Advertisements

0

0
0

文字

分享

0
0
0

關於太初重力波你不能不知的18件事

活躍星系核_96
・2014/03/19 ・4848字 ・閱讀時間約 10 分鐘 ・SR值 565 ・九年級

4.7更新:本文處於爭議階段,目前正在討論與收集意見

gravity_waves

文:梅賢豪(博士後研究員)

March 18, 2014 at 3:13pm

台灣這裡是該要睡了的時間。睡前滑滑手機,發現學長分享了不得了的事:大霹靂以來的重力波偵測到了!(相關新聞:Nature, Stanford, Scientific American

Advertisements

在 一般民眾心中,這事應該不會比馬航MH370找到了更重要。不過對於我個人,它有個難以言喻的重要意義:從上研究所以來所有的研究方向與方法都繞著重力波 (Gravitational Wave,簡稱GW,大陸慣稱引力波)這三個字轉,如今找到了,很驚喜,也很失落,尤其是找到的團體與方法從來沒看過。

科 學上有些砸了大錢的部分,大家都容易看到,連LBJ都看得到,像是大強子碰撞機、上帝粒子,像是火星好奇號,或是關於雷射核融合等與核電存廢扯得上邊的議 題,都能引起民眾討論;一般民眾剩餘的好奇心,大概都在於新手機、3D列印、數理奧林匹亞或發明展又奪幾面金牌吧!重(引)力波?那是甚麼?可以吃嗎?

我憑印象胡謅一下,不盡完善處歡迎糾正補充:

