1

0
0

文字

分享

1
0
0

麥擱「蔔」啦!

葉綠舒
・2011/09/10 ・1062字 ・閱讀時間約 2 分鐘 ・SR值 410 ・四年級

-----廣告,請繼續往下閱讀-----

圖片來源:彎彎部落格

相信大家都曾有在上課時被旁邊的同學的噪音干擾的經驗:按筆聲、翻書聲、吃東西的聲音(洪老師不喜歡喔!),但是對於有恐聲症(Misophonia)(1)的人來說,這些聲音可能都會讓他們氣到快瘋掉。

恐聲症通常在進入青春期的前後開始發作,患者原本跟你我一樣,但有一天醒來忽然覺得家人所發出的聲音真是煩人…而且隨著時間過去,這種煩人的感覺有增無減,到最後只要聽到這些聲音,就會開始產生混雜著恐慌、害怕、憤怒…最後氣到快瘋掉。

由於恐聲症直到最近才被正式認定是一種疾病,過去恐聲症的病人只能不斷的換醫生,想要找一個可以拯救他們的人。畢竟,要怎樣跟別人說,「喂,你喝湯的聲音讓我煩到要爆炸!」?更糟的是,因為過去不被認為是一種疾病,所以恐聲症的病人總會被認為只是太敏感,總是有人會告訴他們,「你只要想忍耐就一定辦得到的!」!

但是恐聲症目前還沒有治療的方法,所以病人的求助也終歸徒勞。由於恐聲症的病人對微小的聲音特別敏感,這個問題造成他們社交上的困難。

-----廣告,請繼續往下閱讀-----

吸鼻子或嚼口香糖的聲音總是讓19歲的泰勒不自覺的握緊拳頭,甚至會讓他氣到惡狠狠的瞪著發出聲音的人。因為這樣,已經不知道跟別人吵幾次了。

有人被自己的狗舔爪子的聲音氣到快瘋掉,也有人因為不能忍受別人的咀嚼聲,在吃飯時只好拼命咀嚼來蓋過別人的聲音。

恐聲症與聽覺過敏(hyperacusis)(2)不同,聽覺過敏通常是對特定頻率的聲音感到不能忍受,而且成因與遺傳無關;但是恐聲症是針對微小的聲音,而且恐聲症跟遺傳之間的關係很大。

目前在全世界大約有1,700個患者,但是應該還有很多人,因為過去沒有「恐聲症」這個疾病名稱的存在,怕說出來後被認為是神經病而不敢說。

-----廣告,請繼續往下閱讀-----

其中有一位患者,只能常常假裝自己有頭痛。畢竟,頭痛有時也會讓人對聲音也會很敏感。筆者從十幾歲就有偏頭痛(migraine)的問題,每次偏頭痛發作前都會忽然發現翻書聲、腳步聲、甚至轉頭的時候頸椎的喀拉聲忽然之間都成為非常令人無法忍受的聲音,但由於只有在偏頭痛發作前會有這樣的症狀,所以筆者通常就會選擇盡量不要發出聲音來熬過去。但是如果每天都要這樣呢?相信筆者應該也會覺得快瘋掉了吧!尤其是轉頭時頸椎發出的喀拉聲,又不能把自己的脖子砍掉,難道要一直告訴別人「我落枕」嗎?慘啊!

參考資料
1. New York Times. 2011/9/5. When a chomp or a slurp is a trigger for outrage.

2. Wikipedia. 2011/5/8. Hyperacusis.

更多紐約時報科學新聞請見NYT SCI 紐時科學。有意願加入PanSci NYT科學版編輯團請點選連結申請加入。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

4
0

文字

分享

0
4
0
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
193 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
這個塵世太喧囂~噪音對我們造成什麼影響?——專訪中研院人文社會科學研究中心詹大千研究員
研之有物│中央研究院_96
・2023/09/17 ・5137字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|呂慧穎
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

你有沒有聽到什麼聲音?隱藏在鬧市的噪音汙染

你有留意過生活周遭的聲音嗎?無論是雞犬桑麻的鄉村,或是車水馬龍的都市,都縈繞著各種聲音,這些你可能早已習慣的聲響,卻可能在無形間影響我們的身心健康!中央研究院「研之有物」專訪院內人文社會科學研究中心詹大千研究員,其研究團隊針對臺北市的交通噪音分布特性進行研究,運用 2D 及 3D 噪音地圖呈現 24 小時的實時變化。更透過舉辦公民科學活動,邀請民眾用手機測量並感知生活中的聲音變化。究竟噪音會造成哪些身心疾患?臺北市的噪音曝露情形如何?我們又該怎麼防範噪音汙染呢?

