在過去,研究人員就已經藉著將金屬和小的奈米粒子混和,做出可以彎曲的金屬玻璃。在這些金屬玻璃裡的裂縫會沿著材料傳遞,直到碰到奈米粒子為止。但是這些金屬玻璃只能稍微地彎曲,而且,這些材料的製作相當困難且昂貴。因此在Chinese Academy of Science’s Institute of Physics in Beijing的物理學家Wei Hua Wang及其同僚才想設法尋找更簡單的解決方案。他們在一般被用來製作金屬玻璃的原料鋯、鋁、銅及鎳中尋找配方,最後他們找到了一個簡單的方法,可以使得在材料中正好是堅硬且高密度的區域外面包著軟的低密度的區域。因此,當研究人員彎折材料時,從某個區域開始的裂縫不會傳到下一個區域。材料不再因為一個小裂縫而整個碎掉,而是會把應力分散到許多的小裂縫,使得它比之前的材料可以有更大程度的彎曲。這個結果發表於2007年三月九日的Science上。
Stanford University in California的材料學家Reinhold Dauskardt認為這是個相當重要的結果。可是他也注意到,在論文裡呈現的數據只集中在當材料受到擠壓時的情形,而沒有被拉扯時的情形。後者關係到的是材料所可以承受的張力為何,這是在許多的應用上,例如支撐建築物的結構,ㄧ個很重要的性質。因此,如果這個新的材料也可以承受這種形式應力的話,那就幾乎可以取代大部分現有的材料了。
關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。
單看字面,DNA-PAINT 給人「以 DNA 作為油漆」的印象。事實稍有不同,這種技術以 DNA 作為「點累積奈米成像術」(PAINT , Point Accumulation for Imaging in Nanoscale Topography)的探針。接上螢光染劑的短小 DNA 片段,可以靈敏標記蛋白質、染色體以及許多細胞內構造。
DNA-PAINT 使用的 DNA 探針片段長度不超過 10 個鹼基,又稱寡核苷酸(oligonucleotides 或oligomers)。這些短小 DNA 片段可以附加上螢光染劑的螢光團分子,成為螢光探針。
DNA 探針的結合對象是另一段互補的 DNA 片段,此互補序列會預先透過抗體與定位目標連結,等待 DNA 探針前來結合。DNA 探針因為具有螢光團,被稱為「成像片段(imager strand)」,而牢固於目標的互補序列則稱為「嵌合片段(docking strand)」。對生物細胞進行 DNA-PAINT 時,嵌合片段與目標分子之間常有抗體或配體做為銜接,需要類似免疫螢光染色的前置作業,目標表面的抗原也可以因應實驗需求進行設計。
因為兩個短小 DNA 片段之間的結合力有限,成像片段與嵌合片段結合後會快速分離。而螢光團只有在結合目標時才容易放光,因此可以形成閃爍的螢光定位標記。經由電腦疊合閃爍的定位影像,DNA-PAINT 可以達成 10 奈米左右的超解析定位,若沒有序列成像的幫助,依然無法突破奈米以下解析度的光學障礙。
因此 uPAINT 必須限縮激發光照射的範圍,對準目標、減少雜訊,例如微調全內反射顯微鏡(TIRF)的角度,形成「高傾斜層光照明」(Highly Inclined and Laminated Optical sheet, HILO)以限定激發範圍。
-----廣告,請繼續往下閱讀-----
同在 2010 年,隆曼與史坦豪爾(C. Steinhauer)嘗試以寡核苷酸為探針,定位 DNA 摺紙構造(DNA origami structure)上的目標,達到了奈米等級的解析度。DNA-based Point Accumulation for Imaging in Nanoscale Topography 正式誕生,善用「不牢固的螢光探針」與電腦運算的輔助,以一般螢光顯微鏡就能突破繞射極限。
無限調色的虛擬油漆:Exchange-PAINT
2014 年,隆曼與同事阿凡達尼歐(M. S. Avendaño)、沃爾斯坦(J. B. Woehrstein)發表 DNA-PAINT 的巧妙變化,除了同時以不同探針標記不同構造,達成精準的多重定位(multiplexed localization),更實現以一種螢光超解析定位多種目標,讓多重標記的潛力加速實現。
這種多重標記被隆曼與同事稱為 Exchange-PAINT,同樣使用 DNA 片段作為探針。在同一個樣本的 10 種不同目標上,連結了 10 種不同的嵌合片段(docking strands),隆曼等人再以 10 種互不干涉的短小 DNA 序列(orthogonal sequences)作為成像片段(imager strands)。