Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

聽聲音(三):調音師怎麼知道鋼琴準不準?

Muzik Online
・2015/02/05 ・1836字 ・閱讀時間約 3 分鐘 ・SR值 491 ・五年級

作者 官大為(Wiwi)

在上一篇文章,我們發現了人類的大腦會將頻率相近的聲音作連結,也了解了為什麼鋼琴可以同時扮演這麼多種角色,而聽眾依然不會互相混淆。

聽聲音(二):你為什麼可以聽到旋律?

今天我們要繼續討論關於聲音頻率的問題:為什麼鋼琴音不準的時候聲音會「抖抖的」?以及調音師如何光憑用聽的,就知道你的鋼琴準不準,甚至連兩條弦的頻率差距有多少都可以知道?

-----廣告,請繼續往下閱讀-----

聲音的 1 + 1 = 2

你一定在很小的時候,就已經知道「1 + 1 = 2」這件事:你吃了一個餅乾,然後你再吃一個餅乾,你的體內總共有兩個餅乾。

再長大一點,你發現「1 + (-1) = 0」這件事:你在 party 的時候喝了一整瓶威士忌,然後你把整瓶威士忌吐出來,你的體內總共剩下零瓶威士忌。

你可能還不知道的事情是,這兩個算式也可以套用在聲音上。

-----廣告,請繼續往下閱讀-----

相加和抵消

我在以前的文章,曾經解釋過聲音是一種「疏密波」:你之所以可以聽到音響放出的聲音,是因為喇叭的震膜在前後移動的過程中,把某些位置的空氣分子壓縮比較密集,而某些位置的空氣變得比較稀疏。

數位音樂科技(一):聲音檔案裡面是什麼?

我們可以把一個單純頻率造成的空氣密度變化,畫成像是以下的圖表:

-----廣告,請繼續往下閱讀-----

而當有兩個來源同時發出聲音時,兩個來源的聲波會互相影響。如果在空間中的某個位置,兩個聲波來源的空氣疏密變化是剛好同步的話,因為聲波會互相相加(建設性干涉),那麼在那個位置聽到的聲音就會比較大。反過來說,如果在空間中的某個位置,兩個聲音來源的空氣疏密變化剛好相反的話,因為聲波會互相抵消(摧毀性干涉),所以在那個位置聽到的聲音就會比較小。


移動你的頭,聽聽看!

我接下來要在喇叭的左右聲道,播放同一個聲波,試試看在我播放的途中,稍微移動你的頭到空間中的不同位置。聽聽看是不是在某些位置聽起來聲音比較大聲,另外一些位置聽起來比較小聲?

兩個喇叭播放同一個聲音時,互相干擾的結果會像是下圖,黑線代表聲波空氣密度最高的地點,而由每個黑線交會點連成的藍線,就是你聽到聲音最大的位置。而反過來,灰色虛線代表的黑線沒有交會的地方,也就是聽起來聲音最小的位置。

-----廣告,請繼續往下閱讀-----


當然如果你是戴著耳機的話,因為左右聲道的聲波並沒有在空氣中交會,所以你將不會聽到這個效果。

抖來抖去

如果我們的兩個聲音來源,播放的是稍微不同的頻率的話,就更好玩了。

因為兩個不同頻率的聲音,達到空氣最密集和最稀疏的時間週期不一樣,這導致它們同時播放的時候,會在某些時候呈現相加的狀態,另一些時候又呈現抵銷的狀態,也就是說你在定點聽到的聲音會忽大忽小,好像在「抖動」的感覺。

-----廣告,請繼續往下閱讀-----


我現在要先在左聲道播放一個每秒振動 440 次(440 Hz)的聲音,然後在右聲道一個播放 441 Hz 的聲音,最後再將兩個聲音一起播放。你將會聽到它們各自都是一個音量穩定的聲音,但合在一起播放的時候,卻有一個抖動的感覺。

這件事另外一個神奇的地方是,就算你是用耳機聽,你還是聽得到這個效果。左右耳這兩個不同頻率的聲音,會在你的大腦內混合,然後互相干涉,產生有如在空氣中互相干涉的效果。

我們把這種兩個頻率相近的聲音互相干涉而產生的「抖動效果」,叫做「拍頻」(beating)。

差多少就抖多快

-----廣告,請繼續往下閱讀-----

再聽一次剛剛的這個聲音範例,這一次注意它們互相干擾時,音量抖動的速度有多快呢?差不多一秒鐘一次對不對?

