Loading [MathJax]/extensions/tex2jax.js

1

9
1

文字

分享

1
9
1

是臉書決定動態牆內容,還是我們自己?——《科學月刊》

科學月刊_96
・2015/09/29 ・2659字 ・閱讀時間約 5 分鐘 ・SR值 619 ・十年級

-----廣告,請繼續往下閱讀-----

作者/鄭宇君(玄奘大學大眾傳播學系助理教授,國立政治大學新聞系博士。研究興趣:社交媒體研究、科學傳播、風險與危機傳播、科技文化研究)

究竟是個人的交友選擇或是臉書的演算法,造成臉書用戶看到同質化內容的影響較大呢?

Science期刊五月份登出一篇臉書研究的論文,主要目的是探討用戶曝露在同質或異質意識型態內容之情況,進而比較前述兩者的效應。這是少數能刊登在Science上的社會科學研究結果,特別是使用了一般研究者難以取得的臉書大數據(big data),因而引起許多人關注與討論。本文主要是說明這類研究的困難與研究發現之價值。

13048344414_e5986044dc_o
source: flickr

社群媒體大數據研究的價值

對人文社會學者而言,進行社群媒體大數據的研究,最困難的是研究者不容易取得大量的資料,因這些資料皆由Facebook、Twitter、Google等大公司所擁有, 即便這些公司透過應用程式介面(API)釋出部分資料給開發者及學術研究者利用,但能取得的數據仍是有限、不完整的資料。相較之下,本篇論文第一作者任職於臉書公司,可取得臉書的大量使用者資料及用戶行為記錄(user log),包括用戶塗鴉牆上出現的動態消息,哪幾則消息用戶會實際點閱,哪些不會等等。這些用戶行為記錄是一般研究者無法透過臉書API獲取的資料,只有臉書公司本身擁有這些記錄,這是本研究的價值所在。

-----廣告,請繼續往下閱讀-----

本篇論文作者主要透過臉書的大數據驗證「迴聲室」(echo chambers)與「過濾泡泡」(filter bubbles)這二個概念,何者在臉書的用戶行為中較具影響力。用淺白的話來說,「迴聲室效應」的重點在於用戶的個人選擇,個體會選擇與自己立場相近的人成為好友,所以看到的朋友分享訊息跟自己立場相近;或是反過來,個體從臉書朋友中看到的立場來決定自己的立場。無論是哪一種,當個人從臉書好友分享訊息中所見的都是相似立場,他便以為社會上的主流意見皆是如此。

另一個重要概念「過濾泡泡」,則意指臉書演算法如何影響用戶所觀看到的訊息。臉書經由演算法先篩選出他們認為用戶「想看」的動態消息,接著這些訊息才會出現在用戶的動態消息上。演算法計算基礎來自於用戶先前的行為,包括用戶訂閱專頁、友人互動的頻率(按讚、分享、留言)及是否點閱內容觀看。

無論是迴聲室效應或過濾泡泡,儘管成因不同,但造成的共同結果是——用戶沉浸在一個同質性非常高的內容群體中,甚至誤認為這就是社會上的主流意見。這是批評者經常抨擊社交媒體的負面效應,這篇論文想要證明的就是迴聲室效應(個人選擇)或過濾泡泡(演算法過濾),何者該負起較大責任?

2381281647_605ca90079_o
是誰決定你所看到的? source: flickr

資料的分析與測量

本篇論文使用的資料集來自於 1010 萬名美國臉書的活躍用戶,這些用戶在個人檔案中自我揭露其意識型態傾向,以及在資料收集的六個月內(2014年7月7日~2015年1月7日)被這些用戶所分享的700萬筆的網頁超連結(URL)。研究者透過機器學習區分大量超連結內容為硬性內容(如:全國新聞、政治、世界大事)或軟性內容(如:娛樂、運動、旅遊)。結果發現,700萬筆超連結中有13%為硬性內容,研究者進一步將資料集限縮於其中被20個以上有標明意識型態傾向的用戶所分享的22.6萬筆硬性新聞,並對這些內容進行校準測量。