臺北市 2D 噪音地圖
圖|中研院地理資訊科學研究專題中心

太吵了我睡不著!聲音也會影響你的健康?

車輛呼嘯而過的引擎聲令人心驚膽戰,公園此起彼落的蟲鳴鳥叫則讓人心曠神怡。仔細聆聽將發現,每種聲音都帶給人不同的感受,長久下來不僅影響心境、更關乎健康。若我們能掌握周遭環境潛在的噪音汙染,即多了一分守護自身健康的能力。

中研院人文社會科學研究中心詹大千研究員兼副主任,同時也是地理資訊科學研究專題中心執行長,擅長地理資訊科學結合流行病學研究。因 2018 年參與中研院健康雲計畫至英國開會,因緣際會下得知,歐洲對於汙染與健康因子的討論早已包含「噪音」,但當時的臺灣尚無系統性的科學研究。

翌年正巧陽明交通大學公共衛生研究所在繪製「噪音地圖」(noise map)時遭遇難題,而中國醫藥大學附設醫院則想透過聲音監測改善加護病房的噪音問題,再加上中研院資訊科學研究所陳伶志研究員帶領研發的「聲音盒子」(SoundBox)技術支持。在多方開啟合作意願下,一趟監測都市噪音的奇妙旅程就此展開!

-----廣告,請繼續往下閱讀-----

目前世界衛生組織以均能音量 55 分貝作為住宅區戶外的音量建議標準,詹大千進一步提到:「過去進行噪音與代謝症候群研究時,曾分析健檢民眾的自填健康問卷,再比對各地環保局的噪音監測站資料後發現,民眾普遍覺得超過 75 至 80 分貝會覺得吵雜不適,而 50 至 55 分貝以下會感到安靜舒適,就感受性而言與世衛的建議標準相近。」

事實上,有關噪音影響健康的探討由來已久,最初主要關注職業環境的噪音暴露問題,而後擴及生活中的噪音汙染對民眾身心的危害。根據世界衛生組織的研究:

噪音除了會損害聽力,還會導致憂鬱焦慮、睡眠障礙、注意力下降,提高內分泌系統及心血管疾病的發生率,甚至因聽覺刺激降低而增加罹患失智症的風險,影響不容小覷!

中研院人文社會科學研究中心詹大千研究員,與學術及非營利組織展開一趟監測都市噪音的奇妙旅程!
圖|研之有物

是誰那麼吵?用噪音地圖看一看

生活中噪音的來源百百款,常見的包括交通噪音、工程噪音、近鄰噪音、娛樂噪音等,位列行政院環境保護署(今環境部)公害陳情數第一名。

其中,車輛、飛機產生的「交通噪音」動輒飆破 80 分貝,是日常生活中影響範圍最廣,也最容易被忽視的公害。

詹大千參與的研究團隊特別針對臺北市的交通噪音分布特性進行研究,運用 2D 及 3D 噪音地圖呈現 24 小時的實時變化。

-----廣告,請繼續往下閱讀-----

自 2017 至 2019 年進行的交通噪音數據蒐集並非一帆風順。目前臺北市政府環境保護局僅有 12 個環境噪音監測點、12 個道路交通噪音監測點,根據《噪音管制法》規定,每季只須進行 2 次、每次 24 小時的連續監測,而且只在晴天才會測量,導致研究團隊能獲取的資料量相當有限。

但研究團隊並不氣餒,轉而應用交通管制工程處在臺北市內設置的 7 百多組「交通流量偵測器」(Vehicle Detector,簡稱 VD)所測到的即時車流量及車速數據,來輔助噪音地圖的建置分析。

首先,將研究區域進行 500 x 500 公尺的網格分割,臺北市全區共分出 1,032 個網格,網格內具有 VD 測點者共 303 格,無 VD 測點者共 729 格。接著,比對噪音監測站數據與 VD 數據,建立統計模型關係,據此推估出 303 個具有 VD 測點網格的噪音值。

