0

0
0

文字

分享

0
0
0

親愛的,我把恐龍變彩色了!?

科學新聞解剖室_96
・2015/03/10 ・3015字 ・閱讀時間約 6 分鐘 ・SR值 532 ・七年級

科學新聞解剖室-案件編號9

案情:誰殺了台灣之光?

恐龍-聯合報-1
來源:2015/3/2聯合報頭版

2015年3月2日,相信那天一大早看報紙的人一定會驚呼頭版上一則難得的本土科學新聞:「恐龍 原來有彩色羽毛!」內文中提及,赴德波昂大學攻讀博士的成大學生與該校恐龍研究團隊研究發現,恐龍不但是有羽毛的,且是彩色動物,相關的研究結果更登上美國《科學》期刊(Science)。看到這裡,連解剖員也忍不住讚嘆,沒有三兩三可不容易登上「科學」啊,想像著色彩斑斕的恐龍畫面,這不叫台灣之光什麼才叫台灣之光?!

只是好景不長,這一則報導在該名台灣研究生的抗議之下,只活了短短的一天,就從網路上下架,從此銷聲匿跡。幸好解剖員還保留了當天的紙本報紙,到底發生了什麼問題?誰謀殺了解剖員望眼欲穿的科學台灣之光?就讓解剖員開始來開刀看看。

解剖

科學疑點一:恐龍今天才變彩色嗎?

有關這篇報導的科學錯誤,這名科學當事人(應該是受害人)已經有許多的親身說明。這些說明其實剛好含括了許多媒體因為對於科學社群運作方式的不瞭解,所以容易犯下的錯誤,我們將它分類整理如下:

  1. 科學文章的類型傻傻分不清楚:國內媒體常常會有新聞指出XX大學的研究團隊登上NatureScience雜誌,但是不要以為登上這兩個期刊的研究就要舉國歡騰,因為裡面還有區分喔。以這篇報導提及的文章為例,該文章屬於「觀點文章」(perspectives)並非「研究論文」(research article)。許多不同領域的國際期刊都會有不同文章的類型區分,以Science為例,「研究論文」才是一個完整學術界認可的文章,「觀點文章」往往具有前瞻性,但是還需要被進一步檢驗與佐證的文章。
  2. 無中生有:這篇報導裡面有許多無中生有的科學錯誤,例如「研究團隊研究發現,恐龍不但是有羽毛的,且是彩色動物。」,錯!這是大家都已經知道的科學事實。再例如「這項研究獲得美國『科學』期刊認可發表,引起古生物學界熱議,當期期刊為了這項發現,還以有遠古血統的『麝雉』為封面」,錯!,當事人表示「這個封面只是讓我們知道,恐龍很有可能可以如同麝雉一般,全身色彩斑斕」。還有,搞半天,這位台灣研究生根本並未掛名在該篇文章中,旁邊的人到底是在幫忙high什麼?
  3. 劃錯重點:這篇Science文章的內容主要是在講恐龍「羽毛」的功能,推論恐龍身上的羽毛很有可能不是為了飛行的功用而演化出來,而是基於展示或是其他原因。但是新聞報導卻把其中的一個重點劃成研究團隊利用電腦3D技術,畫出全球第一隻彩色恐龍,讓讀者以為Science封面上那一隻色彩繽紛的「麝雉」就是該團隊所畫的。事實上利用3D方式來建立全身披滿彩色羽毛的恐龍,那是台灣研究生指出未來希望進行的一項工作,並非文章的成果與主題。

科學疑點二:科學家為什麼要聯絡記者?

如果台灣的記者報導向來讓科學家有這麼多不放心的話,那麼當時為何會有科學家會幫忙聯繫記者報導呢?如果媒體需要一些科學新聞或是地方的新鮮事來妝點門面,那麼科學家圖的又是什麼呢?

