0

1
0

文字

分享

0
1
0

建築與防災(五):101如何抗震?

李柏昱
・2014/12/20 ・2926字 ・閱讀時間約 6 分鐘 ・SR值 549 ・八年級

本文由科技部補助,泛科學獨立製作

台北101是臺灣的高樓結構與工程技術的巔峰之作,面對臺灣頻繁的地震颱風,台北101如何解決問題?(圖片來源:Flickr用戶Antonio Tajuelo)
台北101是臺灣的高樓結構與工程技術的巔峰之作,面對臺灣頻繁的地震颱風,台北101如何解決問題?(圖片來源:Flickr用戶Antonio Tajuelo)

李柏昱 | 國立臺灣大學地理環境資源學系

台北101於2004年風光落成,榮登當時世界第一高樓寶座,除了展現台灣的經濟活力與高超的工程技術外,首當其衝的自然是台灣頻繁且劇烈的天災,包括地震或颱風,加上基地位於地質鬆軟的台北盆地,台北101如何克服這些難關?這次專訪邀請永峻工程顧問公司甘錫瀅總工程師,甘工程師曾參與許多臺灣高層建築的結構設計,台北101更是其代表作,請他介紹台北101結構匠心獨具的抗震防颱設計。

颱風地震夾擊,台灣高樓必須「軟硬適中」

甘工程師說,要在台灣新建高樓,先天環境本身便困難重重,因為臺灣同時面對地震跟颱風的威脅,兩種應對的結構設計迥然不同,甚至可說剛好相反:如果結構體設計的太硬,地震來時容易脆性破壞;如果結構體設計的太軟,颱風來時大樓又會晃動得太厲害。所以在台灣要建造超高層大樓,必須先解決結構軟硬的問題,也就是說大樓結構體不能設計的太軟,也不能設計的太硬,才能同時面對地震和颱風兩大勁敵。

台灣專利,韌性接頭提昇鋼構耐震力

甘錫瀅說,台北101使用台科大陳生金教授發明的專利:高韌性接頭(High Ductility Connection)。在建築結構中,柱與樑的接頭若損壞是非常嚴重危急的問題。過去的設計思維,傾向不斷加固接頭,但每次大地震鋼骨結構仍然會從此處開始損壞;正因這個節點太過堅硬而缺乏彈性,地震時反而會發生脆性破壞。

高韌性接頭反其道而行,從鋼樑距離與柱子接頭 12 公分處開始將鋼樑翼板順著彎矩梯度去做削切,透過削弱該處強度,將地震的破壞力控制在削弱的地方。只要確保鋼構的品質,這種工法吸收的地震能量,能比傳統的接頭多吸收7 到 8 倍的能量,這也就是大樓結構設計上讓結構體不要太硬的有效方法。

巨型結構確保101安全無虞

台北101的巨型結構示意圖,貫串整棟建築的巨型柱,以及每隔幾個樓層就會設置的巨型樑,是101結構抗震抗颱的秘訣。(圖片來源:甘錫瀅)
台北101的巨型結構示意圖,貫串整棟建築的巨型柱,以及每隔幾個樓層就會設置的巨型樑,是101結構抗震抗颱的秘訣。(圖片來源:甘錫瀅)

巨型結構(Mega structure)居台北101結構設計的首要之功,巨型結構包含「巨型柱」與「巨型樑」。「巨型柱」每根斷面長 3 公尺、寬 2.4 公尺,外圍鋼板厚高達 80毫米,內部灌滿高強度混擬土,這樣的巨型柱一共八根,建築外側每面有兩根。除巨型柱外,還有 16 根核心柱,也就是電梯等核心基礎設施放置處。

「巨型樑」則呈現雙十狀,在水平面利用巨型桁架把所有柱子串聯起來,每個斗最上方的設備層各有一組巨型樑,最下方 26 層樓的底層則有 3 組巨型樑。一共 11 組巨型樑把整棟台北101分為 11 個大層,強化台北101的結構強度。

基樁深入岩層,讓101站得穩

台北101塔樓底下一共打了380支群樁,皆深入地底80公尺,比岩盤還要再深入20到30公尺,讓101得以站穩。(圖片來源:甘錫瀅)
台北101塔樓底下一共打了380支群樁,皆深入地底80公尺,比岩盤還要再深入20到30公尺,讓101得以站穩。(圖片來源:甘錫瀅)

