0

0
0

文字

分享

0
0
0

成功的背後,有多少淚水?YouTube影片震撼呈現歷次火箭發射失敗史

臺北天文館_96
・2014/03/21 ・860字 ・閱讀時間約 1 分鐘 ・SR值 460 ・五年級

在現代,大家輕易可觀看衛星電視節目、利用GPS導航地圖尋路、協助海難救助與火災監測、觀察大地資源利用狀況、有更精準的氣象預報等等熟悉事物的背後,您知道是什麼嗎?

俗話雖說「失敗為成功之母」,但這一次次的失敗就是一次次的辛酸淚水,有些甚至牽扯到人命的消失。在上方長達32分鐘的YouTube影片中,收集了1950年代人類進入太空時代之後,迄今的多次火箭發射敗景象,包括V2火箭、前鋒號TV3火箭(Vanguard TV3)、探索者S-1任務(Explorer S-1)、紅石1號測試火箭(Redstone 1)、泰坦1號運載火箭(Titan I)、泰坦2號運載火箭(Titan II)、泰坦4號運載火箭(Titan IV)、擎天神運載火箭(Atlas,亞特拉斯火箭)、擎天神-半人馬座運載火箭(Atlas-Centaur)、N1運載火箭、三角洲運載火箭(Delta)、三角洲3號運載火箭(Delta III)、光子太空任務(Foton)、聯合號運載火箭(Soyuz)、長征號運載火箭(Long March)、天頂號運載火箭(Zenith)、挑戰者號太空梭(Space Shuttle Challenger)等。

如牛頓所說的:「如果說我看得比別人更遠,那是因為我站在巨人的肩膀上(If I have seen farther than others, it is because I was standing on the shoulders of giants)。」每次的發射失敗都是一個前車之鑑,工程師們都會尋找檢查整套系統,檢討失敗的原因,以避免下次發生同樣的狀況。

其中最著名的一次就是1986年1月28日造成7人喪生的挑戰者號太空梭爆炸事件,究其失敗原因,人為疏失和技術問題皆有,但其中一項是在發射前有個O形環卻是因天氣過冷而失效,這是連結右側2個推進器的零件,低溫造成封環變弱,使發射過程中熾熱氣體外洩燒毀外殼,太空梭因而破裂爆炸。美國航太總署(NASA)為此翻修發射條例章程,規定NASA本身與承包商都得改變一些火箭推進器的設計,增強連結零件的安全性。

-----廣告,請繼續往下閱讀-----

時至今日,火箭發射仍然有一定程度的危險性,因此在發射前,工程師們總要不厭其煩的一遍遍檢測,務必要在發射前揪出問題並馬上修正,降低因火箭發射失敗的經濟損失,維護太空人及地面的人們的生命安全。

前人種樹,後人乘涼。在我們享受太空時代帶來的便利時,別忘了偶爾感念一下前人的淚水所締造的成就。

資料來源:Rocket Fail Video Shows Human And Technological Risk With Each Launch UniverseToday [March 14, 2014]

轉載自網路天文館

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 43 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
1

文字

分享

0
1
1
這些太空垃圾會不會阻礙我們太空旅行?太空垃圾怎麼清? 
PanSci_96
・2024/05/29 ・5682字 ・閱讀時間約 11 分鐘

人類上太空的夢想會被我們親自摧毀嗎?

隨著火箭成本降低,人人都能把衛星丟上太空,現在,當你晚上抬頭看天空,你看到的星星可能不是星星,而是人造衛星。你看到一閃而過的的流星,可能只是墜入大氣的太空垃圾。

這些多到不行的太空垃圾已經成為隱憂,更可怕的是,這些以超音速飛行的太空垃圾可能摧毀其他衛星,在衛星軌道上製造更多不可預期的致命飛彈。有人擔心,人類終有一天會無法穿過這片垃圾雲,天空永遠被自己封閉。 終於,有人提出清理太空垃圾的方法了,但這些方法真的可行嗎?

現在的太空垃圾有多少?

最大的太空垃圾可能是整節火箭!

