只要拿出口袋裡的智慧型手機,我們隨時都能和全球最偏遠的地方即時通訊,也可以察看地球上每個角落的地圖,但你是否始終有個疑問縈繞心頭:在地球之外,還有其他生命存在嗎?讓《Discovery探索頻道雜誌》來為你解答。
美國航太總署(NASA)的最新任務不是登陸火星、也不是在太空中建造家園、更不是載人上月球(人類探測器登陸火星和建立國際太空站的任務都已經達成,載人登陸月球更是幾十年前的事),而是在宇宙中尋找生命可能存在之處。
當然,這項任務可不簡單。科羅拉多大學波德分校的薩根研究員(Sagan Fellow)雷貝嘉.馬丁(Rebecca Martin)就表示,目前我們觀測到的行星系統僅有一小部分有著適合生命形成的行星和小行星帶。
「我們的研究認為,太陽系其實相當特別。」她的團隊針對小行星帶的研究顯示,小行星撞擊帶來水和有機物,是生命形成的重要關鍵。
因此NASA有項艱鉅的工作,就是在幾十億顆恆星、行星,或甚至其他星系中,找出這種有可能發展出生命的特殊行星。
這樣的搜尋得靠望遠鏡幫忙。早在1609年,伽利略就首度使用簡單的望遠鏡觀察天空,當時的望遠鏡還只是在水管中嵌入幾片鏡片而已。其實在1570年,伽利略製作望遠鏡的40年前,英國的倫納德.迪格斯(Leonard Digges)發明的經緯儀就已包含基本的望遠鏡概念,雖然當時望遠鏡的主要功能是觀察天空,並非尋找遙遠的生命。然而,縱觀望遠鏡的四百年史,它幾乎沒什麼改變。
天文學家利用天線或鏡片收集遙遠天體發出的可見光、微波、紫外線與其他不同形式的電磁波,並加以分析檢驗,這些基本的技術已成了標準程序。
事實上,多數人都會同意,天文學和望遠鏡帶來的最重大改變並非高科技的進展或驚人的物理突破,而是人類看待行星及恆星等天體的觀點,以及解讀天體觀測資料的方法。
尋找宇宙生命
NASA指出,即使天文學家已發現了數百顆系外行星,我們仍然很難預測是否有任何一顆行星能有生命存在。天文學家使用現有的望遠鏡和分析技術,所得到的資訊仍十分不足。
我們一直希望找到另一顆類似地球的行星──不會太大也不會太小,有著氧氣和水,繞著一顆不會太熱也不會太冷的恆星運轉。但以目前得到的觀測資料看來,似乎仍有些困難。
現在有許多科學家認為可能適合生命生存的行星,是以文藝復興時期天文學家克卜勒為名的太空望遠鏡,利用「凌日法」所發現的地球型行星。凌日法是測量恆星光線被經過其前方的天體(多為行星)遮掩的程度,估算行星的大小、距恆星多遠,以及公轉的週期。但我們只能根據這些估算,猜測該行星會是顆類似地球的行星,或是冰凍荒蕪的星球。
因此,NASA目前致力於發展一項叫作PIAA(phase-induced amplitude apodization)的日冕儀技術,利用先進的演算法遮擋來自恆星的輝光,直接對系外行星進行成像。天文學家能從影像中檢驗是否有雲層、水體,甚至是植被或汙染的霧霾。
PIAA技術利用兩面特別設計的非球面鏡片,讓焦點的光線重新成像,形成高對比的影像,這項技術讓鄰近恆星的輝光和繞射侷限在一點,之後便能輕易濾除,因此能更容易看見行星的細節。
窺探宇宙成因
過去幾十年來,天文學的另一項重大進展在於資料處理技術。負責英國曼徹斯特平方公里陣列(Square Kilometre Array,簡稱SKA)計畫的科學家泰勒.伯克(Tyler Bourke)告訴《探索頻道雜誌》,目前用來蒐集、貯存、整理、分析資訊的方法已經和以前大不相同,對天文學的影響甚至比光學和物理學還要來得深遠。
伯克表示:「以下載無線電波望遠鏡的鉅量觀測資料來說,現在重要的不再只是資料本身,而是如何分析使用這些資料。」他說,望遠鏡的資料和影像不再只有祕密組織才能處理,現在只要靠一般商業電腦就能做到。