當我們再繼續實驗把兩個聲道的頻率差距加大,你會發現當兩個聲音的頻率差距越來越大,它們交互干涉時的抖動也越來越快。聽聽看接下來的幾個聲音範例:

左聲道 440 Hz,右聲道 441 Hz:

左聲道 440 Hz,右聲道 442 Hz:

-----廣告,請繼續往下閱讀-----

左聲道 440 Hz,右聲道 443 Hz:

左聲道 440 Hz,右聲道 444 Hz:

左聲道 440 Hz,右聲道 445 Hz:

然後我們就得到了有趣的結論:兩個聲音相差的 Hz 數,剛好就是它們交互干涉時每秒鐘抖動的次數。

你家的鋼琴,在音不準的時候聲音聽起來會抖抖的,就是因為這個原因(關於鋼琴聲音的故事,就要放到另外一篇文章了)。而調音師也就是藉由聽兩條弦交互干擾的抖動速率,來得知兩條弦的頻率差距有多少。

閱讀更多

想要了解更多的話,繼續看看下面的兩篇參考文章吧,我們下期專欄再見拉!

干涉(中文維基百科)

拍頻(英文維基百科)

(Wiwi)

轉載自MUZiK ONLiNE 名家隨筆

-----廣告,請繼續往下閱讀-----
文章難易度
Muzik Online
25 篇文章 ・ 9 位粉絲
MUZIK ONLINE是世界上第一個以古典音樂為核心素材,結合科技與社群功能的線上收聽平台。它把古典音樂化為易於接近的數位內容,史無前例地,讓專業人士、入門者、或不排斥音樂的朋友們之間,建立起對話的共通頻道。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
電磁波全揭秘:了解頻帶、頻寬、頻率和通信技術的基礎知識
數感實驗室_96
・2024/06/13 ・672字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

先前我們介紹了多位為通信科技發展做出貢獻的科學家。現在,我們要深入探討無線通信的技術層面。

無線通信,顧名思義不像傳統的電話或電報那樣需要一條實體的線路來傳遞信號。但這些信號並非憑空傳遞,它們依賴的正是電磁波。

電磁波在現代社會無處不在,從微波爐、手機到基地台,這些設備都會發射電磁波。但其實即使沒有這些科技裝置,電磁波依然存在於我們周圍。什麼意思呢?答案就是:當我們白天走到戶外,看到的光,它其實也是電磁波的一種。

-----廣告,請繼續往下閱讀-----

希望大家掌握了這些電磁波、頻帶、頻寬等基礎知識後,未來在閱讀相關的電信新聞時更加了解他們提到的術語,以及各種縮寫。以後無論是科技發展的動態還是市場新技術,都能更有概念地理解。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

2
1

文字

分享

0
2
1
Freeze & Mute!別出聲!——恐音症 TMI 我來告訴你!
雅文兒童聽語文教基金會_96
・2024/04/20 ・3826字 ・閱讀時間約 7 分鐘

  • 文/賴郁婷 | 雅文基金會聽語科學研究中心 助理研究員

「咔滋咔滋、咔滋咔滋」——聽到吃東西的聲音是不是讓人忍不住食指大動、唾液快速分泌呢?夜半時刻肚子感到空虛,美食又還在外送途中,一時半會兒吃不到宵夜該怎麼辦呢?先看看吃播也是能夠過過癮的,也因此一部分的影音創作者就抓住人們對於食物的關注,搭配 ASMR,強調食物在唇齒間的咀嚼聲,將大啖美食的畫面及聲音製作成影音大飽觀眾耳福。然而真的所有人都對 ASMR 放大的聲音感到愉悅或療癒嗎? 