甘總工程師說,台北101的結構基礎,先透過現場鑽探 151 個孔,找出底下岩盤的深度與樣貌。高達 508 公尺的塔樓,一共打了 380 支直徑 1.5 公尺的群樁。而只有 5 層樓高的裙樓(旁邊五層樓的商場),打了 167 支直徑 2 公尺的基樁,深入岩盤約 2~3 公尺。

不過,裙樓的基樁是直接銜接上方的柱子,塔樓又該如何將建築物的重量傳達給底下 380 支的群樁?甘總工程師回答,在台北101的塔樓基礎底層,透過厚達 3到4.7 公尺的實心混凝土基礎板,承載上方巨型柱以及核心柱的重量,再透過這些實心板把大樓重量傳遞至 380 支基樁,再透過這些群樁傳遞到地表下50公尺之岩盤,再深入岩盤20~30公尺,達到地下80公尺,才能夠把大樓穩穩的支撐起來。

黃金大圓球「調諧質量阻尼器」,減緩晃動不適

高懸於 88 層至 92 樓、造價高達 400 萬美元、總重達 660 噸的金黃色大圓球是台北101另一大賣點。這顆大圓球全名「調諧質量阻尼器」( Tuned Mass Damper,TMD),主要目的是減緩建築物內人員因建築物晃動感到的不適。甘總工程師自豪地表示,即便不裝阻尼器,台北101面對 17 級強風也絕對在結構安全範圍內。不過,位處高層的人在風大的日子恐怕會暈頭轉向。

根據研究,只要大樓擺動的加速度達到5cm/sec2時,人們便會開始察覺到搖晃並感到頭暈,所以臺灣的建築法規定在回歸期半年(一年內可能會發生兩次的機率)的風力作用下,頂樓的加速度值不得超過 5cm/sec2。如果台北101沒裝組尼器,頂樓加速度會達到 6.2cm/sec2,超出法定標準,因此藉由裝設阻尼器減緩 40% 的加速度,降到 3.7cm/sec2 左右,這也就是大樓結構設計上讓結構體不要感覺太軟的有效方法。

斗斗高昇,寓意深遠兼具高層避難功能

遠觀台北101,一路往上堆疊八個「斗」的建築造型,象徵「才高八斗」的意象,平均每八層樓一個斗,每個斗外層傾斜七度,經過實驗是視野最佳的角度,同時也創造珍貴的高樓層避難空間。一般超高建築如果發生火災,建築裡的人只能前往地面層或屋頂疏散避難,這代表位於高樓層的人必須爬數十層樓的階梯,疏散時間又長又難熬。而斗與斗之間創造的環狀避難空間,寬約兩公尺,讓建築物內部的人員能就近前往避難。

透過各種嚴謹的結構設計,台北101在結構上擁有史無前例的高樓抗震規模。儘管甘總工程師所屬的永峻工程顧問全程派員參與建築施工過程,但甘總工程師仍然對未來台灣高樓施工現場的嚴謹程度憂心忡忡。「目前政府審查高樓只有在設計的部分很嚴謹,建築高度達到 50 公尺以上(約 15 層樓以上)就需要進行結構外審,但如何將設計的圖說充分落實到施工現場,這是高樓結構監造政策中必須再加強的。」台北101是業主自行出資、請結構設計人員一同參與施工過程,但在其他許多高樓工程中,施工現場經常僅由建築師一人負責全部監造,並未要求結構技師與電機技師一同參與。目前台灣在落實建築法規中對施工監造過程的要求,尚不比對於設計圖的要求更嚴格,使得設計和施工兩端的審查程度嚴重失衡。(本文由科技部補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿)

 

本文原發表於行政院科技部-科技大觀園「專題報導」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

責任編輯:鄭國威|元智大學資訊社會研究所

延伸閱讀:

建築與防災系列專題:

文章難易度
李柏昱
81 篇文章 ・ 2 位粉絲
成大都市計劃所研究生,現為防災科普小組編輯。喜歡的領域為地球科學、交通運輸與都市規劃,對於都市面臨的災害以及如何進行防災十分感興趣。

