0

0
0

文字

分享

0
0
0

電磁學奇才:麥可.法拉第 (Michael Faraday)

程式人雜誌
・2013/10/15 ・5455字 ・閱讀時間約 11 分鐘 ・SR值 570 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文/陳鍾誠(國立金門大學資工系助理教授)
圖、麥可·法拉第的肖象素描由約翰·瓦特金所畫,現存於大英圖書館
圖/麥可.法拉第的肖象素描
由約翰.瓦特金所畫,現存於大英圖書館

麥可.法拉第(英語:Michael Faraday,1791 年 9 月 22 日-1867 年 8 月 25 日),英國物理學家在電磁學及電化學領域做出很多重要貢獻。

西方科學與工業之間,總是存在某種相互促進的關係,在科學的發展過程當中,總是呈現「理論 – 實驗 – 理論 – 實驗……」 這樣的發展循環,而法拉第所代表的,極度的偏向「實驗」這一端,他一生當中做過了無數的實驗,這些實驗遍佈了 整個電磁學領域,讓後來的「馬克斯威」可以透過解讀他的實驗結果,運用深厚的數學內功提出了電磁學的完整理論架構, 並創造出了「馬克斯威方程式」,如果沒有法拉第,或許就沒有「馬克斯威」的電磁學理論了。

出身

法拉第出生於英國紐因頓,接近現在的倫敦大象堡。法拉第家的經濟狀況並不好,他的父親詹姆士是個鐵匠以及基督教桑地馬尼安教派的一員,於 1780 年代從英格蘭的西北部來到倫敦。由於家境貧窮,因此他只好靠自學求取知識。14 歲時,他成為書本裝訂商及銷售人喬治.雷伯的門生。7 年學徒生涯中,他讀過大量書籍,包括以撒.華茲的「悟性的提升」,書中對於學習的原則與建議,法拉第一直遵行不輟。另外,他也從由珍.瑪西女士 所寫的「化學閒聊」中得到很多啟發。在這些大量的閱讀之中,法拉第漸漸樹立起對科學的興趣,這其中, 又以電學為甚。

1812 年,時齡二十歲,隨著門生生涯走入尾聲,法拉第開始旁聽由赫赫有名的皇家研究機構的一員以及英國皇家學會會長:漢弗里.戴維爵士以及市立哲學協會的創始者:約翰.塔特姆所開的演講。 參加這些演講的門票大多是由威廉.譚斯(皇家愛樂協會的創辦人之一)給予法拉第。之後有一次,法拉第將自己在演講中細心抄錄,並旁徵博引,內容達三百頁的筆記拿給戴維過目,戴維立刻給予他相當友善且正面的答覆。 也因此,戴維在一次三氯化氮實驗中發生意外,視力受損之後,便僱用了法拉第作為他的秘書。當皇家研究院中一位助手約翰.培恩離開後,他們便請求戴維尋找替代人選。戴維在 1813 年 3 月 1 日推薦法拉第成為化學助理。 由於法拉第在印書店的新僱主亨利.德拉羅許脾氣暴躁,他毫不猶豫的離開了這份舊工作。

-----廣告,請繼續往下閱讀-----

行事作風在當時的階級分明的英國社會中,出身卑微的法拉第並不被認同為一個紳士

在 1813 年五月,戴維展開一次長期的歐洲巡迴。由於他的侍從並不想跟隨,法拉第原本是以助手的身份跟去, 卻被要求同時作戴維的僕人,直到在巴黎找到人代替為止。戴維最後沒有找到代替者, 法拉第也因此被強迫在整個旅行中同時兼任僕人與助手。戴維的妻子珍.亞普莉絲不願意平等 對待法拉第,旅行時要他坐在馬車外,與傭人一起吃飯,法拉第的處境越來越悽慘,甚至開始 考慮獨自回到英國放棄科學研究。不過這次旅行,也讓他接觸了歐洲許多的科學菁英, 刺激出他許多想法。逆境最終沒有阻擋住法拉第在科學上的貢獻。在旅行過後不久, 法拉第的成就便超越了戴維。

