Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

ebird Taiwan 臺灣入口網全面啟動!

林大利_96
・2015/08/01 ・3314字 ・閱讀時間約 6 分鐘 ・SR值 520 ・七年級

圖片1

ebird Taiwan

ebird 是目前全世界最大的賞鳥紀錄資料庫及共享平台,由康乃爾鳥類研究室奧杜邦學會共同營運,隨時蒐集來自世界各地30萬用戶的賞鳥紀錄。自2002年起,已經提供一億五千萬筆的鳥類分布資料至全球生物開放資料的核心「全球生物多樣性資訊機構(Global Biodiversity Information Facility, GBIF )」。ebird之所以成功,在於他緊緊抓住狂熱賞鳥人的心,提供這些賞鳥人許多方便輸入、管理、查閱、下載及展示自己賞鳥成果的服務,甚至可以與其他賞鳥人一較高下,來個全球大車拚。就像打獵一樣,這些賞鳥紀錄的累積有如展示狩獵成果,唯一不同的是,那把殺戮的獵槍已經典雅的轉化為欣賞野鳥的望遠鏡。

ebird Taiwan 則是 ebird的臺灣入口網站,由中華民國野鳥學會特有生物研究保育中心共同管理。四年期間,我方與ebird密集的協商與討論,終於建置完成ebird的繁體中文入口網。對外國人來說,東亞的語言一直是很大的罩門,尤其是中國(各位可觀察以下的資料圖,非常缺乏中國的資料)。使用繁體中文的臺灣提出與ebird合作,建置繁體中文網站,對ebird團隊來說,是填補缺漏的一大福音。對臺灣的賞鳥人來說, 少了英文這一到障礙,更方便的使用這個迷人的資料庫。快讓我們來看看ebird有什麼功能吧!

管理個人的賞鳥紀錄 

對賞鳥人來說, 很大的志業是記錄自己在全世界看過幾種鳥,這個數字稱為「生涯鳥種數」,生涯首次目擊的鳥種稱為「生涯新種(Lifer)」。將每一次的賞鳥紀錄輸入ebird,便可快速的統計自己的生涯鳥種數。以我自己為例,我的生涯鳥種數是616種,並且顯示在各國目擊的鳥種數:臺灣347種、印度156種、日本87種…等。對賞鳥人來說,最困擾的是生物分類的變動,都有可能改變這個數字,需要密切的追蹤鳥類分類研究。不過,ebird幫忙省了這樁苦差事,ebird團隊會依照Clements世界鳥類名錄,定期更新資料庫的鳥類分類歸屬。ebird是以物種為單位,但這對某些賞鳥人(我)來說是不夠的,還要以亞種為單位,而且還自己製作生涯鳥種數累積曲線(ebird目前無此功能)。

-----廣告,請繼續往下閱讀-----

11012954_978760058830203_1845973233333815926_n11156292_1008423542543764_337900873940706707_n

查詢最近有什麼好鳥可看

查查看最近有什麼稀有鳥來報到,是很重要的即時資訊。點選【探索資料】、【探索地區】,輸入所要查詢的國家或地區之後,顯示如下圖。下圖是查詢臺灣的顯示結果,可見在資料庫內,臺灣的鳥類紀錄清單共有14,186份,共記錄527種小鳥,以下則是鳥種清單,右邊可見最即時上傳賞鳥紀錄。如果想要ebird主動通知鳥訊,可點選【探索資料】、右下角的【鳥訊快報】,輸入email便可由ebird主動通知你稀有鳥的鳥訊,以及鳥尚未目擊過的鳥種訊息。不過,以我個人的使用經驗,幾乎完全是坐在辦公桌前面扼腕,根本無暇立即去鳥點報到。

11012954_978760058830203_1845973233333815926_n

查詢各鳥種的資料分布

ebird資料庫最大的價值,在於可透過各種方式探索資料庫裡的資料,滿足使用者的應用需求。查閱某鳥種的資料是相當基本的功能,點選 【探索資料】、【鳥種分布圖】,可在右上角輸入鳥類的英文名或學名,顯示該鳥種的資料分布(目前暫無法以中文查詢)。如下圖為麻雀的資料分布圖,將地圖拉近則可檢視資料細節。該注意的是,麻雀是廣泛分布於歐亞大陸的鳥類(印度半島除外),但未曾有資料的地點則無法顯示,如中亞及中國。