0

8
1

文字

分享

0
8
1
為什麼土耳其大地震的災情慘重?反思臺灣的防災意識——《科學月刊》
科學月刊_96
・2023/05/14 ・2726字 ・閱讀時間約 5 分鐘

  • 潘昌志/科普作家,著有《地震 100 問》、《海洋 100 問》。

Take Home Message

  • 土耳其位於被斷層包圍的歐亞地震帶,因此飽受地震威脅。
  • 年初在土耳其與敘利亞交界發生兩次大地震,因為地上建物多為古老、不耐震建築,導致災情嚴重。
  • 借鏡土耳其地震,臺灣的防災議題中除了討論傳統的防災建議,更要著重檢討老舊建物的補強問題。

今(2023)年 2 月 6 日,土耳其東南部與敘利亞交界處發生了兩次大地震,分別在當地上午 4 點 17 分(Mw = 7.8)和下午 1 點 24 分(Mw = 7.5)1。兩次強震與後續餘震造成相當慘重的傷亡,根據國際救援組織 Humanity First 截至 3 月 11 日的統計,已造成至少約 5 萬人死亡、13 萬人受傷,如此嚴重災害也引起國際社會關注。本文將介紹此次地震,並反思這次災害對臺灣地震防災的啟示。

地震發生的原因

土耳其位於歐亞地震帶上,附近的地體構造包括較大的歐亞板塊與非洲板塊,還有較小的阿拉伯板塊與安納托利亞板塊。

土耳其境內主要的斷層系統落在安納托利亞板塊與其他板塊的邊界,北側為與歐亞板塊相鄰的北安納托利亞斷層(North Anatolian Fault);東部的東安納托利亞斷層(East Anatolian Fault)則是安納托利亞板塊與阿拉伯板塊的交界,此交界再往東延伸便與比特利斯-札格洛斯褶皺逆衝帶(Bitlis–Zagros Fold and Thrust Belt)相鄰;南端則與死海轉形斷層(Dead Sea Transform)相連。

另外,地中海的塞普勒斯隱沒帶(Cyprus subduction zone)南方也是非洲板塊向北隱沒至安納托利亞板塊的交界,土耳其可說是被斷層包圍、充滿地震威脅的國度(圖一)。

圖一|土耳其附近板塊構造與本次地震震央示意圖。圖/科學月刊。

土耳其東南部與敘利亞交界處發生了兩次大地震,震央分別在圖上★的位置。

這兩次地震主要坐落在東安納托利亞斷層系統的破裂帶上,兩次地震規模相當,加上震央位置與斷層機制不同,以及餘震的空間各自獨立分布,一般會將兩次地震視為兩個不同破裂面上的事件。

但像這樣接連兩次的地震,有些單位或學者也會將規模較小的第二次事件視為餘震,就像是去(2022)年在臺灣的關山、池上接連發生的地震一樣,自然界中偶爾會看到兩次地震規模相近、又可能是同一斷層或相鄰斷層系統的地震事件案例。

歐亞地震帶上的地震好像都特別嚴重?

「歐亞地震帶」大致的分布範圍可以從印尼延伸到中國、印度、尼泊爾、中亞、土耳其、希臘,甚至遠到義大利。不過這裡的地震頻率不如環太平洋地震帶頻繁,所以人們對於歐亞地震帶上的強震較為陌生,或許還可能有此區地震總特別嚴重的印象。

不過災情之所以慘重,主要是由於歐亞地震帶涵蓋了希臘、羅馬、波斯、印度等蓬勃發展的古文明國度,這些國家的古老建築多半難以扺抗強烈震度。

即使現代工程技術已能扺抗強烈的振動,但這些地區的耐震補強更新不一定能趕在大地震來襲之前完成。過去如2009年義大利拉奎拉市(L’Aquila)地震、2015 年尼泊爾地震、2016 年義大利中部地震、2017 年伊朗-伊拉克邊界地震,致災原因皆為劇烈震度與當地建物的不耐震。