法拉第的主要贊助者兼顧問為約翰.『瘋狂傑克』.富勒,他在皇家研究院裡創立了富勒里安化學教授這個職位。

在 1824 年,法拉第被選為皇家學會院士,並於 1825 年被指派為實驗室主任。1833 年他被選為皇家研究院終身職,任職而不需講課。

法拉第是一名高度虔誠的教徒,他是桑地馬尼安教派(蘇格蘭國教會的一分支)的信徒,曾在其中任兩任長老。 此教派是由蘇格蘭長老會牧師格拉斯於 1730 年創立,此教要求完全的信奉和承諾。傳記學家曾經認為「一種神與自然融為一體的感覺貫穿了法拉第的生活與工作」。法拉第在 1821 年娶沙拉.巴娜德為妻,不過膝下無子。 他們由於參加桑地馬尼安教會而認識。

雖然法拉第只受過很少的正式教育,這使得他的高等數學知識(例如微積分)相對有限,但不可否認, 法拉第仍是歷史上最有影響力的科學家之一。某些科學史學家認為他是科學史上最優秀的 「實驗主義者」。其科學知識可能主要是在擔任另一科學家戴維的助手時所學習而來,因而雖然法拉第不曾受過高等教育,但仍可把漢弗里.戴維視為法拉第的指導教授。

-----廣告,請繼續往下閱讀-----

由於道德原因,法拉第拒絕參與為「克里米亞戰爭」製造化學武器。在倫敦薩弗伊廣場,電工程師協會外,聳立著一個法拉第的雕像, 而在布魯內爾大學新建的一個接待廳以法拉第為名。

電磁學研究

1821 年,在丹麥化學家「漢斯.奧斯特」發現電磁現象後,「戴維」和「威廉.海德.渥拉斯」頓嘗試設計一部電動機,但沒有成功。 法拉第在與他們討論過這個問題後,繼續工作並建造了兩個裝置以產生他稱為「電磁轉動」的現象:由線圈外環狀磁場造成的連續旋轉運動。 他把導線接上化學電池,使其導電,再將導線放入內有磁鐵的汞池之中,則導線將繞著磁鐵旋轉。這個裝置現稱為單極電動機。 這些實驗與發明成為了現代電磁科技的基石。

但此時法拉第卻做了一件不智之舉,在沒有通知戴維跟渥拉斯頓情況下,擅自發表了此項研究成果。此舉招來諸多爭議, 也迫使他離開電磁學研究數年之久。

在這個階段,有些證據指出戴維可能有意阻礙法拉第在科學界的發展。如在 1825 年,戴維指派法拉第進行光學玻璃實驗, 此實驗歷時六年,但沒有顯著的進展。直到 1829 年,戴維去世,法拉第停止了這個無意義的工作並開始其他有意義的實驗。 在 1831 年,他開始一連串重大的實驗,並發現了電磁感應,雖然在福朗席斯科.札德啟稍早的工作可能便預見了此結果, 此發現仍可稱為法拉第最大的貢獻之一。

-----廣告,請繼續往下閱讀-----

這個重要的發現來自於,當他將兩條獨立的電線環繞在一個大鐵環,固定在椅子上,並在其中一條導線通以電流時, 另外一條導線竟也產生電流。他因此進行了另外一項實驗,並發現若移動一塊磁鐵通過導線線圈,則線圈中將有電流產生。 同樣的現象也發生在移動線圈通過靜止的磁鐵上方時。

他的展示向世人建立起「磁場的改變產生電場」的觀念。此關係由法拉第電磁感應定律建立起數學模型, 並成為四條馬克士威方程組之一。這個方程組之後則歸納入場論之中。

1839 年他成功了一連串的實驗帶領人類了解電的本質。法拉第使用「靜電」、電池以及「生物生電」已產生靜電相吸、 電解、磁力等現象。他由這些實驗,做出與當時主流想法相悖的結論,即雖然來源不同,產生出的電都是一樣的, 另外若改變大小及密度(電壓及電荷),則可產生不同的現象。

在他生涯的晚年,他提出電磁力不僅存在於導體中,更延伸入導體附近的空間裡。這個想法被他的同儕排斥, 法拉第也終究沒有活著看到這個想法被世人所接受。法拉第也提出電磁線的概念:這些流線由帶電體或者是磁鐵 的其中一極中放射出,射向另一電性的帶電體或是磁性異極的物體。這個概念幫助世人能夠將抽象的電磁場具象化, 對於電力機械裝置在十九世紀的發展有重大的影響。而這些裝置在之後的十九世紀中主宰了整個工程與工業界。

