Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

以同步輻射調查槍擊案!

科景_96
・2011/02/09 ・1440字 ・閱讀時間約 3 分鐘 ・SR值 603 ・九年級

-----廣告,請繼續往下閱讀-----

Original publish date:Jul 11, 2004

編輯 NanoForensics 報導

source:geograph
source:geograph

同步輻射(synchrotron radiation)的一般應用是在醫學、生命科學、凝態物理、環保、生命科學、材料及冶金科學、及微機械技術研發等,此外可分析射擊殘跡(gunshot residue, GSR)來協助槍擊案調查。

日本警方近日藉由同步輻射的分析結果,逮捕了三名因涉嫌在1995年暗殺當時的警察廳長官國松孝次(Takaji Kunimatsu)的前奧姆真理教﹙現改名為阿萊夫教﹚的信徒。該名官員所幸最後逃過一劫。

-----廣告,請繼續往下閱讀-----

1995年3月20日,奧姆真理教在東京發動了造成12人死亡,5500多人受傷,14人終身殘疾之駭人聽聞的地鐵沙林毒氣恐怖攻擊。時任日本警察廳長官的國松孝次正是對奧姆真理教調查的主要負責人。

能逮捕涉案嫌犯的關鍵證據是因為射擊國松孝次槍枝之射擊殘跡的金屬雜質與其中一名嫌犯衣服上採集到的殘跡相吻合。常見的殘餘金屬雜質為鉛(Pb)、鋇(Ba)、及銻(Sb)。這項結論是由可偵測約兆分之一克金屬(part per trillion, ppt)的同步輻射分析所獲得。為了避免報復行動,日本警方拒絕透露分析人員的身份。

同步輻射(synchrotron radiation):近光速行進的帶電粒子,受到磁場作用而偏轉時,會沿著行進的切線方向發出輻射,即稱之。這種輻射脈波的強度與偏振程度很高,而且為連續光譜。此連續波段電磁波(一般而言所有的電磁波都可稱為光),涵蓋紅外線、可見光、紫外線及X 光,因此可應用於各領域需求。此分析所使用的日本高輝度光科學研究所的SPring-8是現今全球能量最高的同步輻射光源,高達80億電子伏特,可以產生硬X射線光束(台灣擁有的第三代同步輻射為13億電子伏特,但台灣在Spring-8有專屬光束線)。

金屬雜質為特異性較高的射擊殘跡,對嫌犯以及槍枝的連結,頗有助益。常用的GSR 分析有:極譜分析(Polarography)、X光螢光分析(X-ray Fluorescence)、原子吸收光譜分析(Atomic Absorption Spectroscopy)、中子活化光譜分析(Neutron Activation Analysis, NAA)、誘導式耦合電漿原子放射光譜分析(Induced Couple Plasma-Atomic Emission Spectroscopy, ICP-AES)、放射光譜分析(Photoluminescence)、掃瞄式電子顯微鏡X光能譜分析(Scanning Electron Micriscope-Energy Disversive X-rays. SEM-EDX)以及X光繞射分析(X-rays Diffraction)。

-----廣告,請繼續往下閱讀-----

目前只有美國能源部在伊利諾州( Illinois)阿爾貢國家實驗室的先進光子源(US Advanced Photon Source at Argonne National Laboratory)以及在法國格勒諾布爾(Grenoble)的歐洲同步輻射裝置(European Synchrotron Radiation Facility,ESRF),能夠偵測到如此微量的金屬雜質。

同步輻射屬於非破壞性分析(non-destructive analysis)因此對於寶貴的刑案證物分析上,更具有保存證物的極大優點,可更廣泛應用於各種微物跡證分析。例如協助頗受國人關切的319槍擊案的調查。

參考來源:

相關連結:

-----廣告,請繼續往下閱讀-----

本文版權聲明與轉載授權資訊:

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

21
0

文字

分享

0
21
0
恐龍稱霸地球的秘訣,竟是牙齒自帶避震器?——《追光之旅:你所不知道的同步輻射》
天下文化_96
・2021/09/12 ・1747字 ・閱讀時間約 3 分鐘