-----廣告,請繼續往下閱讀-----

換言之,研究者所收集的臉書用戶資料,是那些在個人檔案中強烈表態政治傾向的用戶,至於立場模糊或中立的用戶行為就不納入研究範圍;研究者將這些用戶的意識型態傾向分為保守派vs.自由派,各為正負1分,當一則硬性新聞被20個以上的用戶所分享,則將此新聞的所有分享人數之分數平均計算(保守派為+1分、自由派為-1分,加總起來除以分享人數),就得到該則新聞之意識型態平均分數。

研究者透過這種方式給予22.6萬則硬性新聞評分,進行內容校準(content alignment)的測量,重點不在於測量新聞媒體的傾斜程度,而是捕捉一群人所分享的內容差異。測量的結果發現:福斯電視網偏向保守派(+0.8)、哈芬登郵報(Huffington Post,美國大型新聞網站)傾向自由派(-0.65)。研究者觀察到用戶分享的硬性內容裡有極化現象(polarization),最多被分享的連結來自大部分的保守派或自由派,也就是中立很少。

者進一步申論,臉書與政治部落格的連結很不相同,臉書是以友誼建立的人際網路,雖然很多友誼會被政治意識型態打斷,但朋友當中還是有保守及自由派。在個人檔案中標示自己是自由派的,朋友中約有20%是保守派;反之,標示自己為保守派者,朋友約有18%是自由派。因此,透過朋友分享內容,理論上用戶應該有接近20%機會看到相反陣營的內容,但研究者計算用戶實際點閱的超連結後發現,保守派用戶對於相對立場文章的點擊率只有17%,而自由派則是6%。然而,作者坦承這分析的其中一個限制在於曝露(訊息出現在用戶動態消息)與消費(用戶點進該則消息瀏覽)的概念區分並不完美,個體也許已經在動態消息中看到內容摘要,儘管他沒點進去,也已曝露在某些內容下。

歸咎於個人選擇?

某些批評者認為,這篇論文把用戶看到同質性高的內容歸因為個人選擇而非臉書演算法,是為臉書卸責。但細讀本文的資料分析及推論,作者並沒有這樣宣稱,研究計算了個人選擇及演算法都會影響用戶閱讀內容,前者影響略高於後者,但測量時並無法排除另一個因素的影響。筆者認為本研究結果可能更受到取樣的用戶資料集之偏頗影響,由於這些用戶皆為明確表態個人政治傾向,他們在閱讀時可能較一般中立用戶更傾向排拒與自己立場相異的內容,因而這樣的研究結果並無法推論到多數未表態政治傾向的用戶。

-----廣告,請繼續往下閱讀-----

另一方面,這也反映了社群媒體巨量資料研究之困難所在,即便像本研究作者有機會使用臉書的用戶行為資料。但人類的社交行為十分複雜,如何把研究問題轉化為可操作化測量的指標是個難題,本研究作者選擇以政治立場明確的保守派vs.自由派用戶出發,作為測量計分的依據,這種作法必然在過程中省略了用戶分享內容的差異性,這部分也有待後續研究者尋找更有效的分類或計算指標。

1234〈本文選自《科學月刊》2015年8月號〉

延伸閱讀:
一種網羅?
網路科普教學的虛與實

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3742 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
1

文字

分享

0
4
1
即便不認同群體意見,我們也不敢提出異議?「共識陷阱」創造了沉默的同意——《集體錯覺》
平安文化_96
・2023/01/14 ・2432字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

有些時候,沉默就是背叛。
——馬丁.路德.金(Martin Luther King Jr.)

「幫臉蛋打分數」實驗

想像一下,你是二○○○年代末的荷蘭大學生,有一天在上課的路上穿過社會科學院,看到一張召募受試者的海報,名字叫〈看見美麗〉,是一群社會心理學家在研究人類如何認知臉蛋的吸引力。平常就愛翻時尚雜誌的你,覺得自己實在不去不行,而且該實驗還在法國與義大利同步進行,實在太酷了,所以你立刻報了名。