進一步探討今年土耳其的災情狀況,與 1999 年 921 集集地震的規模(Mw = 7.6)相比,這兩次地震的能量釋放已經相當接近,而地震的震源深度又分別只有 18 公里和 10 公里,MMI 震度達到 9 級2。淺源地震造成強烈震度,再加上當地的建物耐震能力較差,致使慘情慘重。從部分新聞提供災區照片,也可以看出低樓層結構軟弱、柱子不夠粗、缺乏抵抗剪力強度的老舊建物受到嚴重損壞。

掃描 QRcode,可見土耳其的港口城市伊斯肯德倫(Iskenderun)某建物地震前後對比圖。大面積的窗戶側缺乏強力的柱子支撐,加上樓層較高,遇上大地震其實很難撐住剪力的破壞。

「生命三角」有用?重點還是耐震問題

也因為樓房倒塌狀況相當慘重,人們生還機率渺茫,因此有部分報告也提及,在樓板瓦礫中發現了躲在家具間縫隙的「生命三角」空間而生還的例子,讓這個一般「不建議」的防災概念又再次被討論。然而,生命三角適用的「整片樓板震毀落下」的情況,根本原因是來自於建物的脆弱。

防災單位之所以建議「趴下、掩護、穩住」而非「生命三角」,乃是因為絕大多數地震對人身的威脅,遠大於生命三角所適用的情況。像這樣因缺乏耐震建物的狀況下,比起討論何種防災建議恰當,更重要的是檢討老舊建物的補強問題。

危老住宅、防災都更進展緩慢的問題不僅在臺灣可見,在土耳其更加嚴重。近年來,當地北方大城市如安卡拉、伊斯坦堡的房價已達到一年成長破 100% 以上的程度。再加上近幾次大地震後,土耳其的防災與建築專家也不斷倡儀政府應重視建物耐震議題,希望可以在下次大地震來臨前先做好準備。

然而大地震不會等人們慢慢重整旗鼓,我們也該藉此反思,即使 921 集集地震後建物法規的修訂與落實逐漸被正視,但國內仍有大量連耐震評估都未辦理的老舊建物,實為一大潛在威脅。

未來地震防災應該關注的重點

殺人的不是地震,而是建築。或許人們會認為,蓋好房子總要花大錢,但其實提升耐震並不是只有重蓋房屋一途,還可以利用耐震補強來落實(圖二)。近年內政部營建署與國家地震工程中心的「私有建築物耐震弱層補強」措施已提供民眾補助的方案和金額,然而強化房屋涉及房產的所有權人,必然需要透過如「區分所有權人會議」讓公寓大廈內的住戶取得一定共識才能實施。

因此真的要提升住宅的耐震安全,靠的不是政府或科學家,而是人們應有「居安思維」的意識,願意從認識地震來思考如何在地震頻繁的臺灣安全生活,將社區的基金用在修繕補強耐震上、將管理費撥一點用於防災演練或是設備添購。地震防災要有效深耕,不該只是準備地震包、演練趴下掩護穩住,而是要將防災視為一件重要的事,並作為日常的習慣。

圖二|住宅耐震補強的申請步驟。圖/科學月刊。

耐震補強的補助條件

  1. 耐震能力初步評估結果危險度總分大於 30 分者。
  2. 耐震能力詳細評估結果為須補強或重建者。
  3. 經依「災害後危險建築物緊急評估辦法」第六條規定緊急評估有危險之虞,並已於建築物主要出入口及損害區域適當位置,張貼危險標誌者。
  4. 經執行機關認定有補強必要者。

註解

  • 〔註 1〕Mw 是地震矩規模,為其中一種地震規模表示法。
  • 〔註 2〕MMI 震度 9 級對照到中央氣象局的震度分級約是 6~7 級的程度。
科學月刊_96
248 篇文章 ・ 3138 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
板塊與斷層並不相同,從土耳其敘利亞大地震了解大地之母
PanSci_96
・2023/03/12 ・2981字 ・閱讀時間約 6 分鐘

今年 2 月 6 日,土耳其大地震的影像,透過國際媒體、社群網路不斷轉發,讓世人再次感受到大自然的無情,也讓身處地震帶上的台灣,重燃關於地震的防災意識。

而同樣身處地震帶上的我們,對於地震又理解多少呢?

這次土耳其的地震規模有多大?

