星塵號於1999 年發射升空,飛越彗星,並獲得其塵埃樣本, 完成人類史上首次收集彗星物質的任務。
文 / 劉名章、沈君山
圖一:星塵號發射時的景象。
西元2006 年1 月15 號洛杉磯時間凌晨兩點鐘,一道人造火球劃過了天際,直抵猶他州沙漠。這時,噴射推進實驗室(Jet Propulsion Lab)和NASA 詹森太空中心(Johnson Space Center)的人員無不歡天喜地,因為他們知道,星塵號回來了!這次返航的成功,給太陽系天文學家與宇宙化學家帶來無比的喜悅。這是人類史上第四次如此靠近彗星本體的任務( 前三次分別是Giotto , Deep Space , Deep Impact),同時這是第一次航程最遠的標本收集任務,也是首次利用世上最輕的固體「氣凝膠」(Aerogel)將彗星塵成功帶回地球供實驗室分析的任務。
太陽系的形成一直以來都是天文學家欲解的謎題。不管是透過望遠鏡觀測其他恆星形成區域,透過動力學模型來模擬太陽系與行星的形成,或是透過隕石的研究,最終的目的就是想要了解太陽系的起源。此處將由隕石的研究切入,然後再導引至我們今天的主題:「星塵」(Stardust)。
先從「老於太陽系顆粒」的研究談起
什麼是presolar grains(老於太陽系顆粒)?顧名思義,字首「pre」代表在某個時間或階段之前,「solar」則是「太陽的」,grain(顆粒)大家都知道,合起來說,就是太陽之前的粒子,翻成白話講則是「老於太陽系的顆粒」。怎麼知道這些顆粒老於太陽系呢?這些顆粒又有什麼重要的地方?其實它們本身就是別的星星(會發光的恆星)所產生的塵埃!
星星在演化的過程中,會透過恆星風或是爆炸的方式將本身物質釋放到星際空間,這些高熱的物質一開始以氣體的形式存在,冷卻之後就會凝結出直徑大約只有數微米或更小的小顆粒;當這些顆粒不小心跑進了正在形成的太陽系,有些被早期太陽系的高溫作用給毀了,有些則運氣很好的躲掉了這些高溫事件而被小行星保存了下來。某天小行星的碎片掉到地上變成隕石,被科學家拿到實驗室用各種物理化學的方法將這些小顆粒分離出來,以便進行各種分析。
圖二:星塵收集器安抵地球時的狀況,星塵號本身則繼續航 向無盡的宇宙。
這些顆粒是星星所產生的,因此這些顆粒中的每個原子都是從母星球「繼承」下來的。透過這些塵埃,科學家們便可以容易地在實驗室內了解星球內部的元素演化過程。您可能會很好奇,這些顆粒那麼小,要怎麼知道他們到底是太陽系或是外星的產物?這時候就是同位素分析派上用場的時候了。太陽系物體內的同位素成分一般來說算是相當的平均的。也就是說,若我們量測地球上的碳同位素比值(12C ∕13C),所得到的結果一定會很接近太陽系的平均值89 ,最多大概也只會有千分之幾的差距;但老於太陽系顆粒的碳同位素比值卻與太陽系的平均值89 有極大的差距,因此認定這些顆粒未曾參與太陽系形成之初的混合作用。
這些老於太陽系的顆粒裡面的原子,是由別的星球本身元素形成的產物,所以會和太陽系內的平均同位素比值相差甚大,以碳同位素為例,目前已發現的碳化矽(SiC)和石墨顆粒中,其碳同位素比值的分布可以從3 到10 萬!這些實驗室所產生的數值,配合上天文觀測與理論計算,提供了天文學家一個相當好的管道去了解遙遠星球內部的化學演化。
那從這些老於太陽系的顆粒中,我們除了可以回推這些顆粒的來源外,還可學到什麼呢?大家都知道,宇宙中的各種元素是由星星透過核融合或是爆炸所產生的。雖然從1957 年的第一篇元素形成論文開始,至今已有數不盡的理論模型問世,百家爭鳴,好不熱鬧。但是這麼多工作累積起來,可能也無法完全描述與理解大自然的神秘,更無法去驗證模型的真確性。這些小顆粒適時的在這一塊缺口中補上一角,讓科學家們可以在實驗室中,以較天文觀測精密的測量方式,提供遙遠恆星內部元素形成的資料。除此之外,這些小顆粒還可以提供科學家們古老銀河系化學演化、銀河系的年齡、星球周邊塵埃盤的形成和最早期的太陽系天文物理環境的資訊。在此限於主題與篇幅便不多談。