一張含有 人員, 點心, 速食, 烘焙食品 的圖片

自動產生的描述
每個人看/聽別人吃東西都能感受到愉悅?。圖/Freepik

對聲音過敏?

您是否有這樣的經驗?在忙碌、deadline 逼近感到焦慮時,或是一個人走在暗巷中緊張、害怕時,任何風吹草動的聲音都會被放大或形成干擾。從空調的運轉聲、時鐘的滴答聲到進出門的開關聲等,都像是背後有隻怪獸正朝我們撲過來,若長期維持聽覺過度敏感化(Auditory Hypersensitivity / Oversensitivity)的狀況,則可能會導致注意力不集中、坐立不安、頭痛、噁心的感覺,甚至要到身心科尋求幫助;而原本有慢性耳鳴問題的人,也有可能會增加耳鳴發作的頻率 [1]

這類對外界聲音過度敏感的狀態,最早是由美國聽力學家 Johnson 在 1990 年代將其定義為選擇性聲音敏感綜合症(Selective Sound Sensitivity Syndrome, 4S),然而與聽覺過度敏感化不同的是,4S 患者主要是對特定的「觸發聲音」(trigger sound)出現時,才會出現明顯的不耐受性(intolerance),有些患者甚至連相關的視覺或嗅覺刺激也可能引發恐音反應 [2]。2001 年時,恐音症(misophonia)一詞被提出,其字義為:對聲音的憎恨 [3],被用來描述當面對特定、重複的觸發刺激時(例如:咀嚼聲、呼吸聲),會出現憤怒、厭惡的衝動反應。

容易對聲音感到焦慮、不舒服,就是有恐音症嗎?

人類因聲音感到困擾、對聲音耐受性較低的狀況,主要可分為以下三種類型 [4]

-----廣告,請繼續往下閱讀-----
  1. 噪音敏感(Noise sensitivity):指無論噪音大小(響度)如何,人們對噪音的生理及心理反應都變得敏感的狀態,因此他們通常在安靜的環境中感到最舒適。此症狀在經歷過重大腦外傷的人是很普遍的,在自閉症患者中也很常見。
  2. 聽覺過敏(Hyperacusis):指當聲音大小(響度)是在大多數人可以忍受的範圍時,聽覺過敏者則會感到生理上的不適或疼痛。研究指出,一般人對聲音響度的容忍度可以達到 100 分貝,甚至更高 [5],而聽覺過敏患者只能容忍 60 至 70 分貝的聲音大小,大約是一般人說話的音量,即會造成其不適。
  3. 聲音恐懼症(Phonophobia):與上述兩者不同,聲音恐懼症所造成的不適並非由物理聲音引起,而是患者對聲音的預期恐懼,他們「害怕」可能出現的聲音,這樣的害怕情緒會導致焦慮,且可能加劇已有的聽覺問題(聽力損失、耳鳴)。

雖然這些對聲音耐受性的相關症狀各有不同,但這些病症不一定都是單獨出現的,聽覺過敏者有很高的比例會伴隨著嚴重耳鳴 [6]、聲音恐懼症的患者也可能因有聽覺過敏而更容易對聲音感到焦慮、害怕。

恐音症到底是什麼?

在恐音症還未被正式定義前,經常被歸類為聽覺過敏或是強迫症,對其應該被歸類為精神疾病或是聽覺的相關障礙,各界學者們也都有不同看法,究竟恐音症有什麼特殊之處,讓我們來揭露它的廬山真面目。

對恐音症的診斷標準最早由荷蘭的阿姆斯特丹大學醫學中心在 2013 年首先提出。而後,Jager 等人 [7] 歷時五年對近 600 位恐音症患者進行研究,並於 2020 年提出修訂版的恐音症診斷標準。對於恐音症的診斷標準建立及更新,都可以看出學者們對於恐音症的重視與關注,然而恐音症至今仍未被列入在《精神疾病診斷與統計手冊》(DSM)及《國際疾病分類》(ICD)當中。