《侏羅紀公園》系列電影掀起大家對恐龍的好奇,但其實科學家早就在研究遠古時代的各種生物。以恐龍為例,平均每星期會發現一種新種恐龍,每年大約會發現五十種新種恐龍。而在探討物種起源及鑑定遠古生物領域,同步輻射分析技術也展現了它的獨特價值。

例如,南非威特沃特斯蘭德大學(University of the Witwatersrand)領導的國際科學家團隊,針對一些世界上最古老的恐龍蛋胚胎頭骨,進行 3D 複製重建,發現牠們的頭骨生長順序與當今的鱷魚、雞、烏龜和蜥蜴相同,研究成果發表在《科學報導》(Scientific Reports)上。

美國自然歷史博物館收藏的恐龍蛋化石,內部留有胚胎構造。圖/WIKIPEDIA

在台灣,由加拿大多倫多大學教授賴茲(Robert Reisz)與台灣學者組成國際團隊,花費兩年時間,運用超高解析二維紅外光譜顯微術,在活躍於一億九千五百萬年前的雲南祿豐龍胚胎股骨化石中,發現殘留有機物,找到古化石內保存複雜有機物的最古老紀錄。這個破天荒的發現在 2013 年登上了《自然》(Nature)雜誌封面。

此外,在祿豐龍肋骨化石的微血管通道中,國輻中心研究員李耀昌也發現全球最古老且保存完整的膠原蛋白與赤鐵礦微粒聚晶。

-----廣告,請繼續往下閱讀-----

「即使經過億萬年時空轉換,恐龍的軟組織經血液中鐵的氧化及碳酸鈣化包覆作用後,還是有機會被保存下來,」李耀昌表示,這將有助科學家進一步了解恐龍的生理機能與遺傳密碼。

李耀昌團隊將成果發表於《自然通訊》(Nature Communications)期刊,並獲選為《發現》(Discover)雜誌「 2017 年全球百大發現」第十二名,是近年來台灣學者主導的研究成果首度登上《發現》雜誌全球百大發現。

英國 Dinosaurland 化石博物館的鐮刀龍巢與蛋化石。圖/WIKIPEDIA

發現牙齒裡的避震器

恐龍胚胎裡有膠原蛋白,恐龍的嘴巴裡則是自帶「避震器」。

國輻中心團隊與台灣博物館、台灣石尚博物館、中國大陸北京自然博物館、加拿大安大略皇家博物館,以及中國大陸地質科學院地質研究所合作,蒐集十五種肉食性與植食性恐龍牙齒,利用同步輻射穿透式 X 光顯微術與現代的眼鏡凱門鱷牙齒進行研究比對,首度發現肉食恐龍牙齒具有避震結構。

-----廣告,請繼續往下閱讀-----

在肉食性恐龍牙齒的琺瑯質與象牙質中間,存在一層相對柔軟且布滿微細孔洞的被覆牙本質層,可以保護牙齒,避免因撕裂骨肉造成牙齒瞬間斷裂。這項研究結果修正了過去對於原始爬蟲類牙齒結構的認知,因此登上國際知名期刊《科學報導》(Scientific Reports)與各大媒體。為了蒐集恐龍牙齒進行研究比對,國輻中心研究員王俊杰透露了一段小故事。

「當時我到桃園興仁花園夜市拜訪鱷魚攤,沒想到使用斜口鉗幫鱷魚拔牙時,斜口鉗當場應聲斷裂,只好再買一把硬度更高的老虎鉗,費了好大一番功夫才順利拔下鱷魚牙齒。」

透過同步輻射 X 光顯微鏡發現暴龍牙齒藏有「避震器」,保護牙齒不致斷裂。1:X光下的暴龍牙齒構造。2:暴龍牙齒外觀。 3:無避震結構的牙齒內部應力分布。4:有避震結構的牙齒內部應力分布。圖/王俊杰提供