關於重力波的8件事

  1. 愛因斯坦最先在廣義相對論中預測重力波的存在,同時也提到,太微弱恐怕無法觀測。
  2. 重力波是類似電磁波的古典概念:當帶電粒子有加速運動時,會輻射電磁波;所以帶有質量(尤其是大質量)的天體(例如黑洞、中子星)加速運動(通常是互繞)時,就會輻射重力波,互繞靠近、愈繞愈快。
  3. 當兩塊磁鐵靠得夠近時,可能在你無預警的時候瞬間運動、吸在一起;當兩個黑洞等級的重力源互相靠近時,也有這種瞬間變化現象,具體地說它們因為加速運動釋 放重力波後,能量減少距離靠近,原本互繞的頻率會逐漸加快,當兩天體近到將融合時,瞬間釋放的重力波形態就會反映這種瞬間加快的頻率現象,科學上說這像是 鳥的叫聲Chirp,中文把這字翻譯成「唧頻」,你就想像在早晨突然聽見一聲鳥叫,重力波如果觀測到就差不多像那樣。在1974年侯斯(Russell Hulse)與泰勒(Joseph Taylor)藉由研究波霎雙星的互繞速率變快,推論出重力波確實存在,獲1993年的諾貝爾物理獎。
  4. 重力波的表現是影響時空平滑性,在平滑時空中的圓「○」,當有重力波通過時,時空被扭曲拉伸,就可能變成「0」的橢圓形狀,或是把「0」轉90度變成平躺 的橢圓;這是其中一種可能的模態,根據時空把圓「○」的拉扯方向,定義成「+」模態,另一種完全獨立的重力波拉扯方向是「×」模態,這兩種模態稱為重力波的兩種偏振態(與光的偏振態不同請勿混淆)。與電磁波不同的是,重力波不是一種橫波(模態改變方向與波傳播方向垂直的叫橫波,如繩波、水波),所以只能被 「聽」見,就像鳥叫聲被「聽」見一樣。
  5. 能夠量測空間變化的實驗裝置,是最傳統的麥克遜干涉儀(證明光速恆定的那個實驗)[註1],兩條等長干涉臂,在平滑時空時沒甚麼新鮮事發生(干涉條紋無變 化),但若重力波通過,例如「0」的瞬間,兩條干涉臂就會感受到時空扭曲,長度不等而產生干涉條紋明暗改變,藉由判讀干涉條紋的變化,來證明重力波通過。但如同愛因斯坦所預測,重力波太過微弱,所以必須增加儀器靈敏度才能測到。傳統上的做法是在地面上增加干涉儀的臂長(公里等級),以及在每臂再架設 Fabry-Perot干涉儀,增加光在每臂往返次數。空間變化比率叫Strain,給它個符號h,重力波通過時造成的互相垂直兩臂長不等的變化量d,光 在每臂通過總長度D,h=d/D,重力波通過時的h大約在10-24以下,這樣的數字可以這麼形容:人的身高大約都在1米多,一般說的奈米是10-9米,原子核尺度是費米即10-15米,這些跟人身高相比都還達不到h=10-24。但是拿原子核尺寸跟地月之間距離(38萬公里)比就差不多同級了,等同於在地月之間偵測1顆原子核這樣的距離變化量。這些地基觀測站的名稱有:LIGOVIRGOKAGRAGEO600AIGO等等,目前與台灣關係比較深厚的是日本神岡的KAGRA(意:神樂,來自神的樂音,請回想「像鳥叫的重力波需要被聽到」這些敘述文字),以低溫降噪(KAGRA前身叫LCGT大型低溫重力波望遠鏡,其中的C就代表低溫Cryogenic)與雷射的Squeeze-state(超越量子障壁)為突破重點,整個設施建在山壁礦坑中(示意圖),兩臂各長3公里,預算方面稍微受創於311地震海嘯災情,目前還在建。[註1] 重力波偵測也有利用球型(Sphere)、柱型(Bar)共振腔的方式,如同人耳與狗耳的差異般,與麥克遜式干涉儀分庭抗禮,聆聽不同的波段。活躍的團隊有MiniGRAIL、NAUTILUS、EXPLORER、AURIGA等等。
  6. 為了提高靈敏度,人們把腦筋動到太空,在太空中干涉臂可以夠長。目前比較有機會可能可以的是LISA計畫(雷射干涉儀太空天線,宣傳影片在此)發射三枚衛星到日地拉格朗日點(到定點後可花最少燃料維持與地球、太陽距離不變),每枚衛星內含drag-free的試體,彼此以雷射干涉測量三試體間距離(三干涉臂長),它的前導計畫LISA Pathfinder最近要開記者會確定發射日期。此外我老闆也一直進行他的ASTROD計畫,計畫最終型態ASTROD-GW預計發射三枚衛星,一枚到日地連線對面拉格朗日點L3,另兩枚分別在L4與L5。
  7. 重力波要如何量得到?想聽鳥叫,要去鳥多的地方,或是擁有特別靈敏的耳朵,如同人耳與狗耳的不同,能聽的頻率波段(靈敏範圍)是固定有限的,想聽的目標與偵測器要匹配; 同時鳥也不一定何時叫,但從鳥群密度總可估算出個大致的此起彼落事件發生頻率;重力波的產生主要看波源,也就是互繞的中子星、或互繞的黑洞,在離我們近的宇宙空間中的數量密度以估算發生頻率,當然超過一定距離的也聽不到了(如同望遠鏡能看多遠一樣有個空間範圍)。單位體積內的事件發生頻率(一棵樹上能住的 鳥發生突然的鳥叫)大致是固定的,愈靈敏的探測器能聽到的空間(V)愈廣(樹林愈大),乘起來後代表愈靈敏的探測器聽到事件的頻率愈高。最近一次得到的訊息是,若KAGRA一切照計畫完成,估計大約每年可以聽到十次唧頻鳥叫。而美國老大哥的LIGO在主導各地面站的網路連線,單一地面站只能「聽到」,卻很難指出從哪個方向聽到(一般人能聽聲辨位是因為有雙耳聽覺,單一地面站類似單耳);當所有地面站同步連線運作後,以時間差或相位差來判斷,指向精確性就提高,搭配傳統天文台觀測到的事件比對,甚至可以驗證重力波是否如同光波一樣,以光速傳遞,或是更密集指向地觀測Gamma-ray爆發事件(目前似乎各自 用巡天方式亂槍打鳥,找到事件就立刻將已連線網路內所有天文台望遠鏡同步指向同區域,若能增加有可能源自Gamma-ray爆發的重力波事件一起同步望遠 鏡也是件好事)。
  8. 這次新聞中報導的「重力波偵測到了」,與上述的都無關,但上述資料可以提供一個背景參考。這次偵測到的,其實也不算「聽」到,因此也不是「直接量測」,但 卻是一個非常堅實的實驗證據。主要原因,是因為這次偵測到的叫做「太初重力波(Primordial Gravitational Wave)」的特有「簽名痕跡」,而這個偵測到的證據,證明了暴漲理論,提供量子重力與大一統理論堅實基礎,也是人類第一次窺視到(從前只有想像與計算) 宇宙誕生後的第10-37秒。

什麼是太初重力波?