由於,恐音症在研究的早期階段定義及描述並不統一,診斷的方法和評估的標準也不相同,在如何定義和評估恐音症上尚無一致性,而這也促成了 Swedo 等人 [8] 透過與各界學者的討論與對話,逐漸對恐音症的概念達成共識,其項目包含:

-----廣告,請繼續往下閱讀-----
  1. 症狀描述:對特定聲音刺激(觸發因素)的耐受性降低,且觸發因素通常是重複的、由人的身體產生的,會造成患者過度的情緒、生理和行為反應。
  2. 觸發因素:最常見的觸發因素是聽覺上的,包含口腔的聲音(咀嚼、進食、咂嘴、吸食、咳嗽、清喉嚨和吞嚥等)、鼻音(呼吸和嗅聞等)、人為製造出的聲音(按原子筆、敲鍵盤、輕敲手腳和拖長腳步),以及物體發出的聲音(例如:時鐘滴答聲)或動物發出的聲音。同時也有機率對視覺上的觸發因素(折手指、抖腳、晃腿或看他人進食)有強烈反應。
  3. 觸發反應:在情緒方面,憤怒、惱怒、厭惡和焦慮是最常見的;生理上則會引起自主神經興奮,使肌肉緊繃、心率加快和出汗;行為反應上可能會對觸發因素進行攻擊,或以迴避、阻止、模仿的方式減低觸發因素所帶來的不適反應。
  4. 與其他疾病的關係:恐音症的症狀無法用同時發生的其他疾病做更好的解釋。恐音症可能出現在聽力正常或聽力損失的人身上,單獨或和耳鳴、聽覺過敏等病症一起發生都是可能的。同時,精神疾病也可能與恐音症共病,包含焦慮症、情緒障礙、人格障礙、自閉症、注意力不足過動症等。
  5. 對生活的影響:患者在職場及求學階段都可能因注意力無法集中,而無法執行工作任務、達到目標。在社會上,也會因無法如常與人互動、建立關係,最終與人群疏離。於家庭關係上,患者可能因家庭成員的行為或聲音觸發患者的不適反應,導致關係緊張和衝突。
一張含有 視窗, 建築, 採光, 服裝 的圖片

自動產生的描述
恐音症患者在日常生活中面臨許多挑戰。圖/Freepik

神燈精靈請幫幫他們吧!

雖然目前恐音症的盛行率、發生率、好發年齡及患病原因尚無定論,但患者們無法與其他人正常社交、共餐甚至可能連大眾交通工具都無法搭乘,真的很辛苦!所幸,應對恐音症,專家們還是有點辦法的。目前主要治療、減緩恐音症症狀的方法主要有三項:

  1. 物理隔絕:使用能降低因觸發因素引起心理或生理反應的用品,如:耳罩、耳塞、降噪/隔音耳機、白噪音機等用具,阻擋聲音或降低對觸發因素的反應。
  2. 治療法:主要為耳鳴再訓練療法(Tinnitus retraining therapy, TRT)與認知行為療法(Cognitive behavioral therapy, CBT)。兩項療法皆協助患者在遇到觸發因素時,對產生的情緒及行為進行控制,需透過專業人員制定計畫與課程,搭配患者逐步練習、適應觸發因素,最終回歸日常生活中。
  3. 藥物:用於恐音症的藥物尚在研究當中,目前有研究顯示使用抗憂鬱藥物(如:舍曲林、氟西汀),能使患者獲得不錯的治療效果 [9, 10],近期也發現類固醇可以減緩恐音症者的不適症狀 [11]

另外,因應科技化的時代,恐音症治療協會也提供 app 及操作說明影片 [12],透過應用程式錄下觸發聲音,並設定觸發因素的音量、持續時間、播放頻率,這些設定會在使用者聽音樂、看影片等放鬆時段運作;使用者可以透過慢慢增加觸發因素的持續時間,逐漸適應觸發因素的出現、降低對觸發因素的敏感反應。

所以,真的所有人都對 ASMR 放大的聲音感到療癒與愉悅嗎?相信大家心中已經有了答案。也因為恐音症的發展歷史相對較短,大眾對於恐音症的了解尚未普及,因此對聲音耐受性低的相關疾病已有所熟悉的你,若是發現身邊親朋好友對於聲音感到敏感或是對重複動作所造成的聲音感到嚴重不適,請協助就醫尋求幫助、釐清病因。最後,若真的遇見「專屬」的觸發因素,當下除了要求對方 Freeze & mute 之外,相信我們已經知道還有哪些方法及資源可以應對這樣的狀況了!