11012954_978760058830203_1845973233333815926_n

查閱世界各地的鳥類名錄與遷留狀態

點選【資料探索】、【條型圖】,選擇所要查詢的國家或地區後,便能顯示該地的一整年鳥類數量變化。ebird將每個月分成四週,厚度代表該鳥種的數量,時間範圍可自行設定。這樣的結果可以判對當地個鳥種的遷留狀態,對賞鳥人來說,就可以知道哪個月份造訪可看到最多種小鳥,哪些月份去的話就打消念頭乖乖陪老婆購物。

以下為查詢臺灣所有資料的結果,可見白耳畫眉(White-eared Sibia)和藪鳥(Steere’s Liocichla)的數量相當多且全年可見,可判斷是不遷徙的留鳥。紋翼畫眉(Taiwan Barwing)也是留鳥不過數量較少。烏鶲(Dark-sided Flycatcher)、寬嘴鶲(Asian Brown Flycatcher)和灰斑鶲(Gray-streaked Flycatcher)的資料主要集中在春秋兩季,可判斷是遷徙季節時在臺灣短暫停留的過境鳥,有些寬嘴鶲則在冬天也有紀錄。紅尾鶲(Ferruginous Flycatcher)的資料集中在夏季,可判斷是夏天才到臺灣繁殖的夏候鳥。

-----廣告,請繼續往下閱讀-----

11012954_978760058830203_1845973233333815926_n

查詢鳥類熱點

對賞鳥人而言,趁出國的空檔尋找新鳥種是很重要的任務,如果飯店附近有鳥類熱點,在開會之前早起賞鳥是再好不過的安排了。點選【資料探索】、【探索熱門鳥點】便會顯示熱門鳥點的世界地圖,拉近到查詢的地區就會顯示資料細節。從下圖可見,北臺灣的重要熱點不外乎關渡、華江橋雁鴨公園、金山、野柳和東北角的田寮洋,點選可顯示鳥種數與紀錄清單數。例如關渡自然公園目前共有131份鳥類紀錄清單,共記錄140種鳥。

11012954_978760058830203_1845973233333815926_n

百人排行榜

除了查詢鳥類資料,賞鳥另一大樂趣是與他人一較高下,也秤秤自己的斤兩。點選【資料探索】、【百人排行榜】,選擇國家或地區之後,便會顯示前100名的ebird使用者,可以用鳥種數排序,也能用上傳紀錄清單數排序。下圖是全臺灣在2015年至7月31日為止的排行榜(依鳥種數),共記錄459種鳥。

看看第一名已經記錄了400種鳥,第二名380種,第三名326種。我個人則是魯魯的以157種排在第44名(驚!),連人家的車尾燈都看不到,連螢幕截圖都截不進來。當然,這表示有乖乖上班,沒有偷跑出去看小鳥。由於臺灣的使用者還不多,所以百人排行榜內大多數是認識的朋友,常常上來檢視可以看看誰去賞鳥卻又不揪。如果顧及隱私不希望自己的紀錄顯示於資料庫中,在帳號管理處可設定為匿名。

11012954_978760058830203_1845973233333815926_n

這麼多人提供資料,有錯怎麼辦?

ebird鳥類資料庫的強大功能,辨識資料偵錯與檢核機制。資料庫中已經先將各地區鳥種的「當月最大量」作為基礎,當你輸入的數量超過資料庫中的「當月最大量」時,系統便會提醒使用者:「這是一筆相當罕見的紀錄,請您再做確認,或提供照片或詳細資訊」。這樣的機制,也可以避免使用者不小心輸入錯誤,「當月最大量」也可以隨時修正調整。此外,將資料上傳資料,ebird會將資料交給由各地區資深賞鳥人所擔任的「審查委員團」審查,如果紀錄罕見或不合理,審查委員會直接寫信給使用者做溝通及確認。如果資料非常不合理,審查委員便會將資料剃除,使用者還是會在自己的紀錄中看見那筆稀有的資料,但是並不會進入資料匯算和整合的資料庫中。

-----廣告,請繼續往下閱讀-----

有什麼很酷的成果嗎?

ebird累積了大量的鳥類分布資料,能提供研究者挖掘其所需要的資料,自行整理分析。其中一項相當酷的是建立美國部分鳥種(資料量要夠大)出現點位的全年變化,對候鳥來說,更可以顯示遷徙狀況。例如下圖是Black-throated Gray Warbler四月時的分布圖,疊合後可製成全年變化動態圖(更多鳥種的動態圖請看這裡)。

11012954_978760058830203_1845973233333815926_n

滴水足以穿石,聚沙可以成塔,ebird掌握了使用者的喜好,獲得大量的資料,涵蓋的時間與空間也非常龐大。如果沒有為數眾多的賞鳥人,ebird也難以有這樣的成績。ebird在此難以全面介紹,如果你需要一個方便管理賞鳥紀錄的平台,又希望讓賞鳥成果發揮出更多的價值,那就快來ebird註冊一個帳號吧!

