Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

【Gene思書齋】華爾街的物理學家

Gene Ng_96
・2014/06/30 ・3561字 ・閱讀時間約 7 分鐘 ・SR值 567 ・九年級

《華爾街的物理學》The Physics of Wall Street)不是本財經書籍,而是本科學史!在讀這本書的時候,過去主修物理的同事看了一眼,我說物理學也可以賺大錢,他卻回說金融風暴就是物理學家害的XD

《華爾街的物理學》作者魏瑟羅(James Owen Weatherall)是物理學家、數學家與哲學家。他是哈佛大學物理暨哲學學士、物理碩士,費爾利迪金森大學(Fairleigh Dickinson University,FDU)創意寫作碩士,2009年獲史蒂文斯理工學院(Stevens Institute of Technology,SIT)物理暨數學的博士學位,2012年獲加州大學爾灣分校(UC Irvine)哲學的博士學位。目前在加州大學爾灣分校擔任邏輯學與科學哲學的助理教授。

我是2004至2009年在美國念博士班的,在2005和2006年,那幾年最熱門的科系之一是統計學,因為不管華爾街要多少人,大學都訓練不夠;而菁英大學畢業的MBA,十之八九都到華爾街去冒險。

在過去的幾年中,我們已經聽說了很多關於一種新的被稱為華爾街精英「寬客」( quants )的各種八卦。他們是改行到金融界,帶來全新的想法的物理學家和數學家。《華爾街的物理學》就是試圖理解這群金融工程師,以及他們用來預測市場行為的數學模型。《華爾街的物理學》提到許多引人注目的理論如隨機漫步理論、風險對沖、動態避險,以及黑箱模型等等。

-----廣告,請繼續往下閱讀-----

魏瑟羅有超強的化複為簡的能力,為門外漢把複雜的概念解釋得淺顯易懂。要怪寬客對2008年的市場崩潰負責,是很容易辦到的。可是他卻指出,當我們使用從 物理學的觀點而招來危機時,我們卻也停止了像物理學家一樣思考。像物理學家一樣思考,意味著承認每個模型是基於過度簡化的假設,而建立模型卻需要的反覆不 停的測試和改進。在這過程中,魏瑟羅認為,寬客仍可以為經濟政策制定者和金融投機者提供有用的見解和工具。

因此,《華爾街的物理學》有兩大目的,一是去瞭解物理學家和他們的想法,如何在華爾街創造出令人驚訝的有趣的故事,再來是我們應該如何思考的這些重要的模型和做法,尤其是在2008年的金融危機之後。在《華爾街的物理學》中,我們可以見識到物理學家和數學家有多麼聰明,他們之中極富創造力的人,還把他們的科學訓練,用令人驚訝的新方法來投入分析債卷、股市、期貨等等。

《華爾街的物理學》指出,衍生金融商品如期權、期貨及掉期交易(Swap)等等,因為金融風暴的關係,好像它們是一個個令人不安的新的創新,實際上卻已經存在了好幾千年。例如,考古學家已經發現記載了的古代蘇美人期貨交易的楔形文字。用數學方法來選擇定價甚至是很古老想法,《華爾街的物理學》用1900年,有一位名叫巴楔利耶(Louis Bachelier,1870-1946)的法國物理學家極富遠見但被埋沒的工作開頭。巴楔利耶看待市場的方式,就是所謂的效率市場假說,認為市場價格既然已經整合了所有可取得的資訊,因此能夠確實反映交易標的之真正價值。

但在當時,巴楔利耶的發現並沒有引起人們廣泛的的注意。他在學術界的生涯並不順利,他的論文也被人漠視,直到上世紀中,才被麻省理工學院的經濟學家、諾貝 爾經濟學獎得主薩孟遜(Paul Samuelson,1915–2009)重新發現。寫過第一部現代經濟學教科書的薩孟遜,雖然專業是經濟學,但一位名為威爾遜(Edwin B. Wilson,1879-1964)的數學物理學家和統計學家對他影響至深。諾貝爾經濟學獎的第一位得主丁伯根(Jan Tinbergen,1903–1994)(薩孟遜是第二位)也曾是一位物理學家,他為經濟學引入了「模型」一詞。丁伯根還研究過一些如今幾乎沒有企業主 管願意面對的狀況,指出如果一家企業薪資待遇最高與最低之間差距超過五倍的話,該企業生產力就會降低。