  1. 簡婉曦(2021 年 1 月 27 日)。【焦慮腦學】有一種恐懼,害怕聲音可能存在。醫療心空間。https://vocus.cc/article/6011126efd89780001410d53
  2. Ferrer-Torres, A., & Giménez-Llort, L. (2022). Misophonia: A Systematic Review of Current and Future Trends in This Emerging Clinical Field. International journal of environmental research and public health19(11), 6790. https://doi.org/10.3390/ijerph19116790
  3. Jastrebo, M. M., and Jastrebo, P. J. (2001). Components of decreased sound tolerance: hyperacusis, misophonia, phonophobia. ITHS News Lett 2, 1–5.
  4. Henry, J. A., Theodoroff, S. M., Edmonds, C., Martinez, I., Myers, P. J., Zaugg, T. L., & Goodworth, M. C. (2022). Sound Tolerance Conditions (Hyperacusis, Misophonia, Noise Sensitivity, and Phonophobia): Definitions and Clinical Management. American journal of audiology31(3), 513–527. https://doi.org/10.1044/2022_AJA-22-00035
  5. Jastreboff, M. M., & jastreboff, P. J. (2001, June 18). Hyperacusis. Audiologyonline. https://www.audiologyonline.com/articles/hyperacusis-1223
  6. Cederroth, C. R., Lugo, A., Edvall, N. K., Lazar, A., Lopez-Escamez, J. A., Bulla, J., Uhlen, I., Hoare, D. J., Baguley, D. M., Canlon, B., & Gallus, S. (2020). Association between hyperacusis and tinnitus. Journal of Clinical Medicine, 9(8), 2412. https://doi.org/10.3390/jcm9082412
  7. Jager, I., de Koning, P., Bost, T., Denys, D., & Vulink, N. (2020). Misophonia: Phenomenology, comorbidity and demographics in a large sample. PloS one15(4), e0231390. https://doi.org/10.1371/journal.pone.0231390
  8. Swedo, S. E., Baguley, D. M., Denys, D., Dixon, L. J., Erfanian, M., Fioretti, A., Jastreboff, P. J., Kumar, S., Rosenthal, M. Z., Rouw, R., Schiller, D., Simner, J., Storch, E. A., Taylor, S., Werff, K. R. V., Altimus, C. M., & Raver, S. M. (2022). Consensus Definition of Misophonia: A Delphi Study. Frontiers in neuroscience16, 841816. https://doi.org/10.3389/fnins.2022.841816
  9. Zuschlag, Z. D., & Leventhal, K. C. (2021). Rapid and Sustained Resolution of Misophonia-Type Hyperacusis With the Selective Serotonin Reuptake Inhibitor Sertraline. The primary care companion for CNS disorders23(3), 20l02731. https://doi.org/10.4088/PCC.20l02731
  10. Sarigedik, E., & Yurteri, N. (2021). Misophonia Successfully Treated of With Fluoxetine: A Case Report. Clinical neuropharmacology44(5), 191–192. https://doi.org/10.1097/WNF.0000000000000465
  11. Webb, J., & Williamson, A. (2024). Steroids for the Treatment of Misophonia and Misokinesia. Case reports in psychiatry2024, 3976837. https://doi.org/10.1155/2024/3976837
  12. Dozier, T. (2016). Misophonia Trigger Apps. Misophonia Treatment Institute. https://misophoniatreatment.com/misophonia-apps/
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
62 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。