回到太陽系起源的研究
在太陽系中,有八大行星和一堆小型天體;前四顆類地行星,每一個都已經受過或長或短的分異過程與地質作用,現今之結構與組成已經和形成之初大異其趣。對於要了解太陽系的起源,幫助不太大。後四顆類木行星,雖然一般相信它們形成的時間極早,但由於絕大部份是氫氣,氦氣及一些氣體分子所組成,標本收集有相當程度的困難,多以太空船探測任務為主,不僅耗時且所費不貲;再加上這些氣體星球不能完全反應太陽系最初期成份,所以我們需要固體。
加州大學洛杉磯分校的麥克基甘教授(Kevin McKeegan)說的好:固體會記錄而氣體不會。因此現今普遍的宇宙化學研究,多是利用隕石中的同位素與礦物組成,試著了解太陽系形成時,周遭的天文物理環境與太陽星雲的化學組成。只是隕石大多來自於小行星,而小行星本體也或多或少受到了一些後期的變質作用,如撞擊,水與熱作用等等。造成一些最原始的同位素訊號或礦物受到了不同程度的改變。也因此,即使是所謂最原始的隕石,在某種程度上仍然不夠原始,這由隕石中稀有氣體相對於太陽的豐度較低的例子可以為證。
腦筋動到彗星上
圖三:星塵號所拍攝到的威德二號彗星影像。
既然隕石沒有辦法完完全全的反應太陽星雲最原始的化學成份,那我們還有什麼方法可以試著了解這個問題呢?科學家腦筋於是動到彗星身上。
天文學家普遍認為彗星也是太陽系最初期的產物,很可能跟隕石一樣記錄了太陽系最初的成份;更重要的,彗星被保存在極冷的地方,從彗星離子尾光譜中的分析得知,其相當程度的保留了有機物與揮發物質,所以我們多半相信,彗星所留下來的訊號應該會比隕石更完整,更接近真實。同時彗星內部更有可能保存大量的老於太陽系的顆粒。也因為如此,星塵號任務在90 年代中期,由華盛頓大學天文系布朗李教授(Donald Brownlee)主導之下,開始了整體的計畫與進展。在1999 年的2 月發射升空, 2004 年1 月穿過了「威德二號」彗星(Wild-2)的尾巴收集塵埃,並在2006年的1月返回地球表面,完成了這一段旅程。
或許有人會問,我們了解彗星有什麼好處?除了剛剛上面講的,試著去追溯太陽系最原始的成份,了解太陽系的起源,及尋找老於太陽系的顆粒之外,還有那些問題是可以藉由彗星塵提供一些線索的: 一、行星際空間顆粒(Interplanetary Dust Particles)與彗星塵的關係?二、地球上的水是彗星帶來的嗎?三、生命的起源與彗星的關係?
選定目標
各位也可能會覺得好奇,彗星一大把在天上,為什麼星塵號不去別的彗星而要去威德二號呢?其實很簡單,有三個主要原因:天時,地利與人和 。天時與地利指的是,這顆彗星會在適當的時間出現在適當的地點,讓科學家們可以較容易的設計收集塵埃時的太空船路徑與速度。為什麼這很重要?各位可以想像,若在和太空船遭遇時的相對速度太大,塵埃就會直接穿過收集器而帶不回地球了。因此,星塵號幾乎是追著彗星的尾巴,從後面以每秒六公里的速度,將塵埃「抓進」氣凝膠當中。
那人和又是什麼呢?大家都知道,當彗星跑進內太陽系受到太陽加熱後,揮發物質就會因為高溫而逸失;經過多次循環後(>1000 次),彗星最後就不再會有彗尾了。像哈雷彗星,它從第一次被發現到1986年,總共已經進來大約一百次。它的原始成份已受了相當大的改變而不再「新鮮」了。所以,它已無法還原太陽系最原始的成份。而威德二號彗星,在1974 年之前都是屬於木星族彗星(Jovian comet ,指近日點在木星軌道附近),之後受木星重力擾動而改變了它的軌道,近日點內移到火星附近;至今進入內太陽系約五次。也因此這顆彗星從沒有真正的過度靠近太陽而被大量的揮發,其化學組成仍是相對的原始。這對於我們所期待的研究,真是再理想也不過的目標。