-----廣告,請繼續往下閱讀-----

《華爾街的物理學》, 可以見識到物理學家和數學家建立的金融模型一再地被修正和改進。接著還有奧斯本(Matthew Maury Osborne,1916-2003)發現股價的分佈狀況趨近於對數常態行佈(log-normal distribution)。股價本身不會呈現常態分布,個股的投資報酬率(rate of return)才會呈現常態分布,解決了巴楔利耶股價呈現常態分佈假設下可能呈現負的狀況;提出碎形幾何(Fractal)的大師曼德布洛特 (Benoit Mandelbrot,1924-2010)用齊夫定律(Zipf’s law)出發,即意物件的大小規模都跟排序的名次有關,例如排第二位的規模大概是第一位的一半,排第三位的大概都是第一位的三分之一,以此類推,指出金融 市場的價格雖是隨機分佈,但並非常態分佈。

索普(Edward Thorp,1932-)利用隨機理論及資訊理論,創造了現代的對沖基金(hedge fund),也證明算牌可以用來可靠地在賭場玩廿一點時獲利;布雷克(Fischer Black,1938-1995)與休斯(Myron Scholes,1941-)提出選擇權訂價模型,指出在任何時點,都有可能將股票及其選擇權這兩種資產,組合成低風險的投資方式,再引進資本資產訂價模 型,計算出投資報酬率。銀行就可透過此模型,賣出選擇權時買進其他資產,理論上避免風險,使得選擇權成為一種商品。可是其一大致命缺陷是,市場波動幅度可 能超出此模型之假設,所以極端事件出現時會失去解釋力。以此模型建立的「投資組合保險」(portfolio insurance)策略被視為1987年股災發生的主因。

不過金融災難對寬客來說卻也是寶,索耐特(Didier Sornett,1957-)建立預測市場泡沫與崩盤的方法,利用加速模式只發生在快要破裂階段,來做為預測臨界事件的徵兆。他發現1997年10月、 2000年3月、2008年9月股市大跌前皆出現對數週的的震盪模式。這意味著,就算市場有很狂野的隨機性,三不五時就上演黑天鵝事件,但是只要有懂得觀 察市場的數據之方法,至少能夠捉到幾隻黑天鵝。

《華爾街的物理學》還有一些很有意思的歷史關聯。例如,魏瑟羅解釋了尼龍的發明和原子彈的發展之間的關係,還影響了至少一位物理學家改行進入到金融界。太空競賽和越戰,也一定程度上讓許多物理學家的工作地點從實驗室搬到華爾街的投資銀行。

-----廣告,請繼續往下閱讀-----

如果來看看想出了最早的財務模型的物理學家和數學家怎麼想的,就能很清楚看到化約和理想化在建構金融模型上和角色。使用簡化的假設可以解決一個過去無法解 決的問題,但是這種解決辦法,是要建立在世界正如假設的那樣運行。可是對於一位訓練有素的物理學家(或所有科學家)而言,更重要的問題,萬一那些假設有誤 的話,該怎麼辦?可是這卻不是投機客願意在乎的問題。

魏瑟羅舉了文藝復興科技(Renaissance Technologies)對沖基金為例,其創建者西蒙斯(James Simons)在成為受人尊敬的投資者之前,曾是一位數學家。文藝復興旗下的Medallion基金在1988年成立,其於2009底退休,年化報酬率 35%。魏瑟羅表示,西蒙斯的成功說明了數學修養不是疾病,而是療法。

