Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

取代GPS的新一代導航定位系統

科景_96
・2011/02/10 ・448字 ・閱讀時間少於 1 分鐘 ・SR值 577 ・九年級

-----廣告,請繼續往下閱讀-----

Original publish date:Oct 17, 2010

編輯 HCC 報導

美國空軍利用物質量子力學特性,研發新一代定位系統,以原子鐘與冷原子導航系統取代GPS。

鑑於一些國家發射以不同頻率運作的區域性衛星導航系統,美國認為上述國家於戰時可能阻斷美國衛星GPS訊號,而無損及自身的衛星訊號。為此美國科學家著手研發新技術克服GPS訊號阻斷問題。

-----廣告,請繼續往下閱讀-----

美國空軍首席科學家Werner J. A. Dahm博士表示,藉由提供時間資訊的晶片等級原子鐘以及提供位置資訊的微小化先進慣性導航系統,可以在無法接收GPS的環境代替GPS。上述所需微縮技術使用微機電系統製程所應用的微影製程。

Werner J. A. Dahm博士透露,另種途徑係利用量子干涉方式,或稱為冷原子方式、玻色愛因斯坦凝聚體方式,將原子群或分子群拘束在非常窄範圍的量子態,利用物質在量子態呈現波的特性,再對此物質波進行干涉,即可製造微小化的、非常精確的導航元件。

美國空軍預期於十年之內,此新一代定位系統可趨成熟並廣泛應用。取代GPS的新一代導航定位系統

參考來源:

-----廣告,請繼續往下閱讀-----

 

-----廣告,請繼續往下閱讀-----
文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
0

文字

分享

0
4
0
內建超強GPS!研究發現狗狗靠南北短跑定位,找出最佳回家路線
何如
・2020/08/17 ・2542字 ・閱讀時間約 5 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

眾所周知,狗狗有著一副靈敏的好鼻子,能夠感知周遭環境變化,然而不僅如此,最近更有研究指出,牠們可能還具有另一項隱藏能力——自動導航功能。這項功能就像狗體內擁有能感應磁場的羅盤,可讓牠們利用地球磁場推算陌生地形上的捷徑。

新研究發現,狗從陌生地折返回原點的方式有兩大類:一是隨著氣味依循原路回去的「原路折返」,二是從全新的路跑回來的「偵查折返」,其中有些採用偵查折返的狗會在回程時出現「沿著南北軸短跑」的現象,出現這種行為的狗,更有機會以最短的路徑回到牠們的主人身邊。

圖/Pixabay

磁感悄悄出現?曾經發現狗會「定位」

「(導航能力)這是第一次在狗身上發現」,研究海龜磁感與導航的生物學家凱瑟琳.羅曼 (Catherine Lohmann)註1 如此說道。

她提到,跟鳥類等遷徙動物比起來,對於狗身上導航能力的研究其實相對少得多。英國斑戈大學註2研究鳥類導航的生物學家理查.荷蘭 (Richard Holland) 則附和道:「這是洞察狗如何建構牠們對於整個空間的畫面的機會。」

-----廣告,請繼續往下閱讀-----

不過關於狗、其他動物甚至是人類「或許能夠感知地球磁場」這樣的情形,其實早已有過一些線索。2013年,已經研究磁接收 (magnetic reception) 30年的捷克學者海尼克.布爾達 (Hynek Burda)註3 和他的同事就表示,狗在排尿和排便時會傾向將自己定為南北向,而同時,因為這樣的行為與標記辨認領地有關,所以布爾達將這種定位校準解釋為「能夠協助狗釐清現在的位置與周遭的相對關係」。

然而,這種穩定不變的校準(白話文:知道東西南北),跟導航能力其實是兩回事。

隨意跑開後,狗竟然能從一條完全陌生的路折返?