圖四:星塵號接近彗星收集微塵時的景象模擬。
如何收集—氣凝膠的妙用
圖五:切開收集到星塵的氣凝膠,保留紅蘿蔔形狀的破壞軌 道、以便容易取出微塵。
雖然星塵號追在威德二號彗星的尾巴後面,藉此減緩相互之間的相對速度,但星塵號仍承受著將近6倍步槍子彈速度微粒的衝擊。如果採用強硬手段直接將微塵擋住,那麼微塵將因高速的動能轉化為熱而將自身蒸發掉,致使該顆粒改變了外形及化學成份。此時氣凝膠的妙用就出現了。
氣凝膠是一種以矽為主的固體,結構像海綿一樣具有微米等級的多孔性,其中99.8 %的體積是空的。因此它的密度比玻璃輕1000 倍,同時還具有極低的導熱性及強度頗高的支撐性。當微粒撞上氣凝膠時,借著連續性的撞擊破壞氣凝膠,因而製造出比自身長度長200倍的一條類似紅蘿蔔形狀的破壞軌道。因此熱能被分散在此破壞軌道中,達到減速微粒且不破壞其外形及化學成份的目的。此破壞軌道還有項好處,它明確的指示出微塵停下的位置。否則要在直徑約50 公分大小的收集器內尋找微米大小的顆粒還真是一件困難的工作。
氣凝膠被安置在網球拍形狀的收集器上,因為具有雙面收集微塵的能力,科學家除了利用正面收集彗星微塵外,更利用星塵號在飛行旅途中以反面收集行星際空間的顆粒。由於顆粒都被埋在氣凝膠內,如何分辨何者為彗星微塵,何者為行星際空間的顆粒?解決的方法乃利用破壞軌道行成紅蘿蔔形狀的路徑,因為具有方向性所以可以輕易分辨出來。
跌破專家眼鏡的大發現
就在星塵號安然回到地球的兩天後,收集標本的大鐵罐在詹森太空中心的無塵室被打開,開始作最初期的狀況確認。加州大學洛杉磯分校的麥克基甘教授在現場時的轉述,他說:「這是非常完美的成功!有些彗星塵劃過的軌跡可以用肉眼清楚看到,並且收集到的東西似乎比大家原先預想的要來的多且大。當然,這只是非常非常初步的肉眼確認,我們真正會發現什麼,仍要等待初步檢驗團隊(Preliminary Examination Team,PET)的結果。PET至少需要半年的時間才能完成初步的彗星礦物學分析、氧氮同位素分析、化學組成分析,及紅外光譜學的分析等等。然後我們才能初步的知道這些標本所帶來的資訊」。
首先是礦物學方面。最重要的發現之一為星塵號所收集到的微塵中居然出現高溫環境下形成的礦物(形成溫度約凱氏溫度1300~1400度上下),比如說橄欖石、隕氮鈦石(osbornite; TiN)、輝石與我們在隕石的鈣鋁包裹體(Ca-Al-rich Inclusions)中找到的高溫礦物一樣。這些東西,讓研究太陽系化學的科學家們著實嚇了一大跳。彗星不是在40 天文單位(AU)之外形成的天體嗎?在這麼冷的環境中,應該多以揮發性物質或是低溫物質為主,為什麼會有在高溫下才能形成的礦物存在?小行星和彗星,一個大約在3AU,另一個在40AU以外,為什麼某些彗星塵的礦物組成跟隕石中的鈣鋁包裹體類似?若在這麼大的空間範圍內,找到組成相似的高溫礦物,這似乎代表的是,在太陽系早期必須要有大尺度輻射狀輸送物質的能力(radial transport),其轉移範圍從內太陽系到小行星帶,甚至到外太陽系,才有可能辦到。那這個大尺度輻射狀輸送物質的能力的物理背景是什麼?為什麼可以把小顆粒從內太陽系高溫處搬到3AU 甚至更遠的40AU 以外?
再來是同位素分析方面。PET 的同位素小組,分析了彗星塵中,氫、碳、氮與氧同位素的組成。這些分析,試圖回答下面的幾個問題。第一,彗星是不是主要由老於太陽系的物質組成的?第二,彗星中有多少真正的「星塵」(真正從演化後期的恆星中所形成的)?第三,彗星微塵中的同位素組成,和隕石、行星際空間微粒的關係又是什麼?第四,早期太陽系中的混合作用究竟到什麼程度?