不過,就物理學家利用物理學和統計學的模型投入金融學的研究和投資,得到一些有識之士的不屑。《黑天鵝效應:如何及早發現最不可能發生但總是發生的事》The Black Swan: The Impact of the Highly Improbable)和《反脆弱:脆弱的反義詞不是堅強,是反脆弱》Antifragile: Things That Gain from Disorder)作者納西姆‧尼可拉斯‧塔雷伯(Nassim Nicholas Taleb,نسيم نيقولا نجيب طالب‎)就在更早的一部作品《隨機騙局:潛藏在生活與市場中的機率陷阱》Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets)(舊譯《隨機的致富陷阱:解開生活中的機率之謎》)就開始吐槽這種試圖從隨機事物中刻意尋找模式和解釋的做法。不過魏瑟羅不太喜歡塔雷伯的理論,他認為一個模型失敗了,不等於所有的模型都無效。如果不相信任何模型,就像因為有颱風和地震而放棄興建台北101。

《華爾街的物理學》書 末,魏瑟羅希望有一個新的曼哈頓計劃--經濟曼哈頓計劃(Economic Manhattan Project),其構想是,經濟和金融安全,也就是調控經濟以避免未來的金融災難,應該是國家首要的任務。然而,花費在軍事技術和國防事業上的預算,卻遠遠超過了花費在開發更好的經濟理論。在過去,美國的遠大目標如原曼哈頓計劃和登月競賽,為重大的創新投入龐大的資源,也確實地成功創造出各項偉大的目 標。他覺得現在該是時候,作出類似的承諾以開發下一代經濟模型,尋找讓經濟更保險和穩健的新思路。

-----廣告,請繼續往下閱讀-----

 

本文原刊登於The Sky of Gene

-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
獨佔先「機」?無人機如何改變全球戰爭與經濟版圖?
PanSci_96
・2024/08/26 ・2347字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在現代戰爭中,無人機的角色越來越不可忽視。從俄烏戰爭到中東衝突,無人機已經從戰場的輔助工具,逐步成為戰術的核心力量。例如,伊朗對以色列的空襲,以及胡塞組織在紅海對美軍的攻擊,無人機的身影隨處可見。這些無人機不僅成本低廉,還具有驚人的靈活性,從偵查、干擾到實施精確打擊,它們的功能無所不包。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

舉例來說,在 2024 年 4 月伊朗對以色列的空襲中,伊朗發射了 170 架無人機與數百枚導彈。雖然以色列防空系統成功攔截了絕大部分攻擊,但一枚防空導彈的成本往往是無人機的數倍甚至數十倍。同樣的情況發生在 2023 年底,胡塞組織利用僅需 2000 美元的無人機攻擊美國驅逐艦,而美軍為了防禦,使用了造價高達 200 萬美元的標準型導彈。這些數字顯示出,在不對稱作戰中,無人機的高性價比給傳統武器帶來了巨大挑戰。

這樣的發展讓各國紛紛投入無人機技術的研發與應用,美國的「地獄計劃」(Hellscape)便是其中之一。該計劃將數千艘無人潛艇、無人水面艦和無人機投放到台灣海峽,藉此增加中國艦隊登陸台灣的難度,並將整個海峽變成「地獄」。此外,美國也在研發無人機與有人戰機的協同作戰,透過無人機在前方吸引敵方飛彈,保護戰機的安全。

台灣的無人機發展之路

那麼,台灣在這股無人機浪潮中扮演什麼角色呢?

-----廣告,請繼續往下閱讀-----

根據《華盛頓郵報》的報導,美軍印太司令部的新司令塞繆爾‧帕帕羅四星上將表示,美國正計畫打造「地獄計劃」,一旦中國朝台灣發動進攻,美國將派出數千艘無人潛艇、無人水面艦和無人機,封鎖台灣海峽。這樣的防禦策略突顯了無人機在現代戰爭中的關鍵地位。

儘管台灣尚未完全掌握無人機技術的核心,但政府已意識到其重要性。2023 年底,經濟部成立了無人機產業發展專案辦公室,目標是讓台灣成為「無人機民主供應鏈的亞洲中心」,並在 2030 年達到 400 億元的產值。這項計畫無疑展示出台灣在無人機產業上雄心勃勃的願景。