這起事件的來龍去脈是因為這位台灣研究生休假回國時拜訪過去的碩士指導老師,而這位老師協助牽線記者後所進行的報導。指導老師去聯繫記者報導的動機,有許多的可能性,例如為學生好、為學校好、為自己的單位好、為整體的學門領域好、為社會好,或是為自己好…都有可能。畢竟現在的科技研發與過去不同,處處需要用到經費,因此動輒要被檢視KPI、影響力、計畫成果、貢獻,科學成果有了「能見度」可以換算成許多意想不到的有形或無形好處。

但是多數科學家在面對媒體時,卻也是又愛又恨,一方面需要媒體幫忙披露好消息,但是又怕記者斷章取義、扭曲事實,讓自己的聲譽毀於一旦。像這一次的苦主是一位正要嶄露頭角的研究新兵,如果整體事業正要起步之時,就讓學術同儕標定為臭屁、邀功、膨風、心機,傷害可想而知,也難怪他這麼生氣。對於閱讀者而言,應該要瞭解多數科學家是愛惜羽毛的,過於膨風的報導是不足以採信的。

媒體疑點一:地方記者寫的科學新聞?

如果仔細閱讀這一則新聞,你應該就要注意到文章一開始就寫著「記者修瑞瑩╱台南報導」。如果你對於新聞報導敏感的話,會發現這是一篇來自於台南地方記者所撰寫的科學新聞報導,這其實是很罕見的一種狀況。果不其然,你會發覺這一位記者報導過的主題琳瑯滿目,選舉的、體育的、教育的、采風的不一而足,簡單說,只要是該報社有關台南的,他全包了啦!一個地方記者需要負責這麼多事務,又剛好碰上這一件十分具有專業性的科學新聞題材,出包似乎也不難預期。而且這一則新聞要從地方新聞躍上頭版新聞,想見在編輯會議中也是經過一番的廝殺才能幫科學新聞爭取到這樣的空間,實屬難得。要怪還是得怪該報社,尊重一下科學新聞好不好?尊重一下地方記者好不好?要上頭版,多派個專業配稿來輔助及佐證一下好不好?

媒體疑點二:誰在追求最新、最快、最大、最棒棒的「世界第一」?

這一篇報導的內容讓解剖員誤以為這個團隊是全世界第一個發現恐龍是彩色的,裡面還提到「…OOO與波昂大學研究團隊並利用電腦3D技術,畫出全球第一隻『彩色恐龍』…」,好多個「第一」ㄟ!!以前就曾聽過跑科學新聞的資深記者提及,因為台灣的報紙向來輕忽科學新聞,所以就得硬掰一些什麼「世界第一」、「宇宙最大」的名號,才能騙過編輯,讓文章順利見報,每次聽到這種辛酸都為這些第一線的科學記者掬一把同情的眼淚。想當然,這一次的報導烏龍也是在這種迷思下被催生的結果,讓科學威而鋼再次戰勝了自信心陽痿的報社編輯。

只可惜這種一味的追求最新、最快、最大的集體無知,不僅瞎掰相關的科學事實,更容易壓縮了國內「正常科學記者」的寫稿空間。有一次的會議中,線上科學記者無奈地指出他們的編輯大大,既要要求他們用極為簡短的篇幅說明科學內容(500字以內),又要他們寫到連國中生也能懂(當然「世界第一」最好懂)。所以搞到後來,正規的科學新聞記者也報導得綁手綁腳,不敢挑戰深入的題材,不僅讓報紙變笨,也牽連台灣民眾變笨。科學新聞一定要用夢幻的世界第一來虛張聲勢嗎?篇幅只能500字嗎?在暗夜裡吹口哨,只能用來壯膽啦!

總評:「世界第一」要小心!

在這一個案例中,媒體浮誇的個性是需要被檢討的,尤其是把科學當作這種綜藝化元素。難怪多數正常的科學家聽到媒體就恐慌,君不見每次出現在台灣媒體上的科學家,總是同樣幾位毒物專家、化學專家、病理學家、腎臟科醫生(連連看你連得出來嗎?)。這些老面孔多數深諳與媒體的互動及進退之道,好處是方便針對一些議題立即幫助民眾監督,壞處是不會有哪一個專家可以包天包海的瞭解全部議題,所以許多來者不拒的發言不免言過其實。

