0

0
0

文字

分享

0
0
0

建築與防災(五):101如何抗震?

李柏昱
・2014/12/20 ・2926字 ・閱讀時間約 6 分鐘

本文由科技部補助,泛科學獨立製作

台北101是臺灣的高樓結構與工程技術的巔峰之作,面對臺灣頻繁的地震颱風,台北101如何解決問題?(圖片來源:Flickr用戶Antonio Tajuelo)
台北101是臺灣的高樓結構與工程技術的巔峰之作,面對臺灣頻繁的地震颱風,台北101如何解決問題?(圖片來源:Flickr用戶Antonio Tajuelo)

李柏昱 | 國立臺灣大學地理環境資源學系

台北101於2004年風光落成,榮登當時世界第一高樓寶座,除了展現台灣的經濟活力與高超的工程技術外,首當其衝的自然是台灣頻繁且劇烈的天災,包括地震或颱風,加上基地位於地質鬆軟的台北盆地,台北101如何克服這些難關?這次專訪邀請永峻工程顧問公司甘錫瀅總工程師,甘工程師曾參與許多臺灣高層建築的結構設計,台北101更是其代表作,請他介紹台北101結構匠心獨具的抗震防颱設計。

颱風地震夾擊,台灣高樓必須「軟硬適中」

甘工程師說,要在台灣新建高樓,先天環境本身便困難重重,因為臺灣同時面對地震跟颱風的威脅,兩種應對的結構設計迥然不同,甚至可說剛好相反:如果結構體設計的太硬,地震來時容易脆性破壞;如果結構體設計的太軟,颱風來時大樓又會晃動得太厲害。所以在台灣要建造超高層大樓,必須先解決結構軟硬的問題,也就是說大樓結構體不能設計的太軟,也不能設計的太硬,才能同時面對地震和颱風兩大勁敵。

台灣專利,韌性接頭提昇鋼構耐震力

甘錫瀅說,台北101使用台科大陳生金教授發明的專利:高韌性接頭(High Ductility Connection)。在建築結構中,柱與樑的接頭若損壞是非常嚴重危急的問題。過去的設計思維,傾向不斷加固接頭,但每次大地震鋼骨結構仍然會從此處開始損壞;正因這個節點太過堅硬而缺乏彈性,地震時反而會發生脆性破壞。

高韌性接頭反其道而行,從鋼樑距離與柱子接頭 12 公分處開始將鋼樑翼板順著彎矩梯度去做削切,透過削弱該處強度,將地震的破壞力控制在削弱的地方。只要確保鋼構的品質,這種工法吸收的地震能量,能比傳統的接頭多吸收7 到 8 倍的能量,這也就是大樓結構設計上讓結構體不要太硬的有效方法。

巨型結構確保101安全無虞

台北101的巨型結構示意圖,貫串整棟建築的巨型柱,以及每隔幾個樓層就會設置的巨型樑,是101結構抗震抗颱的秘訣。(圖片來源:甘錫瀅)
台北101的巨型結構示意圖,貫串整棟建築的巨型柱,以及每隔幾個樓層就會設置的巨型樑,是101結構抗震抗颱的秘訣。(圖片來源:甘錫瀅)

巨型結構(Mega structure)居台北101結構設計的首要之功,巨型結構包含「巨型柱」與「巨型樑」。「巨型柱」每根斷面長 3 公尺、寬 2.4 公尺,外圍鋼板厚高達 80毫米,內部灌滿高強度混擬土,這樣的巨型柱一共八根,建築外側每面有兩根。除巨型柱外,還有 16 根核心柱,也就是電梯等核心基礎設施放置處。

「巨型樑」則呈現雙十狀,在水平面利用巨型桁架把所有柱子串聯起來,每個斗最上方的設備層各有一組巨型樑,最下方 26 層樓的底層則有 3 組巨型樑。一共 11 組巨型樑把整棟台北101分為 11 個大層,強化台北101的結構強度。