受試內容非常簡單,一邊接受腦部掃描,一邊幫臉蛋打分數。圖/Envato Elements

幾天之後,研究團隊請你填一份健康調查,例如有沒有幽閉恐懼症之類,並安排實驗時間;實驗似乎非常簡單:一邊接受腦部掃描,一邊幫一大堆女生臉蛋的照片打分數。「這根本只是花一個小時滑社交軟體 Tinder 嘛。」你想著,這樣就能為科學做出貢獻,實在太好了。

實驗當天,一名穿著白袍的助手帶你進入房間,房裡有一張小小的床。床的旁邊是一個巨大的白色塑膠甜甜圈,洞的大小剛好可以塞進那張床。「這叫作功能性磁振造影,」助手表示,她請你躺在床上,遞給你兩個控制器,每個控制器上各有四個按鈕,上面分別寫著 1 到 8。

「接下來我們會放出許多照片,請你告訴我們每張照片有多吸引人,」她指著控制器上的按鈕,「毫無吸引力就打 1 分,非常吸引人就打 8 分;每張照片有三到五秒的時間回答。」她說完之後給你戴上耳機,在你頭上敲了幾下把耳機固定。你看了一下那個塑膠甜甜圈,裡面好像有個小螢幕。

-----廣告,請繼續往下閱讀-----

「感覺如何?」耳機傳來助手的聲音。

「OK 啦,」你說,雖然你其實有點緊張,而且有點冷。

助手請你盡量保持安靜,然後整張床緩緩滑入了那個白色甜甜圈。

實驗在磁振造影機裡進行,令人感到有點緊張及不適。圖/Envato Elements

一分鐘後,甜甜圈裡的小螢幕亮了起來,出現一張女生的臉蛋照片,畫著濃妝面帶微笑,頭髮看起來油膩膩的;照片消失之後,你給照片打了六分,幾秒鐘後數字「8」亮了起來,旁邊寫著「+2」。看來「米蘭和巴黎的女性受試者」對這張臉的評價,平均比你高兩分。

-----廣告,請繼續往下閱讀-----

「喔?」你皺起眉頭,「這樣啊?是我漏看什麼嗎?」

螢幕上出現第二張功能性磁振造影照片,你努力無視磁振造影機器的嗡嗡聲,繼續打分數。在那之後,照片一張又一張出現,就這樣經過了五十分鐘。

實驗完成之後你來到休息室,另一個助理突然走了進來,說要拜託你在沒有磁振造影機的情況下,把每張照片再打一次分數;他把你帶到另一個房間,確認你覺得舒服之後,以不同的順序給你看之前那些照片。

不過這次,那些「歐洲受試者給出的平均分數」消失了,而且沒有時間限制,每張照片你愛看多久就看多久。結束之後助手問你感覺如何,並感謝你的參與,你也很高興對科學做出貢獻。

-----廣告,請繼續往下閱讀-----

大腦認為錯的意見

不過你做出貢獻的方式,其實跟你想的不太一樣。實驗結束之後你才知道,其實整個設定都是騙你的,這個實驗的真正目的,是研究你對臉蛋的評價會如何因為其他人的評價而改變。

實驗根本就沒有「歐洲各地同步進行」,那些「其他國家」或者什麼「米蘭和巴黎受試者的平均評分」全都是事先寫好規則的極端值,只是刻意為了跟你唱反調而已。但有趣的是,這個虛構設定的實驗,卻告訴了我們很多真實的事情。

實驗中的極端值只是刻意為了跟你唱反調而已。圖/Envato Elements

功能性磁振造影的掃描結果顯示,當我們發現自己偏離了主流意見,大腦就會在神經層次上,產生一種跟事與願違時相同的反應。

當事情的走向出乎預期,我們通常會認為是自己搞錯,這時大腦會把錯誤記錄下來,讓我們下一次不要再犯。這種機制在我們學習開車跟滑雪的時候很有用,卻會在社會之中造成麻煩:大腦會把與眾不同的意見當成錯誤的意見,讓我們下意識服從群體的共識。

-----廣告,請繼續往下閱讀-----

因此,當我們重新幫同一疊照片評分,我們給出的分數就變得跟「歐洲各地的平均分數」更近,請注意這個設定的真正意義。這些「歐洲各地的受試者」並不是我們的內團體,「巴黎跟米蘭的女性受試者」遠在天邊,我們根本就不認識,即使意見不同也不用擔心被他們排擠,可是我們還是被影響了。