但是另一方面,科學家也要有一些學習,應該多具備媒體素養的知識。例如這一次的苦主就抱怨記者刊登前沒有讓他審稿,非也非也,我們不是一個言論箝制的地方,如果科學家的發言需要被審稿之後才能刊出的話,許多科技爭議就不能被監督了(中國的「穹頂之下」不就「被下架」了嗎?)。因此科學家也應該有跟媒體良好互動的素養,才能有彼此互惠的效果。所以在這個案例中,媒體與科學家都應該有更多的反省及學習,綜合這一次的分析,本解剖室給這一則新聞報導評以如下評價(15顆骷髏頭):

綜合剖析評比科學偽新聞指數(滿分5顆)

「理論錯誤」指數:☠☠☠☠☠

「便宜行事」指數:☠☠☠☠

「官商互惠」指數:☠☠☠

「戲劇效果」指數:☠☠☠

 

(策劃/寫作:黃俊儒)

文章難易度
科學新聞解剖室_96
36 篇文章 ・ 3 位粉絲
「科學新聞解剖室」是由中正大學科學傳播教育研究室所成立的科學新聞監督平台,這個平台結合許多不同領域的科學解剖專家及義工,以台灣科學新聞最容易犯下的10種錯誤類型作為基礎,要讓「科學偽新聞」無所遁形。已出版《新時代判讀力:教你一眼看穿科學新聞的真偽》《新生活判讀力:別讓科學偽新聞誤導你的人生》(有關10種錯誤的內涵,請參見《別輕易相信!你必須知道的科學偽新聞》一書)。


0

6
0

文字

分享

0
6
0

【2021諾貝爾化學獎】化學史的革命性進展:簡單又環保的「不對稱有機催化」

諾貝爾化學獎譯文_96
・2021/10/27 ・5691字 ・閱讀時間約 11 分鐘

本文轉載自諾貝爾化學獎專題系列,原文為《【2021諾貝爾化學獎】他們的工具帶給了建構分子的革命性發展

  • 譯者/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。
  • 譯者/蔡蘊明|台大化學系名譽教授

他們的工具帶給了建構分子的革命性發展

化學家可以透過連接許多小的化學塊材來創造新分子,但控制這些看不見的物質,以所需的方式結合是很困難的。班傑明 • 李斯特(Benjamin List)和大衛 • 麥克米蘭(David MacMillan)獲得了 2021 年諾貝爾化學獎的桂冠,以表彰他們開發了一種新而巧妙的工具來建構分子:有機催化。它的用途包括研發新的藥物,以及使得化學更為環保。

許多行業和研究領域都須依賴化學家建構新功能分子的能力,那些可以是任何在太陽能電池中捕獲光或將能量儲存在電池中的物質,也可以是製造輕便跑鞋或抑制疾病在身體內進展的分子。

然而,如果我們將大自然建造化學物質的能力,與我們自己的能力進行比較,那我們就好像是長期的被困在石器時代一般。大自然的進化產生了令人難以置信的特殊工具,酵素(或稱酶),用於建構賦予生命形態的各種形狀、顏色和功能的分子複合物。最初,當化學家分離出這些化學傑作後,他們只能以崇敬的眼光看著。在他們自己的分子建構工具箱中的錘子和鑿子,顯得愚鈍和不可靠,所以當他們企圖複製大自然的產品時,往往最終會產生許多不需要的副產物。

精細化學的新工具

化學家添加到工具箱中的每一個新工具,都漸漸地提高了他們建構分子的精確度。緩慢但確實地,化學已經由用在石頭上的鑿子發展出許多精細的技藝。這對人類實在大有助益,而其中一些工具已經獲得諾貝爾化學獎的肯定。

獲得 2021 年諾貝爾化學獎的發現,已經將分子的建構拉到一個全新的水平。它不僅使化學更為環保,而且更容易製造不對稱分子。在化學分子的構築過程中,經常會出現一種狀況,就是可以形成兩種分子 —— 就像我們的手一樣 —— 是彼此的鏡像。尤其是在製造藥品時,化學家經常希望只得到這兩個鏡像中的一個,但卻很難找到有效的方法來做到這一點。李斯特和麥克米蘭為此研發出的概念 —— 不對稱有機催化 —— 既簡單又出色。實際上很多人都很納悶,為什麼我們沒有早點想到它。

