Loading [MathJax]/jax/output/HTML-CSS/config.js

0

1
1

文字

分享

0
1
1

新型透明導電薄膜LFTO

創新科技專案 X 解密科技寶藏_96
・2014/01/10 ・2102字 ・閱讀時間約 4 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

報導 / 江書賢

當你「滑」過智慧型手機時,你可知道玻璃面板的另一面,有一層透明的導電薄膜[1]。正是因為有這一層可以導電的透明薄膜的存在,扮演了類似皮膚下的觸覺受器,和神經的電流訊息傳遞的功能,觸控螢幕才能夠感受到你的碰觸。

透明導電薄膜,顧名思義,必須兼具有透明[2]和導電[3]這兩種特性,目前大多是使用金屬氧化物類的材料,稱為透明導電氧化物(Transparent Conducting Oxides,TCO),尤其是以氧化銦錫(Indium Tin Oxide,通常簡稱為ITO)材料為主流。但是,因為氧化銦錫中的「銦」元素是稀有金屬,目前最大的蘊藏量與產量來自於中國大陸[4],而且近年來在國際市場上需求持續成長,價格攀升,未來也可能面臨原料短缺的問題,所以目前世界各地的許多廠商與研究機構都正在研發可以替代氧化銦錫的材料。

工業技術研究院的材料與化工研究所開發出了一種新型的透明導電薄膜材料[5],稱為LFTO(鋰氟共摻雜的氧化錫)。這一種材料的原料不含銦原子,成本便宜,容易取得,而且在穿透率與導電性上比目前主流的氧化銦錫,或其他材料有更優越的特性[6],因此成為一種有應用潛力的新材料。

-----廣告,請繼續往下閱讀-----

除了材料本身之外,透明導電薄膜製程的設計,會影響材料的有效使用率、產品良率,以及生產速度,這些也是產業界中各廠商彼此競爭的重點。目前主流的ITO薄膜是使用「真空濺鍍」製程來製造,這代表在鍍膜的時候需要把待鍍的玻璃板放在把內部空氣抽掉[7]的真空設備環境中。而工研院開發的LFTO可以使用「大氣壓噴霧熱裂解法(Spray Pyrolysis Decomposition)」(本文以下簡稱「大氣噴鍍」)進行鍍膜工作,只需要在一般的大氣環境中就可以進行。根據工研院材化所的研究同仁表示,目前的線寬已可達10 ~ 30 微米,已可充分滿足一般觸控面板所需要的電路圖案線寬(大於15微米)的需求。

圖片1
圖一:大氣噴鍍系統。LFTO的前驅物是透明的液體,在噴鍍設備中被加熱、變成霧狀,氧化並附著在基板(如玻璃等)上,形成薄膜層。照片攝於工研院材化所的實驗室。
圖片2
圖二:大氣噴鍍系統的噴嘴;下面是待噴塗鍍膜的玻璃基板。照片攝於工研院材化所的實驗室。

兩種製程相比,大氣噴鍍不但過程簡便許多、設備建置成本只有真空濺鍍系統的10% [5]、而且有效鍍膜材料使用率高(真空濺鍍:約50%~60%;大氣噴鍍:85% ~ 90% [5])。除此之外,生產速率也大幅提高(真空濺鍍:每分鐘3 ~ 5公尺;大氣噴鍍:每分鐘7公尺以上[5])。大氣噴鍍能夠使用比真空濺鍍更低溫度的製程來進行鍍膜,這也表示大氣噴鍍可以被鍍在可耐受溫度更低的基板,也就是說,可以適用在更多種類的材料上。

除了用在觸控面板的回饋電路、太陽能電池的面板等,大氣噴鍍也可以應用在節能建築的隔熱玻璃建材:因為LFTO材料雖然對於可見光來說是透明、可穿透的,但是卻可以反射陽光中的紅外線,所以若在玻璃窗上鍍一層大氣噴鍍LFTO薄膜,可以造成隔熱效果。除此之外,薄膜的耐候性佳(也就是說不容易在環境中受光照、溫度、風雨等因素的影響而破壞、變質)、化學穩定性高(耐酸鹼)、耐刮、容易噴塗等特性,使得它能容易的被應用在建築物的窗戶、屋頂、外牆上。[8]根據研究人員表示,接下來的開發目標放在使用其他方式進行大氣噴鍍的製程-例如大氣電漿法鍍膜,如此可以使製程溫度再降得更低,讓LFTO導電薄膜能夠更容易被應用在各種材料的基板上面,也將持續改進製程,使生產廠商更願意改換使用這項技術。