至於其他 729 個無 VD 測點網格,則運用諸如人口密度、土地利用類型、道路特性等環境條件,與前述 303 個具有 VD 測站的網格進行相似度比對,藉以推估其噪音值。

-----廣告,請繼續往下閱讀-----

除了道路交通噪音,臺北市最明顯的噪音來源非松山機場莫屬。研究團隊蒐集臺北航空站 13 處自動監測設備(3 處位於松山機場、10 處位於機場周圍)測到的每小時平均噪音值,依據航空噪音防制區的範圍,將航空噪音值疊加在相對應的網格內。

至於環保局僅有晴天監測的噪音資料,研究團隊也沒忘記補強,透過模型考慮中央氣象局的降雨資料參數,將降雨造成的環境音加入噪音總量中,試圖更貼近真實的噪音狀況。

最後,為了驗證用 VD 偵測資料進行噪音值推估的可信度,研究團隊也實地架設中研院資訊所研發的「聲音盒子」收錄現場噪音值,驗證推估數值的準確度。

圖|研之有物(資料來源|詹大千)
聲音盒子是在「空氣盒子」(AirBox)的基礎上,增加感測聲音分貝數的儀器。每分鐘會提供一組感測值,含至少 30 次取樣的聲音最大值、最小值、中位數和均能音量,大幅提升傳統環境感測的時間解析度,提供尺度更細微的環境變化資訊。
圖|研之有物

研究團隊更進一步運用 3D 建模呈現噪音在不同高度的衰減變化。在假設每棟建築暴露的交通噪音來自最近道路的條件下,將道路到建築物的水平距離、所在樓層的垂直高度(假設每層樓高度為 3 公尺)等資料納入衰減模式。

-----廣告,請繼續往下閱讀-----

計算結果顯示,每上升一層樓大約下降 0.4 分貝,再將模式推估值與不同樓層測量到的實際噪音值進行比較驗證,最終在 3D 地圖上以分層填色的色塊顯示不同樓層的噪音值。

圖|研之有物(資料來源|詹大千)
中午 12 點的大安森林公園周遭,從 3D 噪音地圖可以看到每一樓層的噪音值,因低樓層靠近馬路,接收到的噪音比高樓層多。
圖|研之有物(資料來源|中研院地理資訊科學研究專題中心

程式設定每 5 分鐘抓取一次 VD 數據(數據的精度為每分鐘一筆),並運用建置在國家高速電腦中心的運算平台來視覺化大量的噪音數據,如此就能在 2D 與 3D 臺北市噪音地圖上,以不同網格色塊即時查看每小時的噪音值。

2D 或 3D 地圖除了可用在噪音監測,對於其他空間流行病學的分析也很有幫助,但詹大千提醒,雖然 3D 地圖的資料可精確得知不同樓層的差異,但基於對居民隱私權的保障,仍建議以 2D 地圖進行相關研究分析,當流行病統計資料模糊化至鄉鎮鄰里等級時,就能避免個人資料的暴露。

找到噪音來源,才可以對症下藥!

以世界衛生組織的交通噪音曝露建議標準來看,如想防範交通噪音影響身心健康,最好控制在整日噪音曝露不超過 53 分貝,夜間噪音曝露不超過 45 分貝。根據詹大千團隊的研究結果顯示:

-----廣告,請繼續往下閱讀-----

臺北市日間有 32.80%、夜間有 27.69% 的居民暴露在超過上述標準的交通噪音中,顯然我們還有改善的空間。

詹大千表示,本次研究採用比較嚴格的檢視標準,若是根據臺北市環保局的監測數據來看,臺北市的整天均能音量約在 56 分貝,代表在都市中仍能找到安靜的戶外空間。

此外,仔細觀察會發現,噪音地圖在一天的不同時段會產生不同變化。上午 7 點通勤時間,松山機場周遭的松山區、中山區、內湖區一帶,噪音值高達 70 分貝以上。晚上 6 點下班時間,堤頂大道、建國高架、市民高架、重慶北路開始出現車潮,連帶噪音值也提高到 55 分貝以上。到了午夜 12 點,除了大安區、中正區、中山區、大同區、信義區等住宅與路網較密集處有 50 分貝左右,其他地區幾乎都在 45 分貝以下。