牙齒的特殊結構,使得肉食恐龍成為頂尖獵食者,稱霸地表一億六千五百萬年。相較於人類咬合力約為 40 公斤、眼鏡凱門鱷咬合力約 1,000 公斤,以及咬合力可達 2,000 公斤、目前世上咬合力最大的動物—— 灣鱷,「暴龍的咬合力約 6,000 公斤,且拖行的獵物體重可能超過 1 公噸,但靠著微小的避震結構設計,便不致因巨大應力而造成牙齒斷裂,」王俊杰說。

遠古生物的活動型態一直是科學家亟欲解開的謎題,透過同步光源高解析度檢測技術,可以幫助我們了解古生物化石組織結構的細微差異,提供了一種嶄新的古生物分類與古生態研究檢測方法,而藉由恐龍胚胎化石中探測到的有機質殘留物,未來將可逐步解開更多遠古生物的奧祕。

-----廣告,請繼續往下閱讀-----

——本文摘自《追光之旅:你所不知道的同步輻射》,2021 年 8 月,天下文化

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

8
1

文字

分享

0
8
1
引導尖端科技的「科學神燈」——《追光之旅:你所不知道的同步輻射》
天下文化_96
・2021/09/09 ・2691字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

大家都知道,光線是否充足對拍照品質有決定性影響,戶外拍照比起昏暗的室內容易拍到漂亮的相片;然而,光的亮度,對科學實驗也非常重要。

同步輻射是當今世上最亮的光,它的光通量及光亮度都遠優於傳統光源。

正因如此,過去科學家因實驗光源亮度不夠而無法探測的結構,現在藉由同步輻射都能分析得一清二楚,而原本使用傳統 X 光機可能需要幾個月才能完成的實驗,如今則僅需要幾分鐘就能取得漂亮的實驗數據。

簡言之,同步輻射是在固定軌道上運行的高速電子因磁場作用而偏轉的過程中,所輻射出來的電磁波。相較於其他光源,利用偏轉磁鐵產生的同步輻射,能譜範圍更寬廣,而且擁有高亮度、高穩定度、高準直度、光束截面積小、波長連續、具有時間脈波性與偏振選擇性等特色,輻射強度和功率都可由電磁學的理論計算預測,大幅提高實驗效率和準確度。

-----廣告,請繼續往下閱讀-----

同步加速器光源(簡稱同步光源)是指為了產生供科學實驗的同步輻射所建的設施。一般而言,同步光源會採用兩座同步加速器來產生高品質的同步輻射。第一座加速器把電子加速到接近光速,稱為「增能環」;達到特定能量的電子送進第二座加速器後,不再額外加速,僅維持電子的能量,相當於把這些電子「儲存」起來,累積到足夠的電流量,再利用所產生的光做實驗,因此稱為「儲存環」。

這段過程,電子束在每一圈的運行中,都會在偏轉磁鐵切線方向或插件磁鐵下游放出同步輻射,而儲存環中的超高真空環境,讓帶電粒子束不易被其他分子散射,並且有精準的回饋系統,因此光源穩定,容易控制實驗條件,且可聚焦在很小的實驗樣本上,成為科學研究的利器。

在二十一世紀的現代,同步光源的重要已毋庸置疑,然而它並非一開始就受到科學家青睞,甚至還曾遭到嫌棄。

國家同步輻射研究中心。圖/WIKIPEDIA

從附屬品到建置專用設施

從五○年代至今,同步光源的角色,歷經幾個不同世代的演進。

-----廣告,請繼續往下閱讀-----

第一代的同步光源,是與高能物理研究的同步加速器共用,但兩者的研究需求並不相同,甚至背道而馳。

產生同步輻射的過程會損失能量,但在高能物理研究中,並不希望粒子碰撞前產生非必要的能量損失,否則電子束的軌道與功率都會因而改變,所以當時的科學家其實十分討厭「成事不足、敗事有餘」的同步輻射。

不過,在隨後的十年裡,一些科學家逐漸發現,高能物理實驗不用的電磁波其實可以當成頗有價值的光源,運用於光學及探測、生物醫學、材料科學、地球科學、環境科學等基礎和應用研究,從此改變了同步輻射「寄生」在高能物理實驗之下的命運。