伯克解釋,複雜的影像大多靠高效能的電腦顯示卡來處理,一些線上遊戲玩家也擁有相同的配備。他表示:「就平方公里陣列計畫來說,我們有非常優秀的工程師重新編寫電腦顯示卡的程式,幫我們從大量資料中篩選出有意義的資訊。」
平方公里陣列計畫團隊正在建造全世界最大、最複雜,同時也是最強大的無線電波望遠鏡,完成後其巡天效率會比現有的儀器還要快1萬倍,解析度也會高上50倍。
平方公里陣列計畫並不打算使用超大的碟型天線,也不打算利用山谷建造直徑300公尺的拋物面天線,像波多黎各的阿雷西波(Arecibo)電波望遠鏡那樣;而是會利用高頻寬的光纖網路,連結橫跨大陸的數千個小型天線。因此,平方公里陣列所需並非大型工程或尖端物理學知識,而是複雜的資訊通訊技術。你也可以將它想像成群眾募資活動,只是目的換成了尋找系外行星。
科學家已經選定非洲幾個地點,像是南非的卡魯(Karoo)沙漠,波札那、迦納、肯亞、馬達加斯加、模里西斯、莫三比克、納米比亞、尚比亞等國,以及澳洲西部,在這些地方建造一系列13公尺×60公尺×1.5公尺的天線組。一旦透過內部網路相連,這些天線能在2020年至2024年間全面運作,幫助天文學家了解早期宇宙的形成,包括第一代恆星與星系的成因。平方公里陣列計畫團隊表示,就像NASA一樣,這個任務的目標是基礎科學研究。
「這就是我們選擇南非和澳洲的原因,」他說,「並不是因為天氣晴朗或水氣稀少──雖然這些因素也很重要,但最重要的是這些地方遠離人群和無線電波。要能看到宇宙的最深處,也就代表工作波段非常長、頻率非常低,幾乎到了調頻(FM)廣播的波段。」
伯克表示,在這個頻段,任何人類活動都會危及觀測數據的準確性。平方公里陣列計畫有13個會員國和來自20個國家的100個組織共同參與,耗資21億美金,因此大家非常期望它能協助回答最困難的科學問題,包含宇宙初形成時大霹靂的情況。
以動制變
至於最新的光學望遠鏡,位於海中央的島嶼夏威夷,就有九座光學天文台坐落於毛納基火山(Mt. Mauna Kea)的雲層上,遠離了各種汙染和干擾,來自大氣層中的塵埃、霧霾和水氣也都降至最低。另外還有一些天文台位在南美洲高海拔的乾燥沙漠,或是晴朗的澳洲內陸,也擁有同樣優良的觀測條件。然而,隨著光學技術快速進展,望遠鏡面臨的問題往往來自微小尺度的不完美。
一般光學望遠鏡的反射鏡片是由小鏡片組合成的25公尺反射鏡,像是位於智利的巨型麥哲倫望遠鏡(Giant Magellan Telescope),前後往往需要四年時間才竣工。每一片小鏡片都得在溫度精確控制的環境下,打造超高精度的曲線表面。即便如此,這些鏡面從未是完美的拋物面鏡。
「所有的傳統光學系統都會有微小的像差,使得恆星成像不清晰。目前我們無法製作出毫無像差的光學系統,」艾姆斯研究中心的別里克夫博士這麼說。即使是鏡片上最微小的起伏都會造成成像變形──隨著鏡片越大,出錯的機率也越高。因此,現在許多光學望遠鏡改採不同的策略,與其嘗試打造完美的鏡面,不如故意將鏡面設計成可以任意變形。
在20年前,歐洲南天天文台(ESO)首度將這項「主動光學」技術應用於拉西拉(La Silla)天文台的新技術望遠鏡(NTT)上。這座天文台坐落於2400公尺高的智利亞他加馬(Atacama)沙漠。
新技術望遠鏡的3.58公尺主鏡是全球首座能由電腦控制的反射鏡面。電腦控制的致動器能根據即時的監測元件反饋,不斷輕微改變主鏡的表面形狀。也就是說即使在觀測中,望遠鏡仍能主動調整鏡片的曲率,確保焦點準確,而獲得最佳的成像品質。NASA表示,長距離、低光度和非常要求準確對焦的PIAA望遠鏡,也將會使用此項技術。伯克表示,他的團隊將會使用數個不同的反饋系統來控制鏡面。