2D 噪音地圖不同時段噪音值與平均車速變化
圖|研之有物(資料來源|中研院地理資訊科學研究專題中心

想降低環境噪音傷害其實並不困難,聯合國環境署在 2022 年最新報告《Frontiers 2022》就提供許多降噪方法,包括規劃植栽綠帶、更換電動車、安裝隔音設備(如氣密窗)、臨路建築向內退縮、更改道路鋪面材質等,皆被證實能有效降噪,但前提是必須先掌握噪音的組成、來源及分布樣貌,才能準確擬定防治方案。

為了對症下藥處理噪音問題,目前可努力的地方在於增加噪音監測點。詹大千談到,未來或許可結合智慧電桿裝置,整合交通、噪音、空氣汙染等監測功能,同時提供更穩定的實時資料傳輸品質,打造守護全民健康的基礎資料收集網絡。

-----廣告,請繼續往下閱讀-----

鬧中取靜——隨手記錄生活中寧靜的角落

詹大千與臺灣聲景協會合作,在 2023 年 5 月至 7 月推出「尋找 55 分貝靜土」活動,邀請民眾用手機測量戶外分貝數,尋找臺北市戶外聲音平均 55 分貝的地方。
圖|臺灣聲景協會

除了監測技術與硬體設施的精進,詹大千也提出自我保護聽力的重要性,首要任務在於提升民眾對聲音的敏感度,意識到生活周遭存在哪些會傷害聽力的噪音?哪些地方是喧囂都市中難得的寧靜避風港?

詹大千與理念相同的臺灣聲景協會合作,在 2023 年 5 月至 7 月推出「尋找 55 分貝靜土」公民科學活動,邀請民眾擔任「寧靜追蹤師」,尋找臺北市戶外聲音平均 55 分貝的地方,察覺都市中的聲音變化對居民身心的影響。

活動期間共有 25 名受訓民眾投入記錄工作,貢獻了 182 個位在臺北市不同地區的採樣資料。民眾運用 NIOSH(iOS 適用)、Noise Capture(Android 適用)兩款 APP 測量戶外聲音的分貝數,並在詹大千研究團隊開發的聊天機器人平台 LINE 官方帳號「尋找 55 分貝靜土」記錄平均分貝數、最高分貝數、地點類型、地點位置、寧靜度與舒適度評分,並拍下當地照片、錄下環境音、寫下對聲音的感受。

記錄成果顯示,大於 55 分貝與小於 55 分貝的音量大約各佔一半,臺北市南港、內湖、北投、文山等靠山的行政區較為寧靜。最常被捕獲的靜土位於公園、巷弄、住宅區等地。蟲鳴鳥叫等自然聲音是靜土中的重要元素,人為聲音、道路交通相關聲音則是使戶外聲音大於 55 分貝的主因。

-----廣告,請繼續往下閱讀-----
大於 55 分貝(紅點)與小於 55 分貝(藍點)的音量大約各佔一半,最常被捕獲的靜土位於公園、巷弄、住宅區等地。
圖|尋找 55 分貝靜土官網

民眾普遍認為,這次的活動讓自己對環境中的聲音變化更加敏感,原本只有 45 分貝的環境,因車輛或人群經過,瞬間飆到 70 分貝。也有民眾察覺,自家孩子每天幾乎在 70 分貝左右的環境上課,讓他對都市噪音問題更有警覺!

此外,當你對聲音變得敏感後,將發現每個人對聲音的承受度都不同,不同的聲音特徵與情境也會帶來不同感受。例如夏天雄蟬的鳴叫聲可高達 80 分貝,但因為是來自大自然的聲音,人們的感覺通常是舒服的。而個性活潑外向的人可能經常出入熱鬧的場合,對於音量的容忍度也相對較高。

尋找 55 分貝靜土活動,透過問卷蒐集民眾隨手記錄的照片、聲音、心得等質性資料,最終在地圖上呈現,帶領眾人感受散布在都市各個角落的靜土。
圖|尋找 55 分貝靜土官網

這些對聲音的多元感受在量化研究中較難呈現,但搭配公民科學活動的質性問卷、照片與錄音的相互對照,將可以發掘更多有趣的聲景現象,也為改變民眾行為、創造更多都市靜土盡一份心力!

