Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

時間反演:一個簡單的粒子能揭開新物理學

only-perception
・2011/10/13 ・2271字 ・閱讀時間約 4 分鐘 ・SR值 551 ・八年級

一個簡單的原子核就能揭開某種特性,那與稱之為時間反演(time reversal,時間逆轉)的神秘現象的相關,且導致對物理學中最大謎題之一 — 宇宙中物質與反物質的不均衡 — 的一種解釋。

物理世界最近受到一則新聞的震撼:有一類稱為微中子的次原子粒子也許超越了光速。

為新點子的輕率加油添醋, Arizona 大學理論物理學家 Bira van Kolck 最近提出,以另一種小粒子,稱為氘核(deuteron,重氫核),進行實驗,將導致對物理學家所面對最令人挫敗的難題之一 — 宇宙中物質與反物質的不均衡 — 做出一種解釋。

氘核是一種簡單的原子核。它的簡易性使得它成為核子物理實驗中的最佳目標之一。

-----廣告,請繼續往下閱讀-----

氘核有種特性稱為「磁四極矩(magnetic quadrupole moment)」,能揭露「時間反演違逆(time reversal violation)」這種現象的來源,Van Kolck 以及同僚,包括最近從 UA 畢業的博士生 Emanuele Mereghetti,在最近一篇發表於 Physical Review Letters 的論文中報告。

物理學家所認識的絕大部份宇宙可由粒子物理學的標準模型來解釋。由 Van Kolck 的前指導教授、諾貝爾桂冠 Steven Weinberg(溫伯格)所開發,標準模型描述牛頓運動定律到次原子粒子行為(量子力學)的每一件事。

“這個理論幾乎解釋了到目前為止我們對於宇宙所知的每一件事,” Van Kolck 說。”然而,” 他補充,”這裡有個問題,標準模型無法解釋。”

“好比光子與中子 — 此粒子構成原子的核心 — 每種粒子都有所謂的反粒子,如反光子或反中子這些東西。宇宙的粒子似乎比反粒子多了許多,” Van Kolck 說。”所以,這有個問題:為何在粒子與反粒子之間,宇宙似乎有這樣一種不對稱存在。”

-----廣告,請繼續往下閱讀-----

“目前的跡象是,宇宙始於一種非常稠密的狀態,某些人稱之為大霹靂,並從那演化而來。如果我們能證明,「宇宙伊始時粒子與反粒子數量均衡,而目前我們觀測到有更多粒子的這項事實,現在能用宇宙演化中的過程來解釋」,這將會十分吸引人。”

當事物看起來不平衡時,物理學家問為什麼。解釋可能位於時間反演現象中的罕見違逆。

時間反演?

“讓我們假設你在玩撞球,” Van Kolck 說。”你有二顆撞球且你敲它們使其在桌上對撞。假設你把過程拍下,但你把影片以倒轉方式播放。如果你沒有告知觀者正在看的版本那個是向前、哪個是向後,那麼此人將無法區別。”

-----廣告,請繼續往下閱讀-----

與影片中一樣,時間在描述我們世界的等式中可以顛倒,而等式仍然維持平衡。

例如,你車子的最大速度是它每小時可含括的哩數,對於物理學家來說則是距離除以時間。如果時間反演,所以那變成了一個負數,等式依然平衡,因為速度與距離的幅度(magnitudes,數的絕對值)維持相同。

你說,且慢。時間只朝一個方向前進:人變更老,不是變更年輕。

“這是一種顯著的時間方向,” Van Kolck 說。”那與初始狀態有關。我們可以有在二種方向上均有效的物理定律,但仍出現時間有方向的現象。”

-----廣告,請繼續往下閱讀-----

“讓我們繼續提到撞球的例子,” Van Kolck 說。”當遊戲開始時,桌上有一副排成三角形的球,然後有人將一顆球射入這堆球,導致所有的球四散。如果你倒著播影片,絕大部份的人會說,在原始電影中有個方向,因為你不太可能用正確的速度開所有的球,使它們相撞,全部的球停下後,形成三角形,然後只有一顆球跑出來。”

“我們感知某種偏好方向的理由與這個事實有關:從一種簡單的初始狀態開始比從非常複雜的狀態開始要更容易,” Van Kolck 說。所以時間可在物理學方程式中逆轉而不會影響結果,不過時間逆轉的效應在我們的日常生活中仍無法察覺。

“一直到 1960 年代,物理學家認為當時間變換(transformation)成負數時間,物理學定律完全不變,” Van Kolck 說。”他們接著發現,有些涉及次原子粒子的現象似乎稍微違逆了這種對稱。”

換言之,如果你拍攝桌球影片,然後以倒轉方式播放,倒轉的版本與正常播放的版本事實上會有一點點的差異 — 如同 “母體(譯註:指電影《駭客任務》中的那個母體)中的小瑕疵。”

-----廣告,請繼續往下閱讀-----

“那好像在某方向上發生的某些事情的過程,與相反版本相較,不會以相同的速率發生,” Van Kolck 說。這種現象稱為時間反演違逆。

當時間反演被違逆時,等式將無法平衡;你的車跑的不會像回程時那樣快。物理學家認為,正是這種不平衡,也許能解釋宇宙中數量不相等的物質與反物質。

當物理學家首度在次原子粒子中開始尋找時間反演違逆的來源時,他們測量過粒子的一些特性,稱電偶極矩(electric dipole moments,EDMs)。

EDM 是由次原子粒子的一種特性所產生,稱為自旋。自旋能被視覺化成,一個粒子繞著它的中心旋轉,而不是像地球那樣繞著它的軸自轉。

-----廣告,請繼續往下閱讀-----

時間反演時,自旋看起來會顛倒,如同一部粒子的影片倒轉播放。但為了等式的平衡,EDM 得等於零。任何非零值將會產生不一樣的等式結果 — 倒轉版本的影片事實上與正常播放的版本不同。

“物理學家得要尋找粒子的 EDMs,因為如果你測得一個,你就知道時間反演受到違逆了,” Van Kolck 說。”我們知道,在標準模型中有非常少的一點點的時間反演違逆。但那似乎不足以解釋物質/反物質的不對稱,因為時間反演的違逆非常小。所以,我們正尋找產生其他過程的來源,而我們在此過程中會看到這種現象。”

然而:”測量單單 EDMs 並不會告訴你許多,” Van Kolck。”那會告訴你一些,不過我們所證明的是,如果你能測量氘核的另一種特性,稱為磁四極矩(magnetic quadrupole moment),那麼你就更能辨別此機制。”

“如同電偶極,磁四極(magnetic quadrupole)違逆了時間反演對稱,” Van Kolck 說。他與他的同僚確定時間反演違逆的機制,那與氘核之磁四極矩的不同測量方式相關。

-----廣告,請繼續往下閱讀-----

“在分離這些機制上,先前沒人指出這會是一種如此有效的方法,” Van Kolck 說。”我們正提倡,人們試著去測量磁四極矩以了解時間反演違逆的來源。”

揭露先前未知的 t-violation 來源,能導致對物理學所面臨的最大問題之一做出解釋:宇宙中物質與反物質不均勻的理由。

以氘核進行的實驗,將探索的能量規模與 CERN 的 LHC 相同,且能導致物理學中的全新發現,Van Kolck 表示:”那是一種在標準模型之外,看待物理學的不同方法。”

資料來源:PHYSORG:Time reversal: A simple particle could reveal new physics[October 11, 2011]

轉載自only-perception

-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。