鏡片不是天文學家碰到的唯一困擾,即便是夜晚舒爽的微風,都會對現代敏銳的光學系統造成問題。新技術望遠鏡的設計者就非常清楚,拉西拉天文台的高溫、高海拔氣候,會在漫長炎熱的一天過後,帶來大幅降溫的晚風。
巨大溫差會使物體膨脹、收縮,甚至彎曲。因此設計師在望遠鏡周圍建了圓頂,並透過流經鏡片表面的氣流,減少因溫度造成的微小變形。
新技術望遠鏡在圓頂內採用了特殊的通風窗設計,能夠產生更容易控制與預測的氣流。這些對小細節的用心,能讓鏡片表面的氣流擾動降至最低,而有更清晰的成像。
新技術望遠鏡和最新一代的太空望遠鏡比起來,所處的環境相對舒適許多。不論是1990年發射的哈伯太空望遠鏡(Hubble Space Telescope),或是即將在2018年發射的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope),軌道都位在地球大氣層的煙霧和無線電干擾之上,因此能望向宇宙更深、更遠之處。
韋伯太空望遠鏡的觀測目標是幾十億光年外天體所發出的紅外線,希望能研究大霹靂後1億到2億5000萬年的早期宇宙,並可能觀察到第一代恆星與星系。這些巨大的望遠鏡在太空嚴苛的真空環境中,得要面對巨大的溫差和鏡面可能變形的問題。
舉例來說,軌道高度僅600公里的哈伯太空望遠鏡,紅外線接收器內的溫度是刺骨的攝氏零下203度,在防護罩外卻是200度的高溫。不過這完全比不上詹姆斯.韋伯太空望遠鏡,其低溫冷卻的紅外線偵測器每天工作時的溫度是零下224度。
這樣劇烈的溫差會對零件產生巨大的應力,也讓測試相當難以進行。我們很難在地球上複製望遠鏡在太空中所處的真空環境,詹姆斯.韋伯太空望遠鏡最終的軌道將遠離地球達150萬公里,若發生任何問題,幾乎不太可能前往修復。這都使得建造最新一代的望遠鏡──不只是太空望遠鏡──無比困難又造價昂貴。
追求大哉問的解答
在非天文學家眼中,擲注其中的許多時間、金錢和努力,似乎有些浪費,但對堅定的天文狂熱者──像是平方公里陣列的伯克來說,花費完全值得。他指出,望遠鏡能望向越遙遠的過去,我們就越能夠理解宇宙的廣袤,以及自己在其中的定位。
「重力波絕對是我們用平方公里陣列最希望找到的東西之一,」他說,「如果得到的數據夠明確,我們可能得要重新審視愛因斯坦的理論──這絕對會是諾貝爾獎等級的發現,」他如此強調。
科學家已經取得一些突破性的成果。就像確認希格斯玻色子存在,促使了新的原子結構理論發展。有些人認為,最近南極洲的宇宙銀河系外偏振背景影像二代(BICEP-2)望遠鏡可能發現了重力波,如果能夠確認,就也能證實宇宙擴張理論。
「這還有但書,」伯克表示,「人類對宇宙的理解有道鴻溝橫亙面前──也就是大霹靂後幾十億年,稱作黑暗時代(Dark Ages)的這段時期,我們對此一無所知,」他解釋,「我們知道的太少,很難做出完全沒有錯誤的描述。」
然而,平方公里陣列這樣的龐然大物、置身遙遠冰冷世界的詹姆斯.韋伯太空望遠鏡,或是極其精細的巨型麥哲倫望遠鏡,都協助我們取得更多影像,進而深入理解宇宙。這些望遠鏡窺探宇宙的過去,一步步揭開黑暗時代的神祕面紗,伽利略首次將望遠鏡轉向夜空的欣喜,也因此能夠歷久彌新。雖然如此,對一般民眾來說,天文學或望遠鏡和日常生活沒有什麼直接關聯,看來神祕卻不太重要。
不過,平方公里陣列的伯克提醒大家,建造望遠鏡所憑藉的絕對不只是對研究的迫切需求,更多時候也意外帶動了其他領域──像是軍事、航太、電腦,及大量生產製程。
「有件事是確定的,」他說,「單靠天文學這個學門無法建造大望遠鏡和精密儀器,天文學領域沒有那麼多錢。」無論如何,天文學家還是會戮力向前,繼續探索宇宙奧祕!
本文出自《探索頻道雜誌國際中文版》2015年04月號第27期