真的,為什麼呢?這不是一個容易回答的問題,但在我們嘗試之前,需要快速地回顧一下歷史,我們將會定義「催化」(catalysis)和「催化劑」(catalyst)這兩個術語,並為 2021 年的化學諾貝爾獎奠定理解的基礎。

許多分子有兩種異構物存在,其中一種是另一種的鏡像,它們經常對身體產生完全不同的影響。例如,一種版本的檸檬烯分子具有檸檬香味,而其鏡像則聞起來像橘子。圖/諾貝爾獎官網

催化劑加速化學反應

在十九世紀,當化學家開始探索不同化學物質相互反應的方式時,他們有了一些奇怪的發現。例如,如果他們將銀放入含有過氧化氫(H2O2)的燒杯中,過氧化氫會突然開始分解成水(H2O) 和氧氣(O2)。但是促發這個過程的銀,似乎完全不會受到反應的影響。類似的,從發芽的穀物中獲得的一種物質,則可以將澱粉分解成葡萄糖。

1835 年,著名的瑞典化學家貝吉里斯(Jacob Berzelius)開始注意到其中的規律。在皇家瑞典科學院年度報告中,敘述物理和化學的最新進展時,他寫到了一種可以"產生化學活性"的新"力"。他列舉了幾個例子,其中只要有某一種物質的存在,就可讓化學反應發生,並指出這種現像似乎比以前認知的要普遍得多。他認為這種物質具有一種「催化力」,並稱這種現象為「催化作用」。

催化劑產生塑膠、香水和美味的食物

自貝吉里斯時代以來,大量的汗水流過了化學家的吸管,他們已經發現許多種催化劑,可以分解分子或將它們連接在一起。多虧了這些催化劑,他們現在可以開發出我們日常生活中使用的數千種不同的物質,例如藥品、塑膠、香水和食品調味劑。事實是,估計有世界 GDP 總量的 35%,在某種程度上涉及化學催化。

原則上,西元 2000 年之前發現的所有催化劑都屬於以下兩類之一:它們若不是金屬那就是酵素。金屬通常是極好的催化劑,因為它們具有特殊的能力,能在化學反應過程中暫時容納電子或將它們提供給其它分子。這有助於鬆開分子中原子間的鍵結,因此使得尋常時候很強的鍵結可以被打破,形成新的鍵結。

然而,一些金屬催化劑的問題是它們對氧氣和水非常敏感。因此,要使這些試劑正常運作,它們需要一個無氧和無濕氣的環境,而這在大規模的產業界很難實現。此外,許多金屬催化劑都是重金屬,可能對環境有害。

生命的催化劑以驚人的精確度運作

第二種形式的催化劑屬於一些稱為酵素(或酶)的蛋白質。所有的生物都具有數以千計的不同酵素,來驅動生命所必需的化學反應。其中有許多酵素是不對稱催化方面的專家,原則上,總是只生成兩個可能的鏡像中的一個。它們也並肩工作;當一個酵素完成反應時,另一個就會接管。通過這種方式,它們能以驚人的準確度建構複雜的分子,例如膽固醇、葉綠素或稱為番木虌鹼(strychnine)的毒素,它是我們知道的分子中最複雜的物質之一(我們將回到這一點)。

由於酶是如此有效的催化劑,1990 年代的研究人員試圖開發新的酵素變體,以驅動人類所需的化學反應。一個致力於此領域的,是總部設在美國加利福尼亞州南部的斯克里普斯(Scripps)研究所中,由已故的巴爾巴斯三世(Carlos F. Barbas III)所領導的研究小組。李斯特在巴爾巴斯的研究小組中獲得了博士後研究員的職位,此時一個絕妙的想法誕生了,從而導致今年諾貝爾化學獎其中的一項發現。

李斯特跨出了盒外來思考

李斯特在研究催化抗體(catalytic antibodies)。通常情況下,抗體會附著在外來病毒或我們體內的細菌之上,但斯克里普斯的研究人員重新設計了它們,使得它們反而可以驅動化學反應。