台灣力推無人機產業,2030 年目標 400 億元產值。圖/envato

無人機技術的核心:通訊

要掌握無人機,首先要掌握的是其通訊技術。無人機的發展歷史顯示,通訊技術的突破是其成長的關鍵之一。早期的無人機僅能進行簡單的視距內操作(VLOS),但隨著科技的進步,現在的無人機已經可以進行超視距操作(BVLOS),這大大提升了它們的戰術應用範圍。

大疆是中國無人機技術的領導者,其發展的 2.4G 高清圖傳影像系統「Lightbridge」便是無人機技術的重大突破。這一系統能夠將無人機拍攝的畫面即時傳回給操作員,並維持一定的解析度與低延遲。這意味著無人機不再僅僅依賴肉眼操控,而是能夠進行更遠距離、更精確的任務。

-----廣告,請繼續往下閱讀-----

然而,2.4GHz 的頻段雖然穿透力強,但也面臨頻率擁擠的問題,容易受到干擾。為了解決這個問題,現代無人機開始使用 5.8GHz 頻段。這一頻段雖然傳輸距離較短,但資料傳輸速度更快,抗干擾能力也更強。在這兩個頻段之間,大疆開發的 OcuSync 2.0 技術能夠自動切換,確保始終使用最佳的訊號頻段,提供穩定的飛行控制和圖像傳輸。

這些技術上的突破使得無人機在戰場上變得越來越不可或缺。例如,無人機不僅能進行偵查和打擊,還可以通過蜂群技術同時發動多點攻擊,擾亂敵方的防空系統。無人機之間的通訊技術也發展迅速,無論是表演性的燈光秀,還是軍事上的蜂群作戰,無人機都展現出極大的應用潛力。

反無人機系統的崛起

無人機的迅速發展同樣引發了反制無人機技術的需求。反無人機系統(C-UAS)大致可分為兩種類型:軟殺與硬殺。軟殺主要是針對無人機的通訊進行干擾,利用無線電干擾槍發射強大訊號覆蓋 2.4GHz 和 5.8GHz 頻段,使無人機失去控制。而硬殺則是直接摧毀無人機,例如使用火力攻擊或網子捕捉。

以色列本古里安大學的教授格拉‧維斯提出了一個新的思路:透過無人機的飛行軌跡來追蹤操作員的位置。由於無人機的動作會隨著通訊信號的強弱變化,這些變化可以用深度學習模型來分析,從而反推出操作者的位置。這一技術目前的準確率已經達到 78%。

-----廣告,請繼續往下閱讀-----

此外,美國的軍工企業開發了一款名為「路跑者 M」(Roadrunner-M)的自殺無人機。這款無人機不僅能像飛彈一樣追蹤目標,還能在完成任務後自動返航進行回收,降低了作戰成本。

台灣無人機產業的未來

台灣無人機具潛力,兼具軍事與災害通訊用途。圖/envato

儘管台灣無人機產業的起步較晚,但政府和產業界已經意識到其巨大的潛力。無人機不僅僅是一種武器,它還可以成為通訊網路的關鍵節點。例如,雷虎科技的 T-400 無人機不僅用於軍事,也正與中華電信合作,將無人機作為訊號中繼站,在災害發生時提供通訊支持。

隨著 5G、B5G 及 6G 的發展,無人機將成為未來通訊基礎設施的重要組成部分。台灣無人機產業的發展不僅關係到國家安全,更涉及到未來的數位基礎建設。無論是在軍事還是民用領域,無人機的應用將越來越廣泛,未來有望成為台灣科技產業的一個重要支柱。

總而言之,無人機技術正在改變戰場生態,而台灣也正在積極參與這場技術革命。隨著更多資源的投入,台灣有機會在全球無人機市場中佔有一席之地。無人機的發展並不僅僅是一場技術競賽,還是一場關乎國家安全與經濟未來的戰略賽跑。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。