[這方面我的背景比較薄弱,部分摘自維基百科,請當不學術的科普看]

Advertisements
  1. 1940年代阿爾菲和赫爾曼推論,若大霹靂存在,宇宙膨脹應會拉長並將極早期宇宙的高能輻射冷卻到微波範圍,並降溫到大約5K。1964年美國射電天文學 家阿諾·彭齊亞斯和羅伯特·威爾遜偶然發現宇宙微波背景(CMB,又稱3K背景輻射),並於1978年獲得諾貝爾獎。它是一種充滿整個宇宙的電磁輻射。特 徵和絕對溫標2.725K的黑體輻射相同。「宇宙微波背景是我們宇宙中最古老的光,當宇宙剛剛380,000歲時刻在天空上。它顯示出微小的溫度漲落,對 應著局部密度的細微差異,代表著所有未來的結構,是當今的恆星與星系的種子」宇宙微波背景輻射和宇宙學紅移-距離的關係一同被視為大霹靂理論最好的證據。
  2. 宇宙微波背景輻射一開始被認為是均勻的,後來經由COBE與WMAP等巡天量測後,人們研究宇宙可能的不均勻性與各向異性。從WMAP已可反推宇宙組成約4%物質、23%暗物質、73%暗能量。從暴漲期開始(宇宙年齡10-37秒) 冷卻過程中的各級相變,逐步確定今日世界的樣貌:物質(相對於反物質)主導、基本交互作用從對稱破缺中確立、原子主導。微波背景輻射的時間是宇宙年齡38 萬歲,從那時開始光才可以自由活動(宇宙變透明),使得今日我們看得到CMB,再往前無法「看到」,但可以在如同LHC大強子對撞機中模擬當時的高溫狀 態;再往前?只有研究天空中特定區域特定事件,為何黑洞一直是研究熱點?因為它的時空奇異性與大霹靂,或是早期宇宙的奇異性類似。
  3. 既然研究終點與研究起點重要性類似,那麼其他方面也類似。在大霹靂之初,密集的能量也應該輻射出重力波,這種重力波也被稱為太初重力波。隨著宇宙暴漲與冷 卻,重力波也逐漸微弱,但並不消失。當宇宙微波出光的那一瞬間(宇宙齡38萬歲),太初重力波也在時空中留下了自己的痕跡,讓CMB在這痕跡中傳播出去。 CMB的不均勻度在數μK的階層上為偏振。偏振有兩種類型,為「E」模式和「B」模式。這與靜電學有關,當電場(「E」場)消失一個旋度,磁場(「B」 場)會消失一個散度。「E」模式因湯姆森散射,在不勻相電漿中自然產生。「B」模式被認為振幅最大應有0.1μK,並非由電漿物理產生。它們是來自宇宙暴 脹的信號,其密度決定了太初的重力波。探測「B」模式將是極其困難的,尤其是前景污染程度未知,弱重力透鏡信號又混有較強的「E」模式信號與「B」模式信 號。
  4. 這次新聞發佈是在南極的BICEP2望遠鏡觀測CMB訊號中的「B」模式發現的。它依據前身BICEP的訊號尋找天區中一塊前景較乾淨的區域來觀測,512個超導微波探測器的陣列(NASA與JPL合作,參考這篇)冷卻到絕對溫度4K,提供良好的靈敏度。關於太初的重力波的「B」模式,理論計算是走在前頭的,理論老早就給出測到的Cosmic curl峰值視張角在1-5度之間(太陽與月球直徑視張角約半度),量到的結果,正中此範圍!

觀測到太初重力波簽名痕跡的重要性

  1. 暴漲與太初重力波的直接證據,以及人類真的「看到了」宇宙年齡10-37秒。
  2. 證明目前與其他三種基本作用很難合併的重力,早期的確是大一統合併在一起。
  3. 量子重力有了穩固的實證基礎可以繼續發展(場論與廣義相對論的合併與解釋)。
  4. 諾貝爾獎(像這種媲美CMB級的發現幾十年出一次)。
  5. 後續驗證:與巡天衛星Planck的「B」未來偏振模式觀測結果比較印證。目前BICEP2量到的訊號強度似乎是Planck已觀測資料的兩倍,也因此訪談計畫主持人時,他說原本大家形容找「B」偏振模式像是獵雁,我們獵到了鴕鳥。
  6. 傳統重力波地面站與太空計畫:仍有維持下去的必要性,畢竟BICEP2觀測到的是「痕跡」,而重力波仍然值得真正地被「聽」到。
  7. 科學上一個事件的終點隱含另一事件的起點,如同光一樣,看到光並不是終點,可以再研究干涉繞射、光電效應、光速、光偏振、光譜、色散、非線性倍頻、光頻梳等等,重力波的未來,除了波譜,也應該有其餘的切入面向值得探索。在台灣這是一個冷門的區域,但事實上從1980年代起這方面的台灣本土研究在國際參與上都沒有缺席,我們投入得不算晚,期盼更多的了解帶來更多的興趣。

 

作者同意轉自臉書網誌

Advertisements
文章難易度
Advertisements
活躍星系核_96
759 篇文章 ・ 70 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia
Advertisements
Advertisements


1

4
2

文字

分享

1
4
2

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3032字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

Advertisements

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來的「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

Advertisements
圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

Advertisements
圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

Advertisements

Advertisements
所有討論 1
Advertisements
CASE PRESS_96
156 篇文章 ・ 375 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策