註:因與ebird簽署合作協議,本文所有圖片皆已獲得授權使用。

參考文獻

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
林大利_96
19 篇文章 ・ 8 位粉絲
來自森林系,目前於特有生物研究保育中心服務。興趣廣泛,主要研究小鳥、森林和野生動物的棲地。出門一定要帶書、對著地圖發呆很久、算清楚自己看過幾種鳥。是個龜毛的讀者,認為龜毛是一種科學寫作的美德。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

11
5

文字

分享

2
11
5
小鳥為什麼不走路要用彈跳的?——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/25 ・1493字 ・閱讀時間約 3 分鐘

彈跳的鳥類

用雙腳移動時,只有鳥類會使用而人類不會用的動作,那就是彈跳。這種名為彈跳的運動既困難又麻煩,為什麼鳥要這樣子彈跳呢?其實到現在我們還無從得知。

如同前述,彈跳是兩腳幾乎同時一起跳的運動方式。我們常見的鳥,像是麻雀和日菲繡眼這種小鳥就是用彈跳的(圖一),而烏鴉在急的時候也會彈跳。

麻雀是兩腳並用一起跳,但也有兩腳稍微錯開來彈跳的物種。例如巨嘴鴉之類的鳥類身體會微微傾斜,左右腳些微錯開,用「噠噠、噠噠」這樣的節奏來彈跳。這兩種本質上的差異目前還不清楚,不如說彈跳跟跑步的差異也還不清楚,所以步行研究者目前也是束手無策。

圖一、麻雀的彈跳,左右腳微微錯開著地(照片 ③ 中偏差大約是 1/120 秒)

歐亞喜鵲這種鳥同時會彈跳也會跑步,但比較兩者的研究顯示,在跑步與彈跳中,腳的運動方式跟肌肉動作幾乎一樣。彈跳跟跑步一樣,是高速移動的方式,活用肌腱像是彈簧的功能來轉換動能跟彈性位能。然後,兩種的差別只有「雙腳交互動作」或是「幾乎一起動作」而已。

-----廣告,請繼續往下閱讀-----

彈跳和跑步除了腳動的時機以外沒有什麼不同,那為什麼只有一部分的鳥是用彈跳的呢?

這個問題,很遺憾現在的科學還沒有解開,現階段一致贊同的只有:一般認為會彈跳的鳥是相對小型的種類,以及常待樹上的種類。看了許多鳥以後,會發現確實小型的鳥很常彈跳。另外,喜歡待在樹上的鳥則是常用兩腳一起從一根樹枝跳到另一根樹枝上,所以在地上也同樣會用兩腳一起跳躍,這樣說來可能就會覺得可以理解。

但是在樹上彈跳,在地上也還是可以步行不是嗎?不這樣區分移動方式,應該是因為有什麼身體構造或生理學上的理由才對,但這問題至今仍然是謎。

-----廣告,請繼續往下閱讀-----
圖/giphy

另一方面,小型的鳥喜歡彈跳的理由,如果用「彈跳適合用來高速移動」,可以解釋一部分的疑問。比起小型鳥,大型鳥的步幅更大,一般步行速度也比較快。如果小型鳥想跟大型鳥用同樣速度移動的話,就需要走得很快。像是人類,也很常在路上看到小孩要小跑步拚命跟上大人的走路速度。跟那個狀況相同,小型鳥有使用相對身體尺寸的高速進行移動的必要性。

想像看看會啄食掉落在地面的種子的鴿子和麻雀,如果用同樣密度灑餌,鴿子只要數步就能抵達下一個餌也說不定,但小型的麻雀需要移動相對更遠的距離才能拿到餌(圖二)。這樣一來就需要比較急著移動,這麼解釋或許也很合理。

圖二、假設在距離鴿子兩個身體遠的地方放餌,對體型較小的麻雀來說,同距離就需要移動六個身體的長度,不移動更遠的距離就沒辦法拿到餌。

但是彈跳和跑步如果是同樣的運動,那為什麼不能用跑的呢?「小型鳥比較需要快速移動」這種說明,很遺憾地似乎不能完全解釋為什麼要選擇彈跳。

但這麼簡單的問題,21世紀的科學還無法解釋,真是令人驚訝。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 2