所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭,例如 1960 年代太空競賽時大量發射的火箭,有許多至今還在宇宙遊蕩,每一個都像公車一樣大。而小東西,則包含太空人在太空漫步時遺忘的東西,或是太空垃圾互相碰撞後產生的碎片,最小可能只有數毫米,小的像隻蚊子。但不論太空垃圾來自哪裡,只要缺乏妥善的管理和追蹤,就可能成為其他運作中設施和儀器的致命血滴子。

-----廣告,請繼續往下閱讀-----
所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭。
圖|PanSci YouTube

為什麼說太空垃圾真的很危險?

為了不被地心引力拉入大氣,墜向地球,在軌道上繞行地球的物體大多都以非常快的速度在移動,包括現在還在運作的衛星與各種設施。舉例來說國際太空站位於距離地球表面四百公里高的近地軌道(Low Earth Orbit),以大約每秒 7 ~ 8 公里的速度高速移動,是地表音速的 20 倍。也就是說,太空上的車禍可嚴重多了,來自不同方向或不同傾角的物體,可能會以超過每秒 10 公里的相對速度發生碰撞。別說公車大小的太空垃圾了,只要直徑超過 1 公分的碎片就足以對太陽能板或玻璃造成損害。更麻煩的是,大小在 10 公分以下的物體,大多還因為尺寸過小難以追蹤。

那麼,我們的頭上有多少太空垃圾呢?

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1 公分到 10 公分的則高達一百萬個。

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2 千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1公分到 10 公分的則高達一百萬個。
圖|PanSci YouTube

在這些太空垃圾中,大多數大型太空垃圾就是來自發射衛星後,一起留在太空的第二節推進火箭,小型太空垃圾則來自火箭爆炸或各種大大小小碰撞所產生的碎片。

太空上曾發生過嚴重的太空垃圾碰撞事件?

歷史上比較嚴重的一次撞擊事件發生在 2009 年,銥衛星公司運作中的通訊衛星,重量 700 公斤的 iridium 33,和失效、重 900 公斤的蘇聯軍用衛星 kosmos 2251,在 789 公里的高空,兩台衛星以每秒 11.7 公里的相對速度直接撞上,化成了兩團在軌道上繞行的碎片團。

-----廣告,請繼續往下閱讀-----

NASA 估計,這單一次的碰撞產生了超過 2000 片可追蹤的碎片,雖然許多碎片受地球引力慢慢墜入大氣燒毀,但直到到 2023 年 2 月的統計,大約還有一半,也就是 1000 片碎片留在軌道上。過往也曾經觀察到碎片從距離國際太空站僅 100 多公尺的位置驚險掠過。

如何解決太空垃圾的問題?

太空垃圾又多又危險,真的有辦法清除嗎?

2023 年三月,NASA 發表一篇研究,整理了關於各種清理太空垃圾的方法與成本,包含從地面或太空發射雷射推動垃圾改變軌道,或是直接物理性撞擊改變軌道,還有透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用等方法。

透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用。
圖|PanSci YouTube

清理不同大小的物體,要用的方法跟產生的效益也不同,因此他們評估了針對兩種策略。第一種策略將會優先處理目前最大、最具威脅性的 50 個太空垃圾,例如完整的第二節火箭或是失去功能的完整衛星。第二種策略則是優先移除 1 到 10 公分的十萬個小型垃圾。NASA 分別評估處理這兩種目標帶來的效益,恩,所謂的效益,就是預估能減少多少因為太空垃圾碰撞而產生的損失。

要如何移除太空垃圾呢?

移除大型垃圾主要的方法主要是再入大氣層(re-entry),簡單來說就是讓垃圾落入大氣層燒毀。這個方法預計讓運送任務完成的火箭載具,透過剩餘的推進燃料,順手將其他大型垃圾帶下來。移除這 50 個大型垃圾預計總共會花費 10 億美金,但在移除 30 年後所帶來的效益,將會超過花費的成本,非常划算。

-----廣告,請繼續往下閱讀-----

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。發射雷射的裝置可以設置在地面或是太空中,單純以使用效率來說,設置在太空所需要的能量較低,但是設置在地面維護和管理比較方便。然而這也衍伸了許多爭議,主要圍繞在這個清除垃圾的雷射也可以作為武器使用,例如在戰爭爆發時用雷射攻擊敵國的衛星。不過如果順利設置的話,清除十萬個小型垃圾後大約只要十年就可以達到等同於成本的效益,比移除大型垃圾能更快回收成本。

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。
圖|PanSci YouTube

方法有了,但我們真的能讓太空再次乾淨嗎?