這表示即使「其他人」不在現場、不知道打哪來的、甚至根本就不存在,他們的意見還是能夠讓我們服從。

即使「其他人」不在現場、甚至根本不存在,他們的意見還是能讓人服從。圖/Envato Elements

這個實驗告訴我們,即使眼前是一群自己未必重視的群體,即使「主流意見」可能只是我們的錯覺,我們也會在意自己是否偏離。在社交場合,我們的大腦不會仔細檢查眼前的表象是否為真,只會照著本能做事。這種情況我稱之為「共識陷阱」(consensus trap)。

它會創造出另一種集體錯覺:不是奠基於謊言,而是奠基於沉默,讓我們為了保持沉默,最後搞到彼此誤解。這種沉默的共識很可怕,它讓我們搞不清楚自己做錯了什麼,畢竟我們既沒有盲從他人,也沒有假意迎合,只是保持沉默而已。

-----廣告,請繼續往下閱讀-----

——本文摘自《集體錯覺:真相,不一定跟多數人站在同一邊!》,2022 年 12 月,平安文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
平安文化_96
5 篇文章 ・ 3 位粉絲
皇冠文化集團旗下的平安文化有限公司以出版非文學作品為主,書系涵蓋心理勵志、人文社科、健康、兩性、商業……等,致力於將好書推廣給廣大讀者。

1

3
0

文字

分享

1
3
0
數據塑造生活與社會,讓人既放心但又不安?——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/28 ・2760字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

數位世界已經改變了我們日常生活的體驗,一個人從早到晚都會接受到大量數據,受益於大量數據,也貢獻大量數據。這些數據龐大的程度,和消化資訊的方式已經太過繁多,人類心智根本無法處理。

與數位科技建立夥伴關係

所以人會本能地或潛意識地倚賴軟體來處理、組織、篩選出必要或有用的資訊,也就是根據用戶過去的偏好或目前的流行,來挑選要瀏覽的新項目、要看的電影、要播放的音樂。自動策劃的體驗很輕鬆容易,又能讓人滿足,人們只會在沒有自動化服務,例如閱讀別人臉書塗鴉牆上的貼文,或是用別人的網飛帳號看電影時,才會注意到這服務的存在。

有人工智慧協助的網路平臺加速整合,並加深了個人與數位科技間的連結。人工智慧經過設計和訓練,能直覺地解決人類的問題、掌握人類的目標,原本只有人類心智才能管理的各種選擇,現在能由網路平臺來引導、詮釋和記錄(儘管效率比較差)。

日常生活中很少察覺到對自動策劃的依賴。圖/Pexels

網路平臺收集資訊和體驗來完成這些任務,任何一個人的大腦在壽命期限內都不可能容納如此大量的資訊和體驗,所以網路平臺能產出看起來非常恰當的答案和建議。例如,採購員不管再怎麼投入工作,在挑選冬季長靴的時候,也不可能從全國成千上萬的類似商品、近期天氣預測、季節因素、回顧過去的搜尋記錄、調查物流模式之後,才決定最佳的採購項目,但人工智慧可以完整評估上述所有因素。

-----廣告,請繼續往下閱讀-----

因此,由人工智慧驅動的網路平臺經常和我們每個人互動,但我們在歷史上從未和其他產品、服務或機器這樣互動過。當我們個人在和人工智慧互動的時候,人工智慧會適應個人用戶的偏好(網際網路瀏覽記錄、搜尋記錄、旅遊史、收入水準、社交連結),開始形成一種隱形的夥伴關係。

個人用戶逐漸依賴這樣的平臺來完成一串功能,但這些功能過去可能由郵政、百貨公司,或是接待禮賓、懺悔自白的人和朋友,或是企業、政府或其他人類一起來完成。

網路平臺和用戶之間是既親密又遠距的聯繫。圖/Envato Elements

個人、網路平臺和平臺用戶之間的關係,是一種親密關係與遠距聯繫的新穎組合。人工智慧網路平臺審查大量的用戶數據,其中大部分是個人數據(如位置、聯絡資訊、朋友圈、同事圈、金融與健康資訊);網路會把人工智慧當成嚮導,或讓人工智慧來安排個人化體驗。