在新的研究當中,布爾達的學生卡提捷娜.班尼迪克托瓦 (Kateřina Benediktová) 先將攝影機和 GPS 追蹤器放在4隻狗身上,然後再帶牠們到森林裡,接著讓狗四散而去,去追尋平均約 400 公尺外的動物氣息。

有趣的是,GPS 追蹤器顯示狗在回程路上(跑回向牠們的主人)出現兩種行為:一是「原路折返 (dubbed tracking),可能就是隨著氣味以沿著牠來時的路程回去;另一則是「偵察折返 (scouting),也就是從一條全新的路跑回來。

-----廣告,請繼續往下閱讀-----

圖/eLife

當卡提捷娜將獲得的實驗結果資料給布爾達看時,布爾達發現了一個奇怪的特性:在偵察折返的途中,狗會突然停下然後先向著南北軸跑個 20 公尺左右,才再又開始往回跑。那種短暫的 20 公尺小跑有點像是要校準磁場方向的模樣,但卡提捷娜還沒有充足的資料可以肯定這樣的推論。

於是他們擴展了這項研究計畫,幾乎人人都有養一隻獵犬的狩獵管理與野生動物學系註4的同事也投入研究,3年來透過27 隻流浪狗進行數百次實驗。

在進入森林實驗時,研究團隊會試著避免給予狗其他能夠辨識方向的線索。只要情況允許,狗都會被帶到從沒去過的森林裡的一處,如此一來牠便不能依靠熟悉的地標來找路。同時主人會在牠開始漫步時就躲起來,以免狗是藉由看見主人而跑回來。另外,由於狗跑回來時,風向很少是從主人吹向狗的,所以氣味也不太會造成影響。

研究人員仔細看了 223 例的偵查折返狀況,發現狗會在回程時平均漫步約 1.1 公里的距離,而這當中有 170 次出現了「狗先停下,再掉頭沿著南北軸跑 20 公尺」的情形。同時,研究者們也指出,出現這種行為的狗,更有機會以最短的路徑回到牠們的主人身邊。「我真的對這樣的實驗結果感到蠻震撼的」羅曼如此說道。

-----廣告,請繼續往下閱讀-----

圖/eLife

內建羅盤判斷最短回家距離?!其實不太意外

布爾達認為狗之所以會沿著南北軸跑是為了釐清牠們的方向,「這是最合理的解釋」他說。

羅曼則表示,這個行為的意義在於狗可能能夠記得牠們之前的移動路程,然後再藉由參考體內的磁場羅盤,來釐清回家的最短路徑

之後布爾達和卡提捷娜也開始嘗試另一種實驗方法,他們打算在狗的項圈中放入磁鐵,干擾磁場,然後觀察這樣是否會妨礙狗狗辨識方向的能力。這樣的想法與 1980 年曾經發表在《科學》期刊上的一篇爭議性實驗類似,當時的實驗是針對人類,研究者將磁鐵放入蒙眼受測者的眼罩中,實驗結果發現磁鐵似乎會擾亂人類直覺的方向感1

-----廣告,請繼續往下閱讀-----

不過羅蘭大學註5專攻狗隻行為的亞當.米克洛希 (Adam Miklósi) 則認為,要設計磁感的實驗其實是相當繁複的,因為很難排除其他感官,讓一隻動物完全只依靠一種感知來做出行為。

「這樣操作的難處在於為了要百分之百證明磁感,或是任何一種感知,你必須排除所有其他的感知。」

而米克洛希亦說道,其實「狗能夠利用磁場來辨識方向」並不是太令人吃驚的事,因為這似乎是一種古老的能力,而且可能出現在任何會橫越大片土地的哺乳動物身上。羅曼也贊同道:「你會期望動物在狩獵之後能夠藉這種方式回家,顯然能在狗身上看到應該滿合理的。

註解: 

  1. 時任北卡羅萊納大學 (The University of North Carolina at Chapel Hill) 生物系的助理教授。
  2. Bangor University。
  3. 為布拉格捷克生命科學大學 (Czech University of Life Sciences Prague) 的感官生態學家 。
  4. The department of game management and wildlife biology, Czech University of Life Sciences Prague。
  5. Eötvös Loránd University。
  1. Baker, R. R. (1980). Goal orientation by blindfolded humans after long-distance displacement: Possible involvement of a magnetic sense. Science210(4469), 555-557.

本文主要編譯自:Dogs may use Earth’s magnetic field to take shortcuts

-----廣告,請繼續往下閱讀-----
何如
12 篇文章 ・ 1 位粉絲
「因為人因思想而獨特,但不說出來就什麼都不是。」 —為自己的冗言話多辯解的小菜鳥。

0

0
1

文字

分享

0
0
1
我是誰?我在哪?這裡是哪裡?腦內的導航系統到底是怎麼運作?——《錯把自己當老虎的人》上
azothbooks_96
・2020/01/21 ・1703字 ・閱讀時間約 3 分鐘 ・SR值 483 ・五年級