太空垃圾問題有解嗎?

現在的太空有多擁擠?

如果把歷史發射資料整理出來,會發現近五年人類的衛星發射數量幾乎是直線攀升,2012 年一整年全世界也只發射了 200 多顆衛星,到了 2022 年已經成長到一年 2000 多顆衛星。而且絕大部分都是來自於美國的衛星,想當然很大一部份都來自於 SpaceX 的星鏈計畫。而受益於獵鷹九號的高成功率和可回收造就的低廉成本,也能夠發射更多的中小型衛星,像是我們臺灣也發射了不少自主研發的立方衛星上太空,例如 2021 的「飛鼠」和「玉山」以及最近才剛發射的珍珠號立方衛星。

如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。

-----廣告,請繼續往下閱讀-----
如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。
圖|PanSci YouTube

治標也要治本,我們對於即將發射進太空的人造物能有套管理辦法嗎?

1967 年在聯合國通過並簽署的《關於各國探索和利用包括月球和其他天體的外太空活動所應遵守原則的條約》,簡稱為《外太空條約》。這個條約制定了各國在外太空活動所應該遵守的原則,其中和人造衛星有關的原則主要有三個:

  1. 國家責任原則:各國應對其航太活動承擔國際責任,不管這種活動是由政府部門還是由非政府部門進行的
  2. 對空間物體的管轄權和控制權原則:射入外空的空間物體登記國對其在外空的物體仍保持管轄權和控制權
  3. 外空物體登記原則:凡進行航太活動的國家同意在最大可能和實際可行的範圍內將活動的狀況、地點及結果通知聯合國秘書長

也就是說,雖然各國需要將太空活動回報給聯合國統計,但實際上在制定規範和進行管制的還是各國本身。以美國來說,分別需要和 FAA 聯邦航空總署申報火箭發射和再入大氣層的計畫,以及向 FCC 聯邦通訊委員會申報衛星的通訊規格,至於要如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。

如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。
圖|PanSci YouTube

不過對於衛星任務結束後的處置,FCC 倒是有相關的規定和罰鍰。因為如果衛星有動力系統,可以在任務結束時就控制墜入大氣層或飛離常用軌道,進到所謂的死亡軌道(Graveyard Orbit),而通常在申請發射衛星時,也需一併提供任務結束後的處置方式。

去年,衛星電視業者 Dish Network 沒有按照它在 2012 年所制定的衛星處置計畫,將衛星從離地 36000 公里的地球同步軌道再往外推 300 公里。這顆衛星在移動的半途中就燃料耗盡失去了動力,只離開原本的軌道 120 公里,FCC 因此對衛星電視業者開罰了 15 萬美元。這起首次針對太空垃圾的開罰,對於太空垃圾的管制具有重大的意義,代表著對太空垃圾危害性的重視,也代表著清理太空垃圾的商機正在逐漸成長。

-----廣告,請繼續往下閱讀-----

清除太空垃圾能有商業價值?

隨著商業化的太空活動逐漸熱絡,如何讓清理太空垃圾不只是空談也成了一個重要的問題。如果軌道上的垃圾減少,受益的會是所有使用軌道的衛星。就與現存的回收與垃圾處理方式一樣,我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。

我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。
圖|PanSci YouTube

另外,雖然目前對於在軌道上進行捕捉再回收的直接經濟效益並不突出,但如果未來在太空可以建立起專門的處理設施,或許可以作為一個長期的太空垃圾處理機制,沒想到吧,人類要成為跨行星文明的第一步,竟然是得先成立太空垃圾清潔隊。

不過話說回來,要讓各國政府願意砸大錢在太空垃圾回收產業可能還需要一點時間。畢竟相較於直接影響到生活的全球暖化,太空垃圾的危害並不那麼可怕,大型垃圾的撞擊也可以預測並提前避開,因此短時間內也還不會有明顯的感受,但如果你是需要觀測的天文學家,可能就覺得垃圾好礙眼了。

最後想問問大家,你覺得處理太空垃圾最好的辦法會是什麼呢?