基樁深入岩層,讓101站得穩

台北101塔樓底下一共打了380支群樁,皆深入地底80公尺,比岩盤還要再深入20到30公尺,讓101得以站穩。(圖片來源:甘錫瀅)
台北101塔樓底下一共打了380支群樁,皆深入地底80公尺,比岩盤還要再深入20到30公尺,讓101得以站穩。(圖片來源:甘錫瀅)

甘總工程師說,台北101的結構基礎,先透過現場鑽探 151 個孔,找出底下岩盤的深度與樣貌。高達 508 公尺的塔樓,一共打了 380 支直徑 1.5 公尺的群樁。而只有 5 層樓高的裙樓(旁邊五層樓的商場),打了 167 支直徑 2 公尺的基樁,深入岩盤約 2~3 公尺。

不過,裙樓的基樁是直接銜接上方的柱子,塔樓又該如何將建築物的重量傳達給底下 380 支的群樁?甘總工程師回答,在台北101的塔樓基礎底層,透過厚達 3到4.7 公尺的實心混凝土基礎板,承載上方巨型柱以及核心柱的重量,再透過這些實心板把大樓重量傳遞至 380 支基樁,再透過這些群樁傳遞到地表下50公尺之岩盤,再深入岩盤20~30公尺,達到地下80公尺,才能夠把大樓穩穩的支撐起來。

黃金大圓球「調諧質量阻尼器」,減緩晃動不適

高懸於 88 層至 92 樓、造價高達 400 萬美元、總重達 660 噸的金黃色大圓球是台北101另一大賣點。這顆大圓球全名「調諧質量阻尼器」( Tuned Mass Damper,TMD),主要目的是減緩建築物內人員因建築物晃動感到的不適。甘總工程師自豪地表示,即便不裝阻尼器,台北101面對 17 級強風也絕對在結構安全範圍內。不過,位處高層的人在風大的日子恐怕會暈頭轉向。

根據研究,只要大樓擺動的加速度達到5cm/sec2時,人們便會開始察覺到搖晃並感到頭暈,所以臺灣的建築法規定在回歸期半年(一年內可能會發生兩次的機率)的風力作用下,頂樓的加速度值不得超過 5cm/sec2。如果台北101沒裝組尼器,頂樓加速度會達到 6.2cm/sec2,超出法定標準,因此藉由裝設阻尼器減緩 40% 的加速度,降到 3.7cm/sec2 左右,這也就是大樓結構設計上讓結構體不要感覺太軟的有效方法。

斗斗高昇,寓意深遠兼具高層避難功能

遠觀台北101,一路往上堆疊八個「斗」的建築造型,象徵「才高八斗」的意象,平均每八層樓一個斗,每個斗外層傾斜七度,經過實驗是視野最佳的角度,同時也創造珍貴的高樓層避難空間。一般超高建築如果發生火災,建築裡的人只能前往地面層或屋頂疏散避難,這代表位於高樓層的人必須爬數十層樓的階梯,疏散時間又長又難熬。而斗與斗之間創造的環狀避難空間,寬約兩公尺,讓建築物內部的人員能就近前往避難。

透過各種嚴謹的結構設計,台北101在結構上擁有史無前例的高樓抗震規模。儘管甘總工程師所屬的永峻工程顧問全程派員參與建築施工過程,但甘總工程師仍然對未來台灣高樓施工現場的嚴謹程度憂心忡忡。「目前政府審查高樓只有在設計的部分很嚴謹,建築高度達到 50 公尺以上(約 15 層樓以上)就需要進行結構外審,但如何將設計的圖說充分落實到施工現場,這是高樓結構監造政策中必須再加強的。」台北101是業主自行出資、請結構設計人員一同參與施工過程,但在其他許多高樓工程中,施工現場經常僅由建築師一人負責全部監造,並未要求結構技師與電機技師一同參與。目前台灣在落實建築法規中對施工監造過程的要求,尚不比對於設計圖的要求更嚴格,使得設計和施工兩端的審查程度嚴重失衡。(本文由科技部補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿)

 

本文原發表於行政院科技部-科技大觀園「專題報導」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

責任編輯:鄭國威|元智大學資訊社會研究所

延伸閱讀:

建築與防災系列專題:

文章難易度
李柏昱
81 篇文章 ・ 1 位粉絲
成大都市計劃所研究生,現為防災科普小組編輯。喜歡的領域為地球科學、交通運輸與都市規劃,對於都市面臨的災害以及如何進行防災十分感興趣。

2

12
1

文字

分享

2
12
1

松樹上的不速之客:松材線蟲與天牛——解析松樹萎凋病的成因

iGEM NTHU_96
・2021/09/12 ・2566字 ・閱讀時間約 5 分鐘

松樹萎凋病是一種因為天牛傳播松材線蟲進而導致松樹枯死的疾病。這種植物疾病在台灣以及世界上許多地區都造成了嚴重的危害以及龐大的經濟損失。松材線蟲是常見的松樹寄生蟲,最開始的蹤跡出現在北美洲,之後逐漸擴散至各地,並於 1980 年代由日本傳入台灣,對台灣的森林造成十分嚴重的危害。

松材線蟲主要存活於松脂導、形成層、維管束這些植物部位,因此無法藉由風力傳播,需借助媒介昆蟲天牛進行傳播。松材線蟲與天牛的結合,大大助長了線蟲族群的擴散,至目前為止仍未出現有效的方法來防堵此植物疾病的蔓延,只能盡量控制其危害面積。

目前防治方式大多是在人工判斷松樹染病之後,以化學藥劑灌入松樹內,也就是俗稱幫樹木「吊點滴」,此方法每隔幾年都須重新灌入化學藥劑確保松樹能被徹底治療,由此可知,松樹萎凋病是個十分棘手的問題。

松材線蟲的媒介昆蟲松墨天牛 。圖/WIKIPEDIA

松材線蟲如何寄宿天牛?

要了解松樹萎凋病,必須先知道他的致病原因:松材線蟲的傳染方式。他們的傳播路徑橫跨了線蟲本身、天牛與宿主松樹,為了方便理解,我們拆解成這三部分各自進行研究,再如同拼拼圖,將完整的傳播路徑拼湊在一起。

首先是松材線蟲,蟲的一生可以分為四階段年少時期:J1、J2、J3、J4,以及成年時期,到成年時期線蟲才有公母之分。他們的食物包含松脂管的上皮細胞、侵入枯萎松樹並聚在天牛蛹室附近的真菌。

再來是媒介昆蟲,天牛會產卵在枯萎的松樹上,卵在樹上孵化,進入幼蟲時期然後結蛹。結蛹後,真菌會被蛹室所分泌的氣體吸引並在附近聚集。豐富的真菌吸引松材線蟲前往,當天牛從蛹當中羽化時,線蟲便伺機進入天牛體內。

松材線蟲。圖/WIKIPEDIA

松材線蟲如何擊破松樹的禦敵機制?

當松樹被攜帶線蟲的天牛咬了之後,究竟會發生什麼事?一棵健康的松樹被帶源天牛啃食之後,約三到四週會開始出現枯萎的症狀。松樹為了避免枯萎會有下列反應:超氧化合物的產生、過氧化的脂質增加、多酚的累積和氣體的揮發。

當松樹被松材線蟲感染時,會出現以下症狀:首先,和許多植物病害一樣,松樹會產生超氧陰離子,接下來植物內過氧化脂質的量急劇增加。線蟲感染後過氧化脂質和離子滲出並擴散到周圍的木質部,會導致坑膜功能障礙。在植物受傷的同時,導致組織褐變的多酚物質會在受傷或被病原體感染的植物組織中積累。

最後,還會導致揮發性氣體的排放。上述作用原本是要防止線蟲在植物體內擴散,但由於線蟲移動的速度較快,因此植物不但圍堵不到線蟲,反而還傷害自己的組織。由此可知,線蟲感染會引起無法保護植物的植物反應。 