在研究催化抗體期間,李斯特開始思考酵素實際上是如何的運作。它們通常是由數百個胺基酸所構成的巨大分子,除了這些胺基酸,很大一部分的酵素也含有能幫助驅動化學反應的金屬。但是 —— 這就是重點 —— 許多酵素在沒有金屬幫助的情況下,也能催化化學反應。此外,反應只是由酶中的一個或幾個單獨的胺基酸所驅動的。李斯特跳脫出盒外所問的問題是:胺基酸是否必須是酶的一部分才能催化一個化學反應?或者一個單獨的胺基酸或其它類似的簡單分子,是否也可以達成同樣的工作?

產生具有革命性的結果

他知道 1970 年代初就有人研究過,用一種名為脯胺酸的胺基酸作為催化劑 —— 但那是 25 多年前的事了。當然,如果脯胺酸真的是一種有效的催化劑,當然有人會繼續研究它吧。

這或多或少是李斯特的想法;他認為沒有人繼續研究這一現像的原因,是發現效果不是特別好。 在沒有任何真正的期待下,他測試了脯胺酸是否可以催化一種「醛醇反應」(aldol reaction),將其中來自兩個不同分子的碳原子結合在一起。這只是一個簡單的嘗試,但令人驚訝的是,它立即奏效。

李斯特確定了自己的未來

通過他的實驗,李斯特不僅證明了脯胺酸是一種有效的催化劑,而且還認為這種胺基酸可以驅動不對稱催化反應。在兩個可能的鏡像產物中,其中的一個比另一個更易生成。

與之前測試脯胺酸作為催化劑的研究人員不同,李斯特了解它可能具有的巨大潛力。與金屬和酵素相比,脯胺酸是一個化學家夢幻的工具。它是一種非常簡單、廉價且環保的分子。當他在 2000 年 2 月發表他的發現時,李斯特將使用有機分子進行的不對稱催化,描述為一個具有很多機會的新穎概念:"這些催化劑的設計和篩選是我們未來的目標之一"。

不過他並不孤單,在加利福尼亞北部的一個實驗室裡,麥克米蘭也在朝著同樣的目標努力。

麥克米蘭將敏感的金屬拋諸腦後

兩年前,麥克米蘭剛從哈佛搬到加州大學伯克萊分校。他在哈佛曾致力於改善使用金屬的不對稱催化反應,那是一個受到許多研究人員關注的領域,但麥克米蘭注意到,為何研究人員開發的催化劑在工業界卻很少使用?他開始思考原因,並認為那是因為敏感的金屬使用起來很困難,而且太貴了。一些金屬催化劑所要求的無氧無濕氣的條件,在實驗室中運作相對簡單,但要在這種條件下進行大規模工業製造是很複雜的。

他的結論是,如果要讓他正在開發的化學工具有用,他需要一個新的思維。所以,當他搬到伯克萊時,他把金屬拋在腦後。

開發了一種型式更簡單的催化劑

取而代之,麥克米蘭開始設計簡單的有機分子 —— 就像金屬一樣 —— 可以暫時提供或容納電子。在這裡,我們需要定義什麼是「有機分子」 —— 簡而言之,那是建構所有生物的分子。他們擁有一個穩定的碳原子骨架,各種活性化學基團可附著在這個碳骨架上,它們通常含有氧、氮、硫或磷。

因此,有機分子是由簡單而常見的元素組成,但是,取決於它們是如何組合在一起的,它們可以具有複雜的性質。麥克米蘭的化學知識使得他認為,若要用有機分子來催化他感興趣的反應,它需要能夠形成一個「亞胺離子」(iminium ion),這個離子包含了一個氮原子,而且對電子具有天生的親和力。

他選擇了幾種具有正確特性的有機分子,然後測試了它們驅動狄耳士-阿德爾(Diels-Alder)反應的能力,化學家用這個反應來建構碳原子環。正如他所期盼並相信的那樣,它們運作得非常出色。其中的一些有機分子,在不對稱催化方面的表現也很突出。在兩個可能的鏡像產物中,其中一個佔了 90% 以上。