  1. 向所有太空公司徵收處理費,培育回收業者,資本的事情資本解決。
  2. 從技術研發著手,火箭能回收,想必衛星回收技術很快也能做出來。
  3. 都別處理了,就等人類把自己鎖死在地球,宇宙垃圾就不會再增加了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
0

文字

分享

1
2
0
Starship 試射雖敗猶榮?萬眾矚目的星艦還有哪些新設計?
PanSci_96
・2023/05/07 ・2874字 ・閱讀時間約 5 分鐘

你有看到幾天前馬斯克的超大火箭爆炸新聞嗎?怎麼火箭快速非計畫解體了,SpaceX 的員工們還歡聲雷動、雀躍不已呢?

就讓我們來一起認識乘載 SpaceX 火星夢的下一代超重型運載火箭:星艦 Starship!

雖敗猶榮的首飛

萬眾矚目的 Starship 首次飛行於 2023 年 4 月 20 日登場。

倒數三秒開始,超級重型的三十三顆引擎在六秒內依序點火。在七千噸強大推力激起的漫天煙塵中,世界最大的火箭開始緩緩升空,並在幾秒後成功離開發射台,在朝陽中飛向深藍的天空。

但此時其實從直播畫面中就可以看到,並不是三十三顆引擎都成功點燃,其中有三顆一開始就沒有正常運作。但這不是什麼大問題,得益於先進的當代飛控以及火箭設計時保留的推力冗餘,星艦本來就可以在有幾個引擎失效的情況下繼續飛行。

-----廣告,請繼續往下閱讀-----

升空後一分十八秒,即使陸陸續續有引擎故障等問題,火箭還是通過了最大動壓點(MAX-Q)。可以想像成火箭在飛行過程中,其箭身結構承受最大壓力、也就是最可能出現結構問題的時候。通過 MAX-Q 對任何一款新火箭都是重要的里程碑,這代表無論其他部分如何,至少火箭的整體結構設計是達標的。

升空後兩分二十一秒,火箭的飛行高度來到 28 公里,速度約兩馬赫。

此時也許是因為控制火箭推力方向的液壓系統故障,火箭的姿態開始明顯出現偏移,並漸漸失去控制,開始在空中翻滾。最終在翻滾六圈後,火箭的飛行終止系統(FTS)啟動,將火箭自行炸毀以降低火箭碎片造成傷害的風險。於是星艦與超級重型就在加勒比海上空,化成了一片超大型煙火。星艦的首次試射,帷幕就此落下。

Starship 試射影片。/
SpaceX YouTube

關於這場試射中火箭為何失控?達成多少測試目標?這些問題還有待 SpaceX 正式發布報告才能清楚知道。但無論如何,本次發射無疑是 Starship 開發的重大里程碑。對很多人來說,能夠飛離發射台、通過最大動壓,就已經是了不起的成功了。

-----廣告,請繼續往下閱讀-----

SpaceX 的可重複使用之路

說到 SpaceX,大家首先想到的應該就是他們舉世唯一的可重複使用火箭——獵鷹九號(Falcon 9)。藉由在每次發射之後,讓第一節自行降落並重複使用在多次任務上,SpaceX 得以大幅降低每一次發射任務的成本,並在過去幾年中橫掃全世界的商業太空發射市場。

然而受限於先天設計,獵鷹九號只是一款「部分可重複使用」的發射系統。雖然火箭的第一節和前端的整流罩可以回收使用,但每一次發射,都還是會消耗一枚第二節火箭。

多年來,SpaceX 研究過各式各樣的方法,試圖把第二節火箭也帶回來。包括在火箭前端安裝隔熱盾,讓火箭可以承受高速重返大氣層產生的高溫;又或是異想天開地在火箭上安裝巨大氣球,讓第二節火箭可以在稀薄的大氣中盡可能減速,以降低火箭重返大氣層時會產生的熱量;但這些想法,最終都因為技術和成本上的考量而作罷。