人工智慧如此精準、正確,是因為人工智慧有能力可以根據數億段類似的關係,以及上兆次空間(用戶群的地理範圍)與時間(集合了過去的使用)的互動來回顧和反應。網路平臺用戶與人工智慧形成了緊密的互動,並互相學習。

-----廣告,請繼續往下閱讀-----

網路平臺的人工智慧使用邏輯,在很多方面對人類來說都難以理解。例如,運用人工智慧的網路平臺在評估圖片、貼文或搜尋時,人類可能無法明確地理解人工智慧會在特定情境下如何運作。谷歌的工程師知道他們的搜尋功能若有人工智慧,就會有清楚的搜尋結果;若沒有人工智慧,搜尋結果就不會那麼清楚,但工程師沒辦法解釋為什麼某些結果的排序比較高。

要評鑑人工智慧的優劣,看的是結果實用不實用,不是看過程。這代表我們的輕重緩急已經和早期不一樣了,以前每個機械的步驟或思考的過程都會由人類來體驗(想法、對話、管理流程),或讓人類可以暫停、檢查、重複。

人工智慧陪伴現代人的生活

例如,在許多工業化地區,旅行的過程已經不需要「找方向」了。以前這過程需要人力,要先打電話給我們要拜訪的對象,查看紙本地圖,然後常常在加油站或便利商店停下來,確認我們的方向對不對。現在,透過手機應用程式,旅行的過程可以更有效率。

透過導航,為旅途帶來不少便利。圖/Pexels

這些應用程式不但可以根據他們「所知」的交通記錄來評估可能的路線與每條路線所花費的時間,還可以考量到當天的交通事故、可能造成延誤的特殊狀況(駕駛過程中的延誤)和其他跡象(其他用戶的搜尋),來避免和別人走同一條路。

-----廣告,請繼續往下閱讀-----

從看地圖到線上導航,這轉變如此方便,很少人會停下來想想這種變化有多大的革命性意義,又會帶來什麼後果。個人用戶、社會與網路平臺和營運商建立了新關係,並信任網路平臺與演算法可以產生準確的結果,獲得了便利,成為數據集的一部分,而這數據集又在持續進化(至少會在大家使用應用程式的時候追蹤個人的位置)。

在某種意義上,使用這種服務的人並不是獨自駕駛,而是系統的一部分。在系統內,人類和機器智慧一起協作,引導一群人透過各自的路線聚集在一起。

持續陪伴型的人工智慧會愈來愈普及,醫療保健、物流、零售、金融、通訊、媒體、運輸和娛樂等產業持續發展,我們的日常生活體驗透過網路平臺一直在變化。

網路平台協助我們完成各種事項。圖/Pexels

當用戶找人工智慧網路平臺來協助他們完成任務的時候,因為網路平臺可以收集、提煉資訊,所以用戶得到了益處,上個世代完全沒有這種經驗。這種平臺追求新穎模式的規模、力量、功能,讓個人用戶獲得前所未有的便利和能力;同時,這些用戶進入一種前所未有的人機對話中。

-----廣告,請繼續往下閱讀-----

運用人工智慧的網路平臺有能力可以用我們無法清楚理解,甚至無法明確定義或表示的方式來形塑人類的活動,這裡有一個很重要的問題:這種人工智慧的目標功能是什麼?由誰設計?在哪些監管參數範圍裡?

類似問題的答案會繼續塑造未來的生活與未來的社會:誰在操作?誰在定義這些流程的限制?這些人對於社會規範和制度會有什麼影響?有人可以存取人工智慧的感知嗎?有的話,這人是誰?

如果沒有人類可以完全理解或查看數據,或檢視每個步驟,也就是說假設人類的角色只負責設計、監控和設定人工智慧的參數,那麼對人工智慧的限制應該要讓我們放心?還是讓我們不安?還是既放心又不安?

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
聯經出版_96
27 篇文章 ・ 20 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。