菌分離出用於製造 LSD 的化學物質,繼而做出一類化學物質,LSD 正是衍生物──這類化學物質稱為「麥角鹼」。在感染的螞蟻體內,負責產生這些生物鹼的蛇形蟲草基因組啟動了,表示這些基因組在操控螞蟻行為的過程中,可能扮演了某種角色。

雀麥上的麥角菌。圖/WIKIPEDIA by Claude De Brauer

不論這些真菌是怎麼辦到的,它們的干預以人類的任何標準來看,都十分驚人。經過幾十年的研究,投入數十億美元的經費,用藥物調控人類行為的能力還完全無法微調。比方說,抗精神疾病藥物無法針對特定的行為,其實只有鎮定效果。相較之下,蛇形蟲草百分之九十八的成功率,不只是讓螞蟻向上爬或是死命一咬(這百分之百會發生),而是咬到葉片特定的部位,並且是對真菌最理想的環境。不過公平起見,蛇形蟲草和許多殭屍真菌一樣,其實有很長的時間可以微調它們的做法。受感染的螞蟻行為有跡可循。螞蟻的死命一咬在葉脈上留下明顯的疤痕,依據化石化的疤痕,這種行為的起源可以追溯到距今四千八百萬年前的始新世(Eocene)。真菌很大部分的時間都在操控動物心智,可能自己也有心智。

——本文摘自《真菌微宇宙:看生態煉金師如何驅動世界、推展生命,連結地球萬物》,2021 年 8 月,果力文化

azothbooks_96
207 篇文章 ・ 1122 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策