獵應九號以星際大戰系列中的「千年鷹(Millennium Falcon)」,和第一節擁有的 9 個引擎作為命名依據。圖/維基百科

SpaceX 最終決定,放棄升級獵鷹九號,直接開發一款更大、更強而且完全可重複使用的次世代運載火箭。這就是我們今天的主角——星艦 Starship 。

-----廣告,請繼續往下閱讀-----

星艦的設計理念

星艦的概念首度於 2016 年出現在世人面前。當時,馬斯克在國際太空航空會議(IAC)上宣布 SpaceX 將打造一款全新的運載火箭,以達成讓人類走出地球、成為跨行星物種(Multiplanetary Species)的理想,而火星就是第一個目標。

為了達成這個理想,這款火箭必須具備四大特色:

  1. 完全可重複使用;於每次執行任務後,整支火箭都必須可以回收再利用,才有辦法大幅降低發射成本。
  2. 能夠在軌道上重新加入推進劑(以下簡稱在軌加油);如此一來火箭可以先滿載貨物進入地球軌道,然後藉由多次的在軌加油把推進劑補滿,再出發前往目的地。
  3. 使用的推進劑必須能在火星製造;如此一來火箭就不需要攜帶回程的推進劑,從而攜帶更多的貨物。
  4. 必須使用正確地推進劑組合;除了要能在火星製造之外,推進劑最好便宜、容易儲存和傳輸。

針對這四項要求,SpaceX 最終開發出一款由不鏽鋼打造,使用甲烷與液態氧作為推進劑的兩節式超重型運載火箭。

火箭的第一節稱為「超級重型 Super Heavy」,其底部裝有 33 顆 SpaceX 開發的「猛禽 Raptor」火箭引擎,總共能夠輸出近 7600 公噸的推力,比冷戰時代送人上月球的農神五號火箭還要高一倍。

-----廣告,請繼續往下閱讀-----

第二節則稱為「星艦 Starship」,高度 50 公尺底部裝有六顆猛禽引擎,並有兩對機翼可以在大氣層中控制火箭的姿態。能在重複使用的前提之下,將 100 至 150 公噸的酬載送入近地軌道,是人類歷史上最大、最強的運載火箭。

星艦(Starship)與超重型推進器(Super Heavy)原型機。圖/維基百科

不過,要注意的是,火箭的第二節叫做 Starship,但整個火箭系統(第一節+第二節)也稱為 Starship,有時要仔細聽上下文,才知道說的是整支火箭,還是只有單指第二節而已。

Starship 將怎麼完成 SpaceX 的火星夢?

假設今天 Starship 已經開發完成了,它將怎麼幫助人類完成未來的火星任務呢?

Starship 的全套系統運作原則如下:

-----廣告,請繼續往下閱讀-----

火箭從地球升空後,第一節會像獵鷹九號一樣可以自行重返大氣層,並精確地回到發射台降落。而第二節則會帶著貨物與太空人先停泊於近地軌道,等待後續發射的多艘加油版星艦(Tanker)與它會合,把它的推進劑槽補滿。接著,星艦就可以啟程前往火星。

而在登陸火星後,太空人可以將火星上的二氧化碳與水轉變成甲烷與液態氧。利用這些火星製造的推進劑,太空人就能再次搭上星艦返回地球。

除了前進火星之外,還有許多重要任務也已經預訂要由 Starship 執行。

舉例來說,SpaceX 將開發一款「月球特化版 Starship」,用於在 NASA 的阿提密斯三號以及後續的登月任務中,負責將太空人從月球軌道帶到月球表面。Starship 也將用於發射數以萬計的第二代星鏈衛星,提供更強大的通訊服務。星鏈的成功,將為 SpaceX 帶來比發射火箭更多更穩定的收入。

-----廣告,請繼續往下閱讀-----

隨著 Starship 逐漸成熟,其強大的運輸能力和低發射成本,將進一步將太空工程師們,從當前嚴苛的成本和重量限制中解放出來,得以放手設計更強大的衛星、太空船、太空望遠鏡,造福人類文明的各個領域。

當人類為了成為跨行星物種邁出第一步時,希望 Starship 已替那一步提供堅固的墊腳石。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

8
4

文字

分享

1
8
4
太陽系如何形成、如何演化?就讓「靈神星」來解答!
EASY天文地科小站_96
・2023/04/12 ・2962字 ・閱讀時間約 6 分鐘

  • 文/黃子權|掉入岩石堆中的研究生,現就讀台大地質所
  • 文/林彥興|現就讀清大天文所,努力在陰溝中仰望繁星

M 型小行星與行星的誕生

了解太陽系的形成歷史與演化,是行星科學最重要的使命之一。然而,身在太陽系形成後 46 億年的我們所看到的行星,都是經過漫長演化後的結果。它們的表面特性、內部結構,早已與剛形成時大相逕庭。