研之有物│中央研究院_96
290 篇文章 ・ 3254 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

4
2

文字

分享

0
4
2
瀕死大腦的最後波紋——人生跑馬燈的科學證據?
YTC_96
・2023/08/09 ・2578字 ・閱讀時間約 5 分鐘

最後波紋。圖/imdb.com

JOJO 的奇妙冒險中,西撒.安德里歐.齊貝林臨死前的「最後波紋」代表著生者最後的思念與力量,是讓 JOJO 粉痛哭流涕的名場景。最後的波紋看似只是作者荒木飛呂彦大師的創作,沒想到神經科學家記錄了瀕死的人類大腦的活動,發現死亡的當下出現有節律的高頻波紋。這些波形和做夢、記憶回憶以及冥想期間發生的腦電圖相似,也彷彿說明最後的波紋是真的存在!

此外,據說人在彌留時能瞬間看到過往的種種回憶,就像人生跑馬燈般快速回顧一生。這些在生死間徘迴所產生的不可思議現象一直是科學家們感興趣的議題。究竟心臟停止後的瀕死狀態(near-death experience (NDE))和大腦活動與意識狀態的關係是什麼?大腦在瀕死狀態時發生了什麼?這是否又能解釋人生跑馬燈的現象呢?

神秘的瀕死經驗

根據瀕死經驗科學研究的奠基者,且有瀕死經驗科學研究之父之稱的布魯斯.葛瑞森醫師(Bruce Greyson),瀕死經驗是一個深刻的主觀心理經驗,通常發生在接近死亡的人身上,處於嚴重的身體,或情緒危險的情況下。這種體驗超越個人自我的感覺,是一種神聖或更高原則的結合。包括脫離身體、漂浮的感覺、完全的寧靜、安全、溫暖、絕對溶解的體驗和光的存在。又甚至可能經歷包括痛苦、空虛、毀滅和巨大空虛的感覺[1-3]

瀕死體驗中反復出現的常見元素是看到一條黑暗的隧道,經歷明亮的燈光,寧靜祥和的感覺。該圖為荷蘭畫家耶羅尼米斯·波希 (Hieronymus Bosch) 的Ascent of the Blessed。圖/wikimedia

即時記錄瀕死的人類大腦活動

過去認為心臟停止後大腦是低活動的狀態,直到約 15 年前左右(西元 2009 年),才記錄到死亡前電流激增(end-of-life electrical surges (ELES))的現象。 但這些紀錄僅來自回溯瀕死期間的測量值,並不是即時記錄臨終患者腦電圖[4]

-----廣告,請繼續往下閱讀-----

大約 10 年前,密西根大學研究員吉莫波吉金(Jimo Borjigin)和其團隊進行老鼠實驗,發現在心臟停止後的前 30 秒,gamma 振盪與 alpha 和 theta 之間的相位耦合在大腦皮質與心臟,以及大腦前端和後端的連接性有增加的現象。這些神經振盪原本都只存在於清醒的生物上,但在瀕死狀態下,這些高頻神經生理活動卻超過了清醒狀態下的水平[5]。 這也說明了在動物在臨死前可能經歷了特殊的體驗。

第一次在人類大腦進行從瀕死到死亡過渡階段的連續腦電圖記錄,則在去年 2 月發表在「老化神經科學前沿」( Frontiers in Aging Neuroscience)。愛沙尼亞塔爾圖大學的勞爾維森特(Raul Vicente)博士及其同事使用連續腦電圖檢測一名 87 歲的患者癲癇並同時進行治療。雖然很遺憾,最後患者心臟病發作並去世了,但他們測量了死亡前後 900 秒的大腦活動,並調查心臟停止跳動前後 30 秒內發生的情況。結果發現,就在心臟停止的前後,出現了 gamma 振盪、theta 震盪、alpha 震盪以及 beta 神經震盪的變化。這結果就和之前的老鼠實驗相當類似[6]

在瀕死狀態下,這些高頻神經生理活動卻超過了清醒狀態下的水平。 這也說明了在動物在臨死前可能經歷了特殊的體驗。圖/ Pixabay

瀕死之際大腦活動激增能否解釋人生跑馬燈?