上述的現象會影響到線蟲,但現象發生的同時線蟲也會移動前往樹木的不同區域。

每當線蟲抵達新的地方,樹木會在線蟲出現的部分給予反應。為了抵抗線蟲的入侵,樹木不斷如此重複這個循環,並且整棵樹都會有上述的反應,但其實這樣的反應不僅僅線蟲受到傷害,對於樹木也造成了一定程度的影響,上述反應會造成堵塞進而讓樹木死亡

在針葉樹種中,管胞為主要木質細胞,負責運送水分。管胞兩側具有許多邊緣坑 (borded pit),扮演水閘的功能,能夠控制水分進出細胞,水分便藉由邊緣坑運輸至鄰近的其他管胞。當松材線蟲感染松樹時,松樹木質部會開始出現空腔,若管胞之中存在氣泡,邊緣坑不會繼續將此管胞中的水分輸送出去,避免氣泡向鄰近管胞擴散。植物抵禦機制啟動後所分泌的物質會層層覆蓋邊緣坑,藉由破壞邊緣坑結構阻斷水分運輸,導致樹木枯萎。然而,死亡的樹木會釋放出氣體吸引天牛來產卵在自己身上,開始新的循環。

松材線蟲引起的松樹凋萎病。圖/WIKIPEDIA

殺死松樹的「死亡循環」

最後我們將線蟲、天牛、松樹三個環節串聯起來,一開始枯死的松樹上出現帶有 J4 階段線蟲的天牛,當天牛取食健康的松樹時,部分的松材線蟲藉由天牛造成的傷口被轉移到松樹上。一旦進入植物體內,線蟲將會在松樹體內度過少年階段,進入成年階段並繁殖產下新一代線蟲。

在線蟲繁殖以及成長的同時,松樹就會漸漸出現枯萎的症狀,天牛受到枯萎的松樹散發出的氣體吸引前來產卵在松樹中。天牛的卵孵化成幼蟲並在枯萎的松樹中成長直到蛹室的形成,同時附近會聚集因為蛹室分泌的氣體而受吸引的真菌,真菌則是線蟲的食物之一,因此有不少的 J3 階段的線蟲也會聚集在這附近。

天牛幼蟲破蛹而出之時,轉變成 J4 階段的線蟲可以從天牛的氣管進入天牛體內,在這之後的松材線蟲與天牛建立起乘客與運輸工具的關係,藉著天牛的移動繼續進行傳播。

殺死松樹的「死亡循環」。圖/國立清華大學iGEM團隊

如何防治松材線蟲擴散?

松材線蟲危害松科植物種類超過 50 種,台灣以琉球松、黑松、台灣二葉松為主,在十年間造成低海拔杉林消失,目前已損失六千多公頃松木林。

現有防治松材線蟲的方式可以從三個方面著手。最直接的就是剷除感染源,將患病的樹木砍伐,並且以物理絞碎枝條、化學藥劑燻蒸方式殺死病木體內的線蟲及天牛,阻斷感染練。

另一方面,可以藉由不同方式防止媒介昆蟲的傳播,例如:以丁基加保扶 (Carbosulfan) 藥劑注射樹幹,使藥劑能夠運行整棵松樹殺死線蟲以及誘殺天牛等。

生物防治則有肉食性蟎類可以捕食松材線蟲,或是以天牛的天敵寄生蜂來降低媒介昆蟲的數量。不同的樹種對松材線蟲有不同程度強弱的抵抗能力,也可以選擇種植或育種對線蟲有較高抵抗力的松樹品系,增強松樹的抗病性。

參考資料

1. Chaires-Grijalva, M.P., et al., Trophic habits of mesostigmatid mites associated with bark beetles in Mexico. Journal of the Acarological Society of Japan, 2016. 25(Supplement1): p. S161-S167.

2. Kazuyoshi Futai, Pine Wood Nematode, Bursaphelenchus xylophilus

3. 行政院農業委員會動植物防疫檢疫局 植物疫病蟲害介紹

所有討論 2
iGEM NTHU_96
4 篇文章 ・ 7 位粉絲
We are the team of National Tsing Hua University (NTHU) for the iGEM competition (international genetic engineering machine).
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策