因此,想要研究太陽系的形成與演化,小行星是相當重要的目標。由於小行星質量小、冷卻快,更不會有複雜的風化和地質運動,因此它們從太陽系形成之初到現在都沒有什麼改變,就像活化石一般。而過去幾十年,人類也確實對小行星進行了廣泛而詳細的研究,比如拍攝照片計算它們的軌道,用光譜分析化學組成,甚至派遣太空船(如 JAXA 的隼鳥一號、隼鳥二號、NASA 的 OSIRIS-REx)直接前往小行星,將樣本採回地球分析。

而在太陽系目前已知的一百多萬顆小行星中,有一個相當特殊的族群,它們大多具有較大的密度和較高的雷達反照率,同時在光譜上缺乏特徵。基於上述特點,科學家們認為它們的組成中有含有不少金屬,因此稱之為 M 型小行星。

根據目前天文學家對行星形成的理解,原行星盤(protoplanetary disk)中的金屬元素分布理應相當分散,因此能夠自然產生元素分異並聚集大量金屬的地方,只有足夠大、足夠熱的原行星(protoplanet)的行星核。所以傳統上,M 型小行星被視為受到撞擊後裸露的行星核,同時也是鐵隕石的來源之一。但截至目前,仍未有探測器直接造訪 M 型小行星,確認這個假說是否正確。

-----廣告,請繼續往下閱讀-----

近期,新的觀測資料更顯示,某些 M 型小行星似乎比人們預想的還輕,各種特徵也和人們對行星核的認知不盡相同(例如,在表面觀測到含水礦物的訊號)。這表示傳統的行星形成與演化模型,也許不盡正確。換個角度看,這也代表對 M 型小行星的研究,也許將能幫助我們揭開行星演化理論中的盲區。

M 型小行星是由什麼構成的?它們的演化歷史又是如何?苦於距離遙遠,過去人們對這些問題往往只能止於粗略的推測。但隨著靈神星號任務逐漸上軌,我們離解答這些問題(的一部分)只有一步之遙了。

靈神星號探測器。圖/NASA/JPL-Caltech/ASU

靈神星探索任務

靈神星探索任務(Psyche)是 NASA 發現計畫(Discovery Program)的一部分。發現計畫始於 1989 年,每隔幾年就會向全美國徵求任務提案,經過重重篩選後,最具有科學價值且最可行的團隊,就可以獲得 NASA 提供的經費,將他們的構想付諸實行。從 1996 年的 NEAR 任務開始,發現計畫已經為十幾個重要的太陽系探索任務提供機會,包含近期因太陽能板發電量降低而終止的火星「洞察號(InSight)」任務。2014 年,第 13、14 次發現計畫徵選開始,最後脫穎而出的其中一個計畫,正是靈神星探索任務。

而計畫要觀測的目標靈神星(16 Psyche)於 1852 年被義大利天文學家加斯帕里斯(Annibale de Gasparis)發現,並以希臘神話中靈魂之神「賽姬」命名。祂是第 16 個被發現的小行星,雖然不是最大的小行星(平均寬度約 220 公里)但卻是目前已知小行星中第 10 重的,其質量佔小行星帶總質量的 1%。根據估算,靈神星的密度大約為 3.9 g/cm3,遠低於鐵鎳隕石的 7.9 g/cm3,因此靈神星不太可能真的完全由金屬構成,比較可能是類似石鐵隕石那樣,由金屬與岩石共同組成。

-----廣告,請繼續往下閱讀-----
科學家對靈神星的想像。圖/ NASA/JPL

作為發現計畫的一員,靈神星計畫切實地反映了該系列任務的宗旨:便宜、快速的解答重要的疑問。M 型小行星是行星形成與演化中相當重要的一片拼圖,而靈神星又是體積最大的 M 型小行星,其重要性不言而喻。對靈神星的探測,勢必能更加推進人們對行星演化的認知。

靈神星號的科學目標及預期解答的問題為:

  1. 靈神星是行星核還是未熔結物質?
  2. 靈神星表面的相對年齡為何?
  3. 小型金屬天體是否含有和高壓地核同比例的輕金屬?
  4. 靈神星形成環境的氧化還原性?
  5. 靈神星地表及撞擊坑特徵?