雖然以上的研究說明,人在死亡前大腦會產生類似清醒狀態時才有的腦波反應,但這些證據並不足以證明人生跑馬燈的存在。為了證實這個現象的可能性,之前提到進行老鼠實驗的吉莫波吉金(Jimo Borjigin)在人類使用相同的計算工具來分析腦電圖信號,並關注腦電圖功率的時間動態、低頻和高頻振盪之間的局部和遠程相位-振幅耦合,以及所有頻段的功能性和定向大腦皮質連接。簡單來說,就是想要知道瀕死時人類大腦和意識以及認知功能相關的腦區是否產生變化。

他們對四位已陷入昏迷的病人進行紀錄,在死亡前,兩名在前額和中央皮質區出現廣泛的 beta 和 gamma 波增加。這兩名病人隨後出現了顳葉中反復出現的大型 beta 和 gamma 波活動,並涉及到體感皮質(somatosensory cortex, SSC)。高頻 gamma 波的振幅與慢速 beta 波的相位之間的關聯是發生在背外側前額皮質(dorsolateral prefrontal cortex)和體感皮質之間。更值得注意的是,gamma 波激增的位置是在和意識緊密相關,由顳葉-頂葉-枕葉皮層組成的後皮質熱區(posterior cortical hot zone)[7]

-----廣告,請繼續往下閱讀-----
一名 24 歲昏迷婦女在移除呼吸器後的的腦電圖變化。
S1:該婦女有呼吸器維持生命,因心臟驟停引起缺氧損傷。
S2: 開始時移除呼吸機,此時出現高頻和高振幅活動。
患者的最後一次心跳發生在右側的 S11 末尾。圖/National Library of Medicine

受限於道德倫理以及醫學技術,科學家們無法直接驗證瀕死大腦產生的腦波狀態是否就是產生瀕死經驗。但至少能確定的是,哺乳動物的大腦可以在瀕死時產生與增強的意識處理相關的神經關聯。

結論

《論語‧先進篇》子曰:「未知生,焉知死?」雖然孔子曾說,活人的事情道理都還不明白,又怎能清楚死亡是怎麼一回事呢?但探討人在生死間徘徊的現象不僅僅是一個科學問題,更代表著意識研究、臨床應用和倫理議題的突破。

透過更精細且長時間的腦電波紀錄追蹤,有許多證據觀察到在人們跨越生死那一瞬間,大腦會試圖做最後的掙扎。人生在世短短數十載,轉眼間便煙消雲散,瀕死的大腦在跨越生與死那鴻溝之前的體驗也是人生謝幕前的最後一次演出。

從瀕死經驗探討人性的電影-別闖陰陽界(Flatliners)。圖/IMDB

參考資料

  1. Greyson, B. (2000). Near-death experiences. In E. Cardeña, S. J. Lynn, & S. Krippner (Eds.), Varieties of anomalous experience: Examining the scientific evidence (pp. 315–352). American Psychological Association.
  2. https://en.wikipedia.org/wiki/Bruce_Greyson
  3. https://en.wikipedia.org/wiki/Near-death_experience
  4. Chawla, L. S., Akst, S., Junker, C., Jacobs, B., and Seneff, M. G. (2009). Surges of electroencephalogram activity at the time of death: a case series. J. Palliat. Med. 12, 1095–1100. doi: 10.1089/jpm.2009.0159
  5. Borjigin, J., Lee, U. C., Liu, T., Pal, D., Huff, S., Klarr, D., et al. (2013). Surge of neurophysiological coherence and connectivity in the dying brain. Proc. Natl. Acad. Sci. U.S.A. 110, 14432–14437. doi: 10.1073/pnas.1308285110
  6. Vicente R, Rizzuto M, Sarica C, Yamamoto K, Sadr M, Khajuria T, Fatehi M, Moien-Afshari F, Haw CS, Llinas RR, Lozano AM, Neimat JS and Zemmar A (2022) Enhanced Interplay of Neuronal Coherence and Coupling in the Dying Human Brain. Front. Aging Neurosci. 14:813531. doi: 10.3389/fnagi.2022.813531
  7. Xu G, Mihaylova T, Li D, Tian F, Farrehi PM, Parent JM, Mashour GA, Wang MM, Borjigin J. Surge of neurophysiological coupling and connectivity of gamma oscillations in the dying human brain. Proc Natl Acad Sci U S A. 2023 May 9;120(19):e2216268120. doi: 10.1073/pnas.2216268120.
YTC_96
11 篇文章 ・ 16 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。