麥克米蘭創造了有機催化一詞

當麥克米蘭準備發表他的結果時,他意識到自己發現的催化概念需要一個名字。事實上,研究人員雖早已成功地使用有機小分子催化化學反應,但這些都是個別單獨的例子,沒有人意識到這種方法可以被推廣。

 麥克米蘭希望找到一個術語來描述這個新方法,如此一來其他研究人員就能夠理解,尚有更多有機催化劑仍未被發現。他的選擇是「有機催化」(organocatalysis)。

於 2000 年 1 月,就在李斯特發表他的發現之前,麥克米蘭送出了他在科學期刊上發表的原稿。文章中的引言寫著:

"在此,我們介紹了一種新的有機催化策略,而我們預計這個新策略將適用於一系列的不對稱轉化。"

有機催化應用的蓬勃發展

李斯特和麥克米蘭各自獨立地發現了一個全新的催化概念。從 2000 年至今此領域的發展幾乎可以比擬為淘金熱,其中李斯特和麥克米蘭保持著領先地位。他們設計了大量廉價且穩定的有機催化劑,可用於驅動各式各樣的化學反應。

有機催化劑不僅一般由簡單分子組成,在某些情況下 —— 就像自然界的酵素一樣 —— 它們可以在輸送帶上工作。以前,在化學生產過程中,需要對每個中間產物進行分離和純化,否則副產物的量會太多,這導致了在化學合成的每個步驟中都會有一些物質損失。

有機催化劑的寬容度則比較高,因為相對而言,合成過程中的幾個步驟可以連續進行,這稱為串級反應(cascade reaction),可以減少許多化學合成中的浪費。

番木虌鹼的合成效率提高了 7,000 倍

一個有機催化使分子建構更有效率的例子,是合成天然且極其複雜的番木虌鹼分子。許多人會從謀殺案件小說女王阿加莎・克莉絲蒂(Agatha Christie)的書中認出番木虌鹼。然而,對於化學家來說,番木虌鹼的合成就像一個魔術方塊:一個步驟越少越好的挑戰。

在 1952 年首次合成出番木虌鹼時,需要經過 29 種不同的化學反應步驟,只有 0.0009% 的起始物被轉換成產物,剩下的都浪費掉了。

到了 2011 年,研究人員能夠使用有機催化和串級反應,在僅僅 12 個步驟中建構番木虌鹼分子,生產過程的效率提高了 7,000 倍。

有機催化在藥物生產中最為重要

有機催化對經常需要不對稱催化的藥物研究產生了重大影響。在化學家可以進行不對稱催化之前,許多藥物分子都含有兩個鏡像的異構物。其中一個是有活性的,而另一個可能有時會產生不良的影響。一個災難性的例子是 1960 年代的沙利多邁(thalidomide)醜聞,沙利多邁藥物分子的一個鏡像,導致數千個發育中的人類胚胎產生嚴重畸形。

使用有機催化,研究人員現在可以相對簡單地製造大量不同的不對稱分子。例如,他們能以人工方式來合成具有治療潛力的物質,否則就只能從稀有植物或深海生物中,分離出微量的相同分子進行研究。

在製藥公司,這種方法還用於簡化已知藥物的生產。這方面的例子包括用於治療焦慮和抑鬱的帕羅西汀(paroxetine),以及用於治療呼吸道感染的抗病毒藥物克流感(oseltamivir)。

簡單的構想往往是最難設想的

我們可以很簡單地舉出數千個如何使用有機催化的例子 —— 但為什麼沒有人更早提出這種簡單、綠色且廉價的非對稱催化概念?這個問題有很多答案,其中一個是簡單的構想往往是最難設想的。我們的觀點被這個世界應該運作的模式,先入為主且強烈地遮蔽了,例如只有金屬或酵素才能驅動化學反應的想法。李斯特和麥克米蘭成功地打破了這些先入為主的想法,找到了困擾化學家數十年問題的巧妙解方。因此,有機催化劑才能夠 —— 在此時此刻 —— 為人類帶來莫大的裨益。

參考資料

諾貝爾化學獎譯文_96
952 篇文章 ・ 247 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策