-----廣告,請繼續往下閱讀-----

  • 作者/海倫‧湯姆森;譯者/洪慧芳

告訴你確切位置的「位置細胞」

1960 年代,倫敦大學學院的神經學家約翰.奧基夫(John O’Keefe)開始探究「一般導航能力的祕訣存在於海馬迴」這個概念。

為了驗證這個理論,奧基夫趁著老鼠在開放空間行走時,研究牠們的大腦。他想知道老鼠探索環境時,哪些神經元是活躍的。他在老鼠的海馬迴裡植入一組薄電極,海馬迴可以記錄個別神經元與相鄰神經元通訊時所產生的微小電位尖波。

奧基夫利用這項技術時,發現有一種細胞只有在動物處於特定位置時才會發動。每次老鼠經過那個地方,那個細胞就會「啪」一聲發動。它附近的另一個細胞似乎只關心另一個不同的位置。只要老鼠走到那個地方,它就會「啪」一聲發動。下一個細胞只會跟著另一個位置產生反應,依此類推。

這些細胞的活動組合可以告訴你老鼠的確切位置,精確度在五平方公分內。奧基夫將這些細胞命名為「位置細胞」(place cell),並顯示它們如何一起告訴大腦的其他部分:「這是我目前的所在位置。」

位置細胞不只告訴大腦目前所在的位置,還能接收其他資訊

後續的數十年間,科學家發現位置細胞不只做這項任務。它們附近有個區域叫「內嗅皮質」 (entorhinal cortex),位置細胞也會從內嗅皮質的另外三種細胞接收資訊。

黑線顯示一隻大鼠在一個方形空間的運動軌跡,紅點是一個內嗅皮層細胞放電時大鼠所在的位置。圖/wikimedia

-----廣告,請繼續往下閱讀-----

整合資訊到認知圖中的網格細胞

其中一種細胞稱為網格細胞(grid cell),是由梅-布里特.莫澤(May-Britt Moser)和愛德華.莫澤(Edvard Moser)這一對前夫妻檔發現的,他們兩人都是出生在挪威西海岸外的偏遠島嶼上。

他們兩人發現,導航能力有部分是依賴我們能夠思考自己如何移動,以及我們來自何處。

想想你在停車場中走向售票機、然後再折返回車子的方式。梅—布里特.莫澤和愛德華.莫澤發現,網格細胞是負責把這些資訊整合到認知圖中的神經元。

圖/wikimedia

為了理解網格細胞是如何運作的,你可以想像一片地毯上布滿了六邊形所組成的網格,狀似蜂巢,你在裡面走動。你抵達網格中任一個六邊形的邊角時,那個網格細胞就會發動。把網格稍稍移向地毯的另一端,當你抵達六邊形的邊角時,就會換另一個網格細胞發動,依此類推。這些細胞建立了一個通用的空間地圖,持續為你的所在位置以及某些地標之間的相對距離提供最新資訊。

-----廣告,請繼續往下閱讀-----

你與牆壁、邊界的相對位置,邊緣細胞來告訴你

位於內嗅皮質的另一種細胞是邊緣細胞(border cell)。這些細胞告訴你,你相對於某些牆壁和邊界的位置。例如,你的南方附近有一堵牆時,某個邊緣細胞會發動。你介於兩堵牆之間或靠近懸崖邊緣時,另一個邊緣細胞會發動。

轉向時,發動「頭向細胞」

為了讓你掌握資訊的全貌,邊緣細胞也與頭向細胞(head direction cell)共用空間。頭向細胞顧名思義,是指動物的臉部轉向特定方向時才會發動的細胞。

總和來說,我們如何找到目的地呢?

關於我們如何四處遊走,目前大家最普遍接受的理論是:大腦儲存著位置細胞在特定位置的發動型態,以便我們回到那個位置時,可以把它們當成指引。

買完東西,找車囉!圖/GIPHY

例如,想像一下,你逛街一整天後去取車。這時位置細胞受到頭部方向、身體移動、周圍環境的影響,劈哩啪啦地發動。它們指引著你移動,直到當前的活動型態符合儲存的型態。瞧!你找到車子了。

-----廣告,請繼續往下閱讀-----

不過,故事尚未結束。儘管腦內有這些活動,但腦內的羅盤不僅於此。關於導航能力之謎,這裡還缺了一塊拼圖。那一塊非常重要,失去它時,可能攸關生死。

——本文摘自《錯把自己當老虎的人》,2019 年 7 月,漫遊者文化

-----廣告,請繼續往下閱讀-----
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。