到了七○年代,科學家逐漸體認到同步輻射有其優異性,開始想要開發專用的光源設施,獲得更亮、更聚焦的光束,於是先進國家紛紛開始興建專門為產生同步輻射的第二代同步加速器。

-----廣告,請繼續往下閱讀-----

第二代同步光源將增能環與儲存環分開,出光品質較佳,使同步輻射的應用更廣泛、更多樣化;隨著帶電粒子的速度愈接近光速,輻射就愈集中,發出的電磁波涵蓋整個電磁波頻譜,從紅外光、可見光、紫外光、低能量的軟 X 光到高能量的硬 X 光及伽瑪射線。

八○年代之後,科學家開始意識到儲存環的長直段更重要,可以加入插件磁鐵,讓電子由偏轉一次變成多次偏轉,並且壓低束散度,產生更強、更亮的光束,這就是第三代同步光源。

近代科研最具影響力的光源

半個多世紀過去,目前全世界供實驗用的同步光源設施已經超過七十座,其中第三代加速器多於 1990 年後陸續建造完成,各國在同步光源設施的建造能力及研究成果,也成為國家高科技研發實力的重要指標之一。

到了 2015 年,同步光源的發展達到物理極限,進入第四階段,成為採用多重轉彎磁格 2 的同步加速器,可以將電子束的束散度減少百倍,直到觸及繞射物理極限。

-----廣告,請繼續往下閱讀-----

束散度減少百倍,意謂光點更集中,光亮度可以提高百倍,從事奈米級光點研究;同時,光的準直性與同調性也大幅提高,可以發展許多新的科學實驗技術。

同步輻射插件磁鐵運作示意

插件磁鐵讓電子由偏轉一次變成偏轉多次,並且壓低束散度,使產生更強、更亮的光束。圖/國輻中心提供

受惠於同步光源的快速發展,研究人員得以擴展許多新的研究領域,包括:材料、生物、醫藥、物理、化學、化工、地質、考古、環保、能源、電子、微機械、奈米元件等最尖端的基礎與應用科學研究,所獲得的成果對人類科技創新與生活便利帶來諸多貢獻。

隨著愈來愈多科學家使用同步輻射獲頒科學界最高榮耀的諾貝爾獎,有人稱它為現代的「科學神燈」,也是二十世紀以來科技研究最重要的光源之一。

同步光源主要設備介紹

由注射器產生的高速電子,經由傳輸線進入儲存環,電子在環中經過偏轉磁鐵或插件磁鐵而產生光,藉光束線導引到實驗站,科學家便可使用這束光進行各類實驗。圖/國輻中心提供
  1. 注射器(包括電子槍、直線加速器與增能環)

電子束由電子槍產生後,經過直線加速器加速至能量為 1 億 5 千萬電子伏特,電子束進入周長為 496.8 公尺的增能環後,繼續增加能量至 30 億電子伏特,速度非常接近光速(0.999999986 倍)。

-----廣告,請繼續往下閱讀-----
  1. 儲存環

電子束從注射器經由傳輸線進入二十四邊形設計、周長為 518.4 公尺的儲存環後,環內一系列磁鐵導引電子束偏轉並維持在軌道上,如此一來,電子束便能於每一圈的運行中,在偏轉磁鐵切線方向或插件磁鐵下游產生光束。由於電子會因產生光而損失能量,因此環內裝置超導高頻共振腔系統,用來補充電子的能量。

  1. 光束線

光束線是同步加速器與實驗站之間的一座橋梁。理論上,在每一處電子偏轉處或插件磁鐵的直線下游,都可以打開一個窗口,利用光束線將同步輻射引導出來,進入實驗站。

  1. 實驗站

科學家依據實驗需求設計各種儀器,使用同步輻射進行各類科學研究。

——本文摘自《追光之旅:你所不知道的同步輻射》,2021 年 8 月,天下文化

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。