今年2月 6 號,土耳其當地時間凌晨四點,發生了地震矩規模(Mw) 7.8 的強震(美國地質調查局 USGS 的測定數據);震央位於土耳其南部與敘利亞接壤,有著 170 萬人口的加濟安泰普省,震源深度僅僅只有 17.9 公里,屬於極淺層地震。

不幸的是,大約 9 小時之後,距離震央東北方不到 100 公里的地方,再度發生規模 7.5 的地震,深度甚至只有 10 公里,最大震度甚至高達麥卡利震度的 X 度,相當於台灣的 7 級地震。

光是在土耳其境內,強震造成四萬一千多人死亡、十萬多人受傷,是土耳其百多年來死亡人數最多的地震。

土耳其為什麼會發生大地震?

為土耳其百多年來,死亡人數最多的地震。圖/維基百科

地球表面包含地殼和一小部分的地函質地剛硬的地方,被稱為「岩石圈」,它並不是完整的一塊,而是分裂許多個「板塊」。中洋脊新生的海洋地殼會推著兩側的板塊不斷向外擴,最終在海溝下沉回到地函,完成循環。

然而,這些板塊彼此運動的速度和方向並不一致,彼此之間會有碰撞、擠壓、摩擦、分離等等的相對運動,形成相互碰撞的「聚合型板塊邊界」、相互分離的「分離型板塊邊界」以及水平錯動的「轉形型板塊邊界」(Transformation Fault,臺灣中學課本常翻作「錯動型板塊邊界」)。

實際攤開地圖,土耳其大部分區域都位在高原上;但在腳底下,土耳其的土地正不偏不倚的落在四個板塊的交界處:北邊的歐亞板塊、南方有阿拉伯板塊、西南方是非洲板塊,大部分國土則位於安納托利亞板塊上。

這些板塊相互推擠,創造了土耳其豐富的高原地貌,也造就了頻繁的地震。

地震發生的原因不只是因為板塊碰撞

我們常以「板塊的碰撞」作為地震的原因,雖然板塊運動確實會伴隨地震發生,卻不能直接解釋地震發生的機制。

板塊新生及重回地函的地方,構成了板塊的交界,它可以是中洋脊、海溝,如果該二板塊交界處的兩側都是陸地,則可能擠壓形成山脈。

就像拿兩塊吐司互相擠壓,會變形的,不是只有接觸面而已,整塊吐司都會因為兩側施加的壓力,在各處形成變形、甚至破裂。而這個破裂面,就是斷層;斷層錯動的瞬間,就會引發地震。

因此,斷層不一定要位於板塊交界上,而是只要岩層有受力的地方,就有可能產生斷層,它可以位在板塊交界的「附近」,也可以是位在遠離板塊交界的地方。

當然,因板塊的相對運動容易讓應力累積在板塊交界處,在板塊交界附近的斷層數量也就比較多。

這次土耳其錯動的斷層是?

土耳其正落在四個板塊的交界處。圖/維基百科

前面提到,土耳其剛好就位於安納托利亞板塊、歐亞板塊阿拉伯板塊與非洲板塊的交界處。由於阿拉伯板塊長年向北運動,又受到北方歐亞板塊的阻擋,因此被迫轉向西北方推擠安納托利亞板塊,使得土耳其國土被逆時針擠出。

在四個板塊的相互推擠下,土耳其境內形成兩條較大的岩層破裂帶,一條是東南方的「東安納托利亞斷層系統(EAF)」,另一條則是橫貫整個國境北部「北安納托利亞斷層系統(NAF)」。

這次土耳其大地震的事發地「東安納托利亞斷層」,形成的主要原因正是阿拉伯板塊長年向西北推擠安納托利亞板塊所產生的應力,使得岩層沿著板塊邊界,以東北西南的方向破裂。除此之外,在這條斷層的北側也發展出好幾條東西方向延伸的破裂面,形成東安納托利亞斷層的分支,也是這次大地震第二次主震發生的位置。

根據美國地質調查所的紀錄,這些破裂面,已經超過一百年沒有明顯的地震發生,表示這附近的岩層,已經長期處在應力累積、沒有宣洩的狀態。在阿拉伯板塊持續向北推擠的形況下,岩層終究無法承受,並沿著「東安納托利亞斷層系統」的數條破裂面發生水平方向的錯動,造成了這次的地震。

根據歐洲的人造衛星影像結果,這次錯動的程度之驚人,第一次主震發生的地方,地層左右位移了六公尺,第二次主震更到達八公尺。

為何地震為何總是突然發生,
而不是緩慢的釋放應力?

