一個簡單的原子核就能揭開某種特性,那與稱之為時間反演(time reversal,時間逆轉)的神秘現象的相關,且導致對物理學中最大謎題之一 — 宇宙中物質與反物質的不均衡 — 的一種解釋。
物理世界最近受到一則新聞的震撼:有一類稱為微中子的次原子粒子也許超越了光速。
為新點子的輕率加油添醋, Arizona 大學理論物理學家 Bira van Kolck 最近提出,以另一種小粒子,稱為氘核(deuteron,重氫核),進行實驗,將導致對物理學家所面對最令人挫敗的難題之一 — 宇宙中物質與反物質的不均衡 — 做出一種解釋。
氘核是一種簡單的原子核。它的簡易性使得它成為核子物理實驗中的最佳目標之一。
氘核有種特性稱為「磁四極矩(magnetic quadrupole moment)」,能揭露「時間反演違逆(time reversal violation)」這種現象的來源,Van Kolck 以及同僚,包括最近從 UA 畢業的博士生 Emanuele Mereghetti,在最近一篇發表於 Physical Review Letters 的論文中報告。
物理學家所認識的絕大部份宇宙可由粒子物理學的標準模型來解釋。由 Van Kolck 的前指導教授、諾貝爾桂冠 Steven Weinberg(溫伯格)所開發,標準模型描述牛頓運動定律到次原子粒子行為(量子力學)的每一件事。
“這個理論幾乎解釋了到目前為止我們對於宇宙所知的每一件事,” Van Kolck 說。”然而,” 他補充,”這裡有個問題,標準模型無法解釋。”
“好比光子與中子 — 此粒子構成原子的核心 — 每種粒子都有所謂的反粒子,如反光子或反中子這些東西。宇宙的粒子似乎比反粒子多了許多,” Van Kolck 說。”所以,這有個問題:為何在粒子與反粒子之間,宇宙似乎有這樣一種不對稱存在。”
“目前的跡象是,宇宙始於一種非常稠密的狀態,某些人稱之為大霹靂,並從那演化而來。如果我們能證明,「宇宙伊始時粒子與反粒子數量均衡,而目前我們觀測到有更多粒子的這項事實,現在能用宇宙演化中的過程來解釋」,這將會十分吸引人。”
當事物看起來不平衡時,物理學家問為什麼。解釋可能位於時間反演現象中的罕見違逆。
時間反演?
“讓我們假設你在玩撞球,” Van Kolck 說。”你有二顆撞球且你敲它們使其在桌上對撞。假設你把過程拍下,但你把影片以倒轉方式播放。如果你沒有告知觀者正在看的版本那個是向前、哪個是向後,那麼此人將無法區別。”
與影片中一樣,時間在描述我們世界的等式中可以顛倒,而等式仍然維持平衡。
例如,你車子的最大速度是它每小時可含括的哩數,對於物理學家來說則是距離除以時間。如果時間反演,所以那變成了一個負數,等式依然平衡,因為速度與距離的幅度(magnitudes,數的絕對值)維持相同。
你說,且慢。時間只朝一個方向前進:人變更老,不是變更年輕。
“這是一種顯著的時間方向,” Van Kolck 說。”那與初始狀態有關。我們可以有在二種方向上均有效的物理定律,但仍出現時間有方向的現象。”
“讓我們繼續提到撞球的例子,” Van Kolck 說。”當遊戲開始時,桌上有一副排成三角形的球,然後有人將一顆球射入這堆球,導致所有的球四散。如果你倒著播影片,絕大部份的人會說,在原始電影中有個方向,因為你不太可能用正確的速度開所有的球,使它們相撞,全部的球停下後,形成三角形,然後只有一顆球跑出來。”
“我們感知某種偏好方向的理由與這個事實有關:從一種簡單的初始狀態開始比從非常複雜的狀態開始要更容易,” Van Kolck 說。所以時間可在物理學方程式中逆轉而不會影響結果,不過時間逆轉的效應在我們的日常生活中仍無法察覺。
“一直到 1960 年代,物理學家認為當時間變換(transformation)成負數時間,物理學定律完全不變,” Van Kolck 說。”他們接著發現,有些涉及次原子粒子的現象似乎稍微違逆了這種對稱。”
換言之,如果你拍攝桌球影片,然後以倒轉方式播放,倒轉的版本與正常播放的版本事實上會有一點點的差異 — 如同 “母體(譯註:指電影《駭客任務》中的那個母體)中的小瑕疵。”
“那好像在某方向上發生的某些事情的過程,與相反版本相較,不會以相同的速率發生,” Van Kolck 說。這種現象稱為時間反演違逆。
當時間反演被違逆時,等式將無法平衡;你的車跑的不會像回程時那樣快。物理學家認為,正是這種不平衡,也許能解釋宇宙中數量不相等的物質與反物質。
當物理學家首度在次原子粒子中開始尋找時間反演違逆的來源時,他們測量過粒子的一些特性,稱電偶極矩(electric dipole moments,EDMs)。
EDM 是由次原子粒子的一種特性所產生,稱為自旋。自旋能被視覺化成,一個粒子繞著它的中心旋轉,而不是像地球那樣繞著它的軸自轉。
時間反演時,自旋看起來會顛倒,如同一部粒子的影片倒轉播放。但為了等式的平衡,EDM 得等於零。任何非零值將會產生不一樣的等式結果 — 倒轉版本的影片事實上與正常播放的版本不同。
“物理學家得要尋找粒子的 EDMs,因為如果你測得一個,你就知道時間反演受到違逆了,” Van Kolck 說。”我們知道,在標準模型中有非常少的一點點的時間反演違逆。但那似乎不足以解釋物質/反物質的不對稱,因為時間反演的違逆非常小。所以,我們正尋找產生其他過程的來源,而我們在此過程中會看到這種現象。”
然而:”測量單單 EDMs 並不會告訴你許多,” Van Kolck。”那會告訴你一些,不過我們所證明的是,如果你能測量氘核的另一種特性,稱為磁四極矩(magnetic quadrupole moment),那麼你就更能辨別此機制。”
“如同電偶極,磁四極(magnetic quadrupole)違逆了時間反演對稱,” Van Kolck 說。他與他的同僚確定時間反演違逆的機制,那與氘核之磁四極矩的不同測量方式相關。
“在分離這些機制上,先前沒人指出這會是一種如此有效的方法,” Van Kolck 說。”我們正提倡,人們試著去測量磁四極矩以了解時間反演違逆的來源。”
揭露先前未知的 t-violation 來源,能導致對物理學所面臨的最大問題之一做出解釋:宇宙中物質與反物質不均勻的理由。
以氘核進行的實驗,將探索的能量規模與 CERN 的 LHC 相同,且能導致物理學中的全新發現,Van Kolck 表示:”那是一種在標準模型之外,看待物理學的不同方法。”
資料來源:PHYSORG:Time reversal: A simple particle could reveal new physics[October 11, 2011]