首先是氫同位素方面,被分析的彗星微塵中,基本上沒有太令人印象深刻的成份,其D/H(氘∕氫比值) 落在已知的行星際微塵的D/H 範圍內,類似彗星水分子中的同位素成份,但低於彗星中氰化氫(HCN)的同位素值,更遠較最極端的行星際空間顆粒的比值低上許多。當然, D/H 很容易受到各種不同因素的影響,尤其是這些灰塵是透過撞擊而被氣凝膠抓住,在這個過程中,D/H極有可能產生變化。所以,這些量測到的D/H 可能無法反應威德二號彗星的水分子的同位素成份。
再來是碳與氮同位素,這兩種同位素的量測,主要是要來找尋老於太陽系的顆粒(presolar grains)。這些顆粒,由於是在星球中凝結下來,所以基本上它們保存了原先星球中,元素形成的特徵。而這些特徵和太陽系的平均值相差甚大。以碳同位素來說,太陽系物質的12C ∕ 13C 平均比值是約89 ,若今天發現了一顆微粒,它的12C ∕ 13C 比值約是52 ,那我們可以很篤定的說,這顆微粒絕非在太陽系內形成的顆粒,而是一顆從某個AGB 星球或是紅巨星來的小塵埃!氮同位素也是同樣的道理,只是平均太陽系的比值大約是300上下。所以,若我們發現一顆灰塵,其14N∕13N的比值離300有極大的差距,那我們也可以很肯定,這顆顆粒一定不是太陽系內產生的。
知道了這個前提,我們再回到星塵號的標本上。分析的結果也是讓大家驚訝莫名,PET階段分析氣凝膠中的微塵,居然沒有一顆是老於太陽系的顆粒!幸好,在收集器上的用鋁箔紙包裹住的部份中,在某個撞擊坑洞旁邊找到了一顆老於太陽系的顆粒,可惜的是,這顆小傢伙已被分析光光了,屍骨無存。從這個初步分析,顯示在彗星中(至少是威德二號這顆) 似乎沒有太多老於太陽系的顆粒。但這只是第一步。後續尚有許多標本等待研究,或許會有更多驚奇也說不定。
此外PET 團隊還有一項重大的發現,他們在氣凝膠及支撐框住氣凝膠的鋁芯中發現了氨基乙酸。一開始研究團隊無法排除此氨基乙酸可能來自地球上的污染的想法。此時同位素的功用又出現了,經過進一步的研究他們發現該氨基乙酸的碳具有較多的13C,也就是說其12C∕13C的比值比89 小很多,因此証實此氨基乙酸非太陽系內部的產物。由於筆者對生命科學的涉略不多,因此借用下面兩位專家的發言,來為這項大發現做註腳。
美國航太總署(NASA)的艾西拉博士(Jamie Elsila)說︰「氨基乙酸是具有生命的有機體製造蛋白質的物質之一,同時這是第一次在彗星上找到氨基酸」;「我們的發現支持生命的成份在太空間形成,並借由隕石和彗星的衝擊而傳播到地球的理論」。同時NASA 的主任皮契爾博士(Carl Pilcher)說︰「氨基乙酸在彗星的發現支持了組成生命的基本架構在太空中是隨處可見的想法,並且強化了在宇宙中生命的存在也許是共通的而不是罕見的論述」。
最後是氧同位素。氧是類地行星中最豐富的元素。而每個類地行星(含小行星)的平均氧同位素值都有些微的差異,所以氧同位素基本上可拿來當作這些行星的指紋。但是若把規模放到只有幾個毫米大小,我們會發現,在隕石的鈣鋁包裹體中,不同礦物居然有著不同的異常豐度,彼此間的差異可達到5%!如果是老於太陽系的顆粒,氧同位素的差異甚至可以達到好幾個數量級。星塵號部分微塵在經過初步分析後,具有隕石鈣鋁包裹體類似的礦物組合,同時居然和鈣鋁包裹體有相同的氧同位素成份!這下子不只礦物組成相似,連氧同位素都完全一模一樣。這更加讓我們相信,彗星中的某些小微塵,是和隕石中的某些礦物顆粒是完全相同的。所以,這和前面所寫的相呼應,在太陽系早期勢必要有大尺度輻射狀輸送物質的能力,從內太陽系到小行星帶再到庫伯帶以外,這一連串的巧合才有可能發生。
這些發現,最感到振奮的應該是前清大校長徐暇生院士,中研院李太楓院士,及中研院副研究員尚賢博士。他們在1998 年提出的X-wind 模型,已預測彗星上的物質有可能在礦物相上與同位素比值上的特點與隕石中的部份物質相符。模型中這些高溫顆粒形成在吸積盤的端點,非常靠近原始太陽約0.05AU 距離的地方,後來太陽磁場與吸積盤面的交互作用,產生了兩極噴流和盤面上一股強力的「風」,將這些高溫礦物帶離到小行星帶甚至更遠的庫伯帶,再和其他物質堆積形成小行星或是彗星。
其實,以上所說,都只是星塵號相當初步的一個結果。還有很多尚未被探索的顆粒等待科學家們去了解,不管是礦物學,光譜學,同位素分析,還是其他各種各樣稀奇的方法。在可預期的將來,這些彗星塵仍會繼續送到世界各地的實驗室進行各項研究。在台灣,李太楓院士所領導的團隊,也正在為分析這些標本而磨刀霍霍。希望在不久的將來,台灣也能夠在這個前無古人的實驗室彗星塵分析競賽中打響知名度;也希望到時候我們將能夠回答上面所列出的數個問題,讓我們對太陽系起源有更深一層的了解。
劉名章:任職中研院天文及天文物理研究所
沈君山:任職中研院地球科學研究所
原刊載於《科學月刊》第四十二卷第十一期