現在最廣為人知的地震理論,是在 1906 年舊金山大地震時,美國的地質學家李德,觀察加州的畜牧農場的圍籬在地震後發生的錯位情形,並於 1911 年提出了「彈性回跳理論」;其認為斷層附近的岩層先是受到某種外力而發生變形,當斷層面的摩擦力最終無法抵抗外力時,岩層將沿著斷層面一口氣錯動、釋放累積的能量,就產生了地震。

有了這個理論,我們還能推測,已經存在的斷層因為本身就是岩層破裂的地方,結構較為脆弱,當岩層繼續受到外力擠壓變形,就容易再次沿著斷層方向錯動。就像是一片玻璃摔過之後,裡面產生微小的裂痕,雖然玻璃沒有碎掉,但可以預期,如果這塊玻璃再摔到一次,這些微小的裂痕可能就變成了破口,甚至徹底碎裂。

至於讓斷層附近的岩層變形的「外力」除了板塊運動外,地表的侵蝕作用、火山活動等,都是可能的原因。

火山活動亦為使岩層變形的外力之一。圖/Envato Elements

台灣為什麼有許多斷層?

回頭看,位於板塊交界帶上的台灣,在菲律賓海板塊與歐亞板塊的擠壓下,從北到南遍布了大大小小的斷層。根據經濟部地質調查所在 2021 年公佈的數據,台灣共有 36 條活動斷層。

至於板塊交界處則是在花東縱谷。菲律賓海板塊與歐亞板塊的邊界,從北方的琉球海溝劃過台灣的下方,向南延伸到馬尼拉海溝;在地表上,這條邊界一路從花蓮北端貫穿整個花東縱谷平原。

從一千五百萬年前開始,菲律賓海板塊就不斷地朝西北方向推擠,如今仍以每年 7~8 公分的速度,向著歐亞板塊邁進,海岸山脈也因此不斷衝向中央山脈。

我們可以將台灣岩盤的變形狀況想像成是推土機推雪:海岸山脈是推土機,中央山脈則是雪堆。當推土機推著雪堆向前行時,雪堆前、後和底部的變形最強烈。在海岸山脈的推擠下,變形量最高的地方集中在西部平原、花東縱谷以及中央山脈的底部。由於中央山脈底部岩層溫度過高,只會產生變形;而西部平原、花東縱谷則成為了斷層最密集、地震好發的地方。

和土耳其一樣身處地震帶的我們,除了讚嘆大自然的鬼斧神工之外,具備更健全的地震知識、學習如何與地震災害共處,並盡可能降低地震帶來的傷害,成了我們每個人的重要課題。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1207 篇文章 ・ 1882 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
走高山只為預測颱風,臺灣氣象學開拓者——近藤久次郎
PanSci_96
・2023/02/10 ・3388字 ・閱讀時間約 7 分鐘

  • 作者/廖子萱

蕞爾臺灣島,地跨熱帶與副熱帶季風氣候區、四面環海,縱貫的百岳更加深了氣候的複雜程度。

在這樣的地理條件下,即便當今借助氣象衛星進行天氣分析,預報仍偶見差之毫釐、失之千里。一百年前,人們對於山岳、海洋與其相生的自然現象往往常處於未知,而至今日手機隨手可得及時的氣象預報,在短短一百年間,臺灣氣象科學從無到有,蓬勃發展。這背後的功臣包括了中央氣象局、高山氣象站、地震觀測站,這些單位的前身與發展,皆與近藤久次郎有關。

圖1. 1897 年臺北測候所。圖/交通部中央氣象局〈台灣氣象憶往之ㄧ〉

近藤久次郎(Kondo Kyujiro ,1858 – 1926)是臺灣首任總督府測候所技手兼所長,也是臺北測候所所長(現中央氣象局)。 1896 至 1924 年在臺期間,近藤引領總督府測候所設立了七座地方測候所,並協調地方基層治理單位,建構氣象觀測方法和資料搜集的網絡。他更推動高山觀測方法,以進行颱風預測、推動高山與地震觀測系統的建置,為臺灣氣象科學翻開了嶄新的一頁。

