網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

時間反演:一個簡單的粒子能揭開新物理學

only-perception
・2011/10/13 ・2271字 ・閱讀時間約 4 分鐘 ・SR值 551 ・八年級

一個簡單的原子核就能揭開某種特性,那與稱之為時間反演(time reversal,時間逆轉)的神秘現象的相關,且導致對物理學中最大謎題之一 — 宇宙中物質與反物質的不均衡 — 的一種解釋。

物理世界最近受到一則新聞的震撼:有一類稱為微中子的次原子粒子也許超越了光速。

為新點子的輕率加油添醋, Arizona 大學理論物理學家 Bira van Kolck 最近提出,以另一種小粒子,稱為氘核(deuteron,重氫核),進行實驗,將導致對物理學家所面對最令人挫敗的難題之一 — 宇宙中物質與反物質的不均衡 — 做出一種解釋。

氘核是一種簡單的原子核。它的簡易性使得它成為核子物理實驗中的最佳目標之一。

氘核有種特性稱為「磁四極矩(magnetic quadrupole moment)」,能揭露「時間反演違逆(time reversal violation)」這種現象的來源,Van Kolck 以及同僚,包括最近從 UA 畢業的博士生 Emanuele Mereghetti,在最近一篇發表於 Physical Review Letters 的論文中報告。

物理學家所認識的絕大部份宇宙可由粒子物理學的標準模型來解釋。由 Van Kolck 的前指導教授、諾貝爾桂冠 Steven Weinberg(溫伯格)所開發,標準模型描述牛頓運動定律到次原子粒子行為(量子力學)的每一件事。

“這個理論幾乎解釋了到目前為止我們對於宇宙所知的每一件事,” Van Kolck 說。”然而,” 他補充,”這裡有個問題,標準模型無法解釋。”

“好比光子與中子 — 此粒子構成原子的核心 — 每種粒子都有所謂的反粒子,如反光子或反中子這些東西。宇宙的粒子似乎比反粒子多了許多,” Van Kolck 說。”所以,這有個問題:為何在粒子與反粒子之間,宇宙似乎有這樣一種不對稱存在。”

“目前的跡象是,宇宙始於一種非常稠密的狀態,某些人稱之為大霹靂,並從那演化而來。如果我們能證明,「宇宙伊始時粒子與反粒子數量均衡,而目前我們觀測到有更多粒子的這項事實,現在能用宇宙演化中的過程來解釋」,這將會十分吸引人。”

當事物看起來不平衡時,物理學家問為什麼。解釋可能位於時間反演現象中的罕見違逆。

時間反演?

“讓我們假設你在玩撞球,” Van Kolck 說。”你有二顆撞球且你敲它們使其在桌上對撞。假設你把過程拍下,但你把影片以倒轉方式播放。如果你沒有告知觀者正在看的版本那個是向前、哪個是向後,那麼此人將無法區別。”

與影片中一樣,時間在描述我們世界的等式中可以顛倒,而等式仍然維持平衡。

例如,你車子的最大速度是它每小時可含括的哩數,對於物理學家來說則是距離除以時間。如果時間反演,所以那變成了一個負數,等式依然平衡,因為速度與距離的幅度(magnitudes,數的絕對值)維持相同。

你說,且慢。時間只朝一個方向前進:人變更老,不是變更年輕。

“這是一種顯著的時間方向,” Van Kolck 說。”那與初始狀態有關。我們可以有在二種方向上均有效的物理定律,但仍出現時間有方向的現象。”

“讓我們繼續提到撞球的例子,” Van Kolck 說。”當遊戲開始時,桌上有一副排成三角形的球,然後有人將一顆球射入這堆球,導致所有的球四散。如果你倒著播影片,絕大部份的人會說,在原始電影中有個方向,因為你不太可能用正確的速度開所有的球,使它們相撞,全部的球停下後,形成三角形,然後只有一顆球跑出來。”

“我們感知某種偏好方向的理由與這個事實有關:從一種簡單的初始狀態開始比從非常複雜的狀態開始要更容易,” Van Kolck 說。所以時間可在物理學方程式中逆轉而不會影響結果,不過時間逆轉的效應在我們的日常生活中仍無法察覺。

“一直到 1960 年代,物理學家認為當時間變換(transformation)成負數時間,物理學定律完全不變,” Van Kolck 說。”他們接著發現,有些涉及次原子粒子的現象似乎稍微違逆了這種對稱。”

換言之,如果你拍攝桌球影片,然後以倒轉方式播放,倒轉的版本與正常播放的版本事實上會有一點點的差異 — 如同 “母體(譯註:指電影《駭客任務》中的那個母體)中的小瑕疵。”

“那好像在某方向上發生的某些事情的過程,與相反版本相較,不會以相同的速率發生,” Van Kolck 說。這種現象稱為時間反演違逆。

當時間反演被違逆時,等式將無法平衡;你的車跑的不會像回程時那樣快。物理學家認為,正是這種不平衡,也許能解釋宇宙中數量不相等的物質與反物質。

當物理學家首度在次原子粒子中開始尋找時間反演違逆的來源時,他們測量過粒子的一些特性,稱電偶極矩(electric dipole moments,EDMs)。

EDM 是由次原子粒子的一種特性所產生,稱為自旋。自旋能被視覺化成,一個粒子繞著它的中心旋轉,而不是像地球那樣繞著它的軸自轉。

時間反演時,自旋看起來會顛倒,如同一部粒子的影片倒轉播放。但為了等式的平衡,EDM 得等於零。任何非零值將會產生不一樣的等式結果 — 倒轉版本的影片事實上與正常播放的版本不同。

“物理學家得要尋找粒子的 EDMs,因為如果你測得一個,你就知道時間反演受到違逆了,” Van Kolck 說。”我們知道,在標準模型中有非常少的一點點的時間反演違逆。但那似乎不足以解釋物質/反物質的不對稱,因為時間反演的違逆非常小。所以,我們正尋找產生其他過程的來源,而我們在此過程中會看到這種現象。”

然而:”測量單單 EDMs 並不會告訴你許多,” Van Kolck。”那會告訴你一些,不過我們所證明的是,如果你能測量氘核的另一種特性,稱為磁四極矩(magnetic quadrupole moment),那麼你就更能辨別此機制。”

“如同電偶極,磁四極(magnetic quadrupole)違逆了時間反演對稱,” Van Kolck 說。他與他的同僚確定時間反演違逆的機制,那與氘核之磁四極矩的不同測量方式相關。

“在分離這些機制上,先前沒人指出這會是一種如此有效的方法,” Van Kolck 說。”我們正提倡,人們試著去測量磁四極矩以了解時間反演違逆的來源。”

揭露先前未知的 t-violation 來源,能導致對物理學所面臨的最大問題之一做出解釋:宇宙中物質與反物質不均勻的理由。

以氘核進行的實驗,將探索的能量規模與 CERN 的 LHC 相同,且能導致物理學中的全新發現,Van Kolck 表示:”那是一種在標準模型之外,看待物理學的不同方法。”

資料來源:PHYSORG:Time reversal: A simple particle could reveal new physics[October 11, 2011]

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D


0

13
5

文字

分享

0
13
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》