註解與參考資料

  1.  確切的來說,也可能不只一層,情況依照觸控面板的設計而定。能夠達成觸覺感應功能的面板設計有許多種不同的形式,在本文中將介紹的透明導電薄膜特別是電容式觸控的關鍵材料。關於各種觸控面板的設計方式可以參閱維基百科的「觸控螢幕」詞條。
  2.  也就是材料可以被可見光穿透的特性。在專業上以「穿透率」來表示與衡量,一般要求必須在80%以上。
  3.  物理上一般常以電阻率(Resistivity)來衡量材料的導電性,單位為:「歐姆.公分」。電阻率愈低,導電性愈好。產業界目前一般對導電薄膜的電阻率要求大約在10的負三次方以下。對於薄膜電阻,在實用上常特別以「片電阻(Sheet Resistance)」來衡量,單位為:「歐姆/平方」,它的量綱和歐姆相同,詳情可以參見維基百科的「薄膜電阻」詞條。
  4.  請參閱維基百科的「」詞條。
  5.  陳俞君、林晉慶,《新型透明導電薄膜應用於投射式電容觸控面板》,工業材料 297,2011年九月,第144-151頁。
  6. 各種透明導電材料的比較,可以參閱[5]的「表一」。
  7.  嚴格來說,物理學上的極限使我們不可能真的把一個密閉空間內的所有氣體都完全抽掉,但是我們可以抽出大部分的氣體,使得真空設備內部空間中的氣體數量少於我們生活空間中的一般環境,因此氣壓降低。氣壓愈低代表真空度愈高,也需要花費愈多的能源成本、時間與更強的設備去抽真空。根據不同的製程與成品品質的要求,鍍膜時需要選擇相對應的適當真空度。
  8. 智慧化居住空間_系列專題報導_技術專題_兼具環保與節能的創新科技產品。

技術專頁:新型透明導電薄膜 LFTO

-----廣告,請繼續往下閱讀-----

更多創新技術歡迎瀏覽解密國家寶藏

-----廣告,請繼續往下閱讀-----
文章難易度
創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 3 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
當玻璃也能身段柔軟時-R2R製程技術/卷對卷超薄基板技術
創新科技專案 X 解密科技寶藏_96
・2014/01/13 ・645字 ・閱讀時間約 1 分鐘 ・SR值 571 ・九年級

-----廣告,請繼續往下閱讀-----

19-R2$卷對卷報導/廖英凱

隨著國際潮流與產業需求,「輕、薄、大面積、可撓曲」已成為業界炙手可熱的話題及趨勢。而目前主流的觸控螢幕中,電容式觸控螢幕更為人們所使用,典型的例子莫過於引發行動裝置革命的iPhone了。電容式觸控螢幕的基本原理,是將一個絕緣體的螢幕玻璃基板(或是塑膠基板)內側塗上可導電的傳導層,並在傳導層施加一個微小的電壓,形成一個均勻的靜電場。當手指或可導電的物體從螢幕的另一面接觸時,有靜電場的傳導層和可導電的手指之間便形成了一個動態的電容,測量此電容的位置和大小就可做為觸控訊號的依據。

觸控元件生產的方式可分為板對板式(sheet to sheet)與卷對卷式(roll to roll, R2R)兩種方式。枚葉式,是將加工品一片一片的送入機器加工,適用於較硬無法彎曲的基板。而卷對卷式的加工則可用於可彎曲的基板,以連續生產的方式在基板上加工為觸控元件,因此生產速度比枚葉式快上許多。

工研院電光所的「R2R製程技術/卷對卷超薄基板技術」計畫,正是利用超薄可撓基板的特點,結合卷對卷式製程,大幅提高產能降低成本。

-----廣告,請繼續往下閱讀-----

未來可以打造出輕薄且曲面的新穎手機,增加行動裝置內的設計空間彈性也可以用於OLED照明燈具與太陽能電池等產品,近年來許多穿戴式電子產品的概念與研發消息也不斷問世,相信這項技術的研發,將有助於我國產業引領下一代的軟性電子科技風潮。

技術專頁:玻璃卷對卷、觸控新里程

更多創新技術歡迎瀏覽解密國家寶藏

-----廣告,請繼續往下閱讀-----
創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 3 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!