臺灣近代氣象觀測的發展

臺灣近代氣象觀測發展可追溯於清朝,光緒年間的1883年,清廷聘請杜伯克博士(Dr. William Doberck)赴香港擔任首任天文司(天文台台長),並在沿海稅關和燈塔裝置觀測設備,進行氣象觀察。臺灣基隆、淡水、安平、打狗四港的稅關,以及漁翁島(澎湖)、南岬(鵝鑾鼻)也陸續在 1885 年前後,展開十餘年的氣象記錄。然而,1895 年清廷與日本簽訂馬關條約割讓臺灣,氣象觀測工作就此停擺,多數的觀測儀器與記錄更在政權交替期間散失。

日本統治臺灣之後,由於當時國際航海安全多仰賴氣象資料,在英法強權的施壓下,臺灣總督府於1896年發布第 97 號敕令,以「台灣總督府測候所官制」編制氣象觀測單位,而日本中央氣象台則選派本文主角,技手(技士)近藤久次郎來臺勘查、策劃氣象觀測站。同年,總督府也在民政局通信部海事課增設「氣象掛」一單位,統理全島氣象事務,如氣象觀測、天氣調查、颱風警報、地震檢測等工作。

1896 年四月至六月間,近藤久次郎與民政局通信部海事課課長遠藤可一翻山越嶺、走訪各地,行跡遠至鵝鑾鼻。根據兩人的調查基礎,臺灣總督府先後於臺北、臺中、臺南、恆春和澎湖設置測候所(後三為 1987 年設立),近藤也在日本中央氣象台台長中村精男(Nakamura Kiyoo)的任命下擔任臺北測候所所長,開始逐步搭建全島的氣象觀測網絡。

在各地氣候觀測所選址的條件上,近藤久次郎配合日本政府在農業、工業、航海與公共衛生等發展項目的資料需求,為詳實觀測各區域氣候根據相對距離由北至南畫設臺北、臺中、臺南、恆春測候所 。此外,還參考了夏季與秋季的颱風路徑設立澎湖測候所,用以觀察自香港與馬尼拉而來的颱風。

除了本島的氣象觀測,近藤還曾於1897年,帶著晴雨計、寒暖針遠赴火燒嶼(綠島)、紅頭嶼(蘭嶼)進行氣象觀測、測量山頂高度,策劃設立觀測站。而後隨著總督府逐步克服東部地區交通和電信的限制, 1900 年、1910 年臺東和花蓮測候所分別建設完成,時至 1924 年近藤久次郎卸任前,全臺共設有七座「一般測候所」。

十九世紀末的觀測所主要沿用清朝遺留的官廳或民房,屋頂簡單設有的風力與風向儀,室內則作為辦公之用。一般測候所以風力塔為主要的觀測設施、可測量風向、風速、風壓、日照和日射;辦公室外設置氣象觀測坪以測量氣溫、雨量、地面溫度等;測候所外另設有提供執勤人員進駐的官舍。

而在時間方面,位於政治中心的臺北觀測所實施 24 小時氣象觀測;其他測候則每四個小時實施觀測、每日六次,用於地區性天氣預報,並將資料匯報予臺北測候所以利發布臨時颱風警報、氣候月報和年報,進一步進行總體性的氣象分析。

擴大氣象觀測網路,發佈氣象預報歷史頁面

為了擴大氣象觀測網絡,總督府會同官廳、派出所、郵局等單位協助蒐集雨量和氣溫資料,並於 1896 年 7 月以「民通 151 號」公報始建立暴風警報通報流程,命令各官廳、海關、郵局、燈塔,將通信部海事課所轉發的暴風警報公布予地方民眾,九座燈塔更奉「總督府訓」兼任氣象觀測的任務,協助測量氣溫、氣壓、風、雲與雨量。