0

0
1

文字

分享

0
0
1
為什麼腿短短,走路還搖搖晃晃?解密企鵝賣萌的背後真相!——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/24 ・1652字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

企鵝搖搖晃晃地走路

圖/giphy

說到用兩隻腳走路的鳥類,就不得不提企鵝。企鵝用兩隻腳在冰上搖搖晃晃走路的樣子非常可愛。在水中卻可以自由自在地高速游泳、追捕魚,這兩種樣子帶給人的印象有非常大的不同。

話說,企鵝意外地可以走很長一段距離。牠們會在地上蒐集石頭來作巢,所以當然要可以走到築巢的地點。通常企鵝類的繁殖群會位在距離海岸線幾百公尺的地方,但有時會在距離海岸 3 公里以上的內陸,想像企鵝排成一列搖搖晃晃地走 3 公里,實在是可愛至極。

說是這樣說,但是走 3 公里,我們人類都覺得有點遠了,企鵝真的可以搖搖晃晃走過去嗎?

牠們的走路方式感覺效率很差,好像很累。企鵝走路時腳會使用的力量以及計算其所需能量的研究顯示,企鵝的走路方式一如外表印象,效率很差。大概所有人都會覺得「我想也是」吧,但我們不妨來仔細思考為什麼會效率很差。

-----廣告,請繼續往下閱讀-----
圖/giphy

鵝生好累!企鵝其實一直蹲著?

在討論企鵝的步行時,首先得要知道的是其獨特的體型。企鵝看起來是用兩隻腳站著,腳感覺極端的短。大概因為身上的毛色彷彿穿著燕尾服一樣,總覺得像是人類的喜劇演員一般。

但是牠嚴格說來並不是「站著」。看企鵝的骨骼圖(圖一)就很清楚。髖關節跟膝關節強烈彎曲的姿勢,以人類來說就是「蹲著」。換言之,企鵝時時刻刻都是蹲著的,連走路時也是蹲著的狀態。試著自己蹲著走路看看,就會像企鵝那樣搖搖晃晃地。牠們搖搖晃晃的姿態,背後的祕密就是體型與姿勢。

而由此延伸,企鵝的步行方式非常沒效率的理由,可能就是身體橫向搖擺和轉動幅度非常大。搖擺跟旋轉的動作,對前進而言怎麼看都是不必要的舉動,但是根據之前的研究,其實企鵝不搖晃反而效率會更差。之前也說過雙足步行的動能跟位能要有效率地轉換,才能有效率地運動,但企鵝似乎是用橫向搖擺的動作來進行這種能量轉換。

圖一、企鵝的樣子跟人很像,所以如果讓企鵝在山手線月台上排隊,也不會有人發現(右),但是如果看骨骼(左),企鵝蹲下來就可以跟站著的人類簡單區分開來。

短腿優先?

也就是說,企鵝走路效率不佳的理由,跟牠們這種體型跟姿勢有關。

-----廣告,請繼續往下閱讀-----

企鵝的腳確實很短,以現在還活著的企鵝種類來說,體型最大的皇帝企鵝的體重將近 20 公斤,和澳洲的平胸鳥類鶆䴈幾乎相同,然而比較這兩種鳥類的腿長的話,鶆䴈的髖關節大概在 80 公分高的位置,而皇帝企鵝大概在 30 公分高左右。明明體重差不多相同,企鵝的腳的長度卻只有鶆䴈的一半以下,步行效率差也是沒辦法的事。

本章已經反覆提過好幾次,腿愈長一般來說會步行速度愈快、效率也愈好,企鵝的短腳和蹲下的姿勢非常不適合走路,這點沒有人能否定。

圖/giphy

企鵝的腳會這麼短,恐怕是為了在寒冷地帶保住體溫。雖然也有棲息在熱帶的企鵝,但多數企鵝都棲息在極地,在水中跟地面上不失去體溫就是牠們最重要的課題。四肢末梢要是比較長,就會因為體積的表面積變大,容易失去體溫。所以在寒冷地帶演化的物種,耳朵等突出部位通常都會比較小。

雖然意外地能走很長距離,但企鵝仍然主要屬於在寒冷地區游泳的鳥類,為此演化出的短腿跟蹲著的姿勢,必須讓身體左右搖晃走路來補足才更有效率。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----