為了達到這些目標,靈神星號上搭載了以下儀器:

  • 多光譜成像儀 (Multispectral Imager)
  • 伽馬射線/中子光譜儀 (Gamma-Ray and Neutron Spectrometer, GRNS)
  • 通量閘磁強計 (Fluxgate Magnetometer)
  • X頻無線電實驗 (Radio Science (X-band))

整體而言,靈神星號的載酬相當簡要,科研儀器加總起來只占約 30 公斤,且每項儀器都是經過「實戰」驗證過的:多光譜成像儀來自火星好奇號探測車,GRNS 來自水星的信使號任務、磁強計參與了洞察號任務、X 頻無線電實驗(利用通訊時訊號的都卜勒效應測量重力強度變化)更是有多項成功紀錄。使用這些驗證過的儀器不僅能減少任務風險,同時能省下不少研發經費,提高任務的 CP 值。另外,靈神星號同時也會為深空網路(Deep Space Network, DSN)測試全新的「深空光學通訊(Deep Space Optical Communication, DSOC)」系統,利用雷射作為資料載體進行傳輸,科學家估計 DSOC 的資料傳輸速度,將比過去使用無線電的 DSN 快 10 到 100 倍。

靈神星號各項儀器位置圖。圖/修改自NASA/JPL-Caltech/ASU
靈神星號的伽馬射線光譜儀及中子光譜儀。圖/Johns Hopkins APL/Ed Whitman

另外,隨著科技進步,太空探索不再是國家機構的天下,各種商業公司紛紛加入了衛星製造的行列。因此重視任務 CP 值的靈神星號,從設計初期,科學家們便決定向商業公司尋求成熟、有發射紀錄且搭載了離子推進系統的衛星載具。最終他們選定了 Maxar 旗下的 Space Systems/Loral(SSL)公司的 1300 系列框架作為靈神星號的主體,並由噴氣推進實驗室(JPL)整合飛行系統(包含指令及資料處理系統)。靈神星號的推進系統是一具 SPT-140 霍爾效應推進器(Hall effect thruster),藉由游離氙氣並透過磁場將其加速噴出以獲得推力。搭配發電量達 20 千瓦的太陽能板及 922 公斤的氙氣,足夠支持靈神星號走完將近六年的航程。

抵達靈神星後,探測器將嵌入軌道開始環繞靈神星。科學家為靈神星號安排了四個逐漸降低的軌道(A 到 D),每個軌道都有各自主要的研究目標:

  1. 最高也是最初始的軌道 A 半徑約 700 公里,靈神新號將會在這裡測量靈神星的磁場。
  2. 56 天後,探測器將降至軌道 B(半徑 290 公里)並且開始對靈神星的地貌進行調查。
  3. 76 天後,靈神星將下降至半徑 170 公里的軌道 C,這是最小的穩定繞極軌道,同時也是最適合用來探測靈神星重力場的高度。
  4. 100 天後靈神星號將會降至最後、最低的軌道 D,軌道半徑僅 85 公里,在這探測器將利用 GRNS 調查靈神星表面的元素分布。
靈神星號任務示意圖。圖/修改自 NASA/JPL-Caltech

靈神星號原訂的發射日期為 2022 年 9 月。然而在飛行前的測試中,任務團隊發現飛行軟體異常,導致它錯過了 2022 年的發射窗口。經過幾個月的調查和調整,目前 NASA 公布的下個發射窗口為 2023 年 10 月 10 日以後,屆時靈神星號將會搭乘 SpaceX 的獵鷹重型火箭進入太空,就讓我們好好期待靈神星號傳回來的各種資料吧!

-----廣告,請繼續往下閱讀-----

延伸閱讀

  1. 我們的征途是星辰大海:回顧隼鳥二號的億里長征
  2. Just Look Up!小行星監測系統「哨兵」全面升級
  3. 災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?
-----廣告,請繼續往下閱讀-----
所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1560 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事