1897 年 9 月,近藤領導的臺北測候所開始發佈每日三次的氣象預報,並與琉球、九州南部測候所,以及徐家匯、香港、馬尼拉等地的氣象台交換氣象報告。 依循著新展開的天氣觀測模式,總督府府報開設「觀象」專欄,刊登臺北測候所撰寫的天氣預報(「本島氣象天氣豫報び天氣概況及暴風警報等」),開啟了臺灣天氣預報歷史性的一頁。直到1905年,全臺各地的雨量觀測網絡已達78處,涵蓋燈塔、支廳、派岀所、學校、郵局、農業試驗所、自來水廠等單位,各處配備簡易的氣溫觀測工具以協助記錄天候狀況。

很快地,日本在臺短短10年內,近藤久次郎已為氣象觀測網打下綿密的基礎。

不只是天氣預報,開啟高山觀測與地震研究先河

1900 年,近藤久次郎附議天文學者一戶直藏提出的新高山(今玉山北峰)報告(新高山ニ關スル研究報告),近藤提到:「新高山山頂是天然絕佳的天文觀測與氣象學研究位置」,他認為高山觀測有助於天文和氣象研究,可藉由研究大氣動力上升的過程進行天氣預測,尤其臺灣每逢夏季,颱風挾帶滂沱大雨常引發災情,若能在台灣百岳中設置幾處高山觀測所,定有助於颱風警戒和天候預設。

於是, 1911 年近藤久次郎與一戶直藏率先提出「新高山觀測所設置計畫」,向總督府倡議在玉山、阿里山興建高山觀測所和天文台,間接促成玉山觀測站(1943 年始建造)與阿里山觀測站(1932年建造)的設置。

近藤久次郎除了推動高山氣象、天文與航空研究,也曾與臺北測候所同仁積極推動與地震和火山相關的研究: 1896 年,臺北臨時測候所首次藉由人體感受進行地震觀測; 1897 年正式落成的臺北測候所,引進格雷-米爾恩型地震儀(Gray-Milne Seismograph); 1900 年,由被譽為日本地震之父的大森房吉所改良的大森式水平地震儀(Omori horizontal pendulum seismograph)以及強震儀(Strong motion seismograph)裝設於臺北測候所。

這些地震觀測儀也在 1906 年 3 月 17 日的「嘉義梅山地震」發揮了記錄地震波形與餘震數據的作用,獲得的數據使大森房吉找出梅山地震與斷層的關係,並將之命名為「梅仔坑斷層」(後更名梅山斷層)。而後,大森房吉還將研究與近藤所著的說明書刊登於報紙,傳遞地震成因與餘震的科學知識,緩解民間傳說帶來的社會不安。時至1907年,在近藤的協助推動下,全臺共有七所測候所兼做地震觀測,當時的紀錄,也成為現代地震研究珍貴的早期觀測資料。

1924 年,近藤久次郎因病去職返回日本,1926年因胃癌而逝世。 1896 至 1924 年,近藤來臺近將三十年,他在擔任總督府測候所與臺北測候所所長期間,建制氣候所與觀測網絡、編輯並彙整氣象資料;開啟暴風雨警報、颱風預測等重要的氣象預報機制;也協助推動高山氣候觀測、天文觀測與地震研究,著實是臺灣近代氣象科學研究的先河。

註解

  • 註 1:然而,由於當時日本與臺灣之間並無定期班船和通訊設備可供交通和信息的傳遞,使得測候所無法如期配備氣象觀測儀器並興建正式氣候站,故先以既有房舍作為臨時氣候所。而後各地氣候所材陸續興建並增添觀測設備:臺北測候所於 1897 年 12 月 19 日遷入臺北城內南門街三丁目;臺中測候所於 1901 年 5 月 20 日遷入臺中城內藍興堡台中街;台南測候所於 1898 年 3 月 1 日遷入台南城內太平境街第 216 號官有家敷地;恆春測候所於 1901 年 11 月 24 日遷入恆春縣前街四番地;澎湖測候所於 1898 年 3 月 1 日遷入澎湖島媽公城內西町。(資料來源:中央氣象局委由財團法人成大研究發展基金會、國立成功大學單位研究之《台灣氣象建築史料調查研究》, 2001 年 2 月出版。)
  • 註 2:資料參考徐明同〈台灣氣象業務簡史〉
PanSci_96
1207 篇文章 ・ 1882 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。