1845 年他發現了被他命名為抗磁性 (diamagnetism) 的現像 (現在則稱為法拉第效應):一個線性極化的光線在經過一物體介質時,外加一磁場並與光線的前進方向對齊,則此磁場將使光線在空間中劃出的平面轉向。 他在筆記本中寫下:「我終於在『闡釋一條磁力曲線』——或者說『力線』——及『磁化光線』中取得成功。」(”I have at last succeeded in illuminating a magnetic curve or line of force and in magnetising a ray of light“)。這個實驗證明了光和磁力有所聯繫。

-----廣告,請繼續往下閱讀-----

筆者註:這個實驗暗示了光很可能是一種電磁波,於是後來馬克士威推論出電磁波速度等於光速時,幾乎就立刻體悟了這個結論。

在對於靜電的研究中,法拉第發現在帶電導體上的電荷僅依附於導體表面,且這些表面上的電荷對於導體內部沒有任何影響。 造成這樣的原因在於在導體表面的電荷彼此受到對方的靜電力作用而重新分佈至一穩定狀態,使得每個電荷對內部造成的 靜電力互相抵銷。這個效應稱為遮蔽效應,並被應用於「法拉第籠」這個隔絕電磁波的裝置上。

化學研究

法拉第最早的化學成果來自於擔任戴維助手的時期。他花了很多心血研究氯氣,並發現了兩種碳化氯。 他也研究過氣體擴散現象,並成功的液化了多種氣體;然後研究過不同的鋼合金,並進行過光學的實驗,更製造出多種新型的玻璃。 其中一塊玻璃樣品後來在歷史上佔有一席之地,因為在一次當法拉第將此玻璃放入磁場中時,他發現了極化光平面受磁力造成偏轉及被磁力排斥。

法拉第在戴維去旅行時曾代理職務,並接受分析委託,其中最著名的三項委託是:

  1. 分析源自托斯卡尼的天然生石灰
  2. 原住土著的標槍頭研究(分析出「矽鋼」)
  3. 大馬士革騎兵彎刀

其中第三項的彎刀研究,發現古敘利亞可能有鉑礦場,並加入鉑礦使之輕巧但卻鋒利無比,連西方騎兵重軍刀都能被削斷。

後來英國人經過不斷的嘗試之後,終於發明了「碳鋼」,這使大英帝國的騎兵在中東戰場能夠擊破大馬士革的彎刀。

-----廣告,請繼續往下閱讀-----

他也盡心於創造出於一些化學的常用方法,用結果、研究目標以及大眾展示做為分類,並從中獲得一些成果。 他發明了一種加熱工具,是本生燈的前身,在科學實驗室廣為採用,作為熱能的來源。

法拉第在多個化學領域中都有所成果,發現了諸如苯等化學物質(他稱此物質為雙碳化氫 bicarburet of hydrogen),發明氧化數,將如氯等氣體液化。他找出一種氯水合物的組成,這個物質最早在 1810 年由戴維發現。

法拉第也發現了電解定律,以及推廣許多專業用語,如陽極、陰極、電極及離子等,這些詞語大多由威廉.休艾爾 發明。由於這些成就,很多現代的化學家視法拉第為有史以來最出色的實驗科學家之一。

法拉第電磁感應定律

法拉第電磁感應定律是電磁學中的一條基本定律,跟變壓器、電感元件及多種發電機的運作有密切關係。定律指出: 任何封閉電路中感應電動勢的大小,等於穿過這一電路磁通量的變化率。

-----廣告,請繼續往下閱讀-----

這個定律與安培定律,基本上就是馬克斯威方程式的兩大核心定律。

這兩大定律,讓「電生磁、磁生電」的循環建立起來了,於是、「電磁學的世界」有了一個堅實的理論基礎。

然後、這個世界裏更多的科學家與工程師連手,打造出了「發電機、馬達、天線、電磁爐、有線與無線的電子電機設備」等等, 像是「馬達」與「發電機」就完全是依靠「法拉第與安培」定律所打造出來的設備,如下圖所示。

MotorEGenerator
圖/馬達與發電機的構造與原理

法拉第電解定律

法拉第在電化學上也貢獻良多,例如他發現在物質電解過程中,參與電極反應的質量與通過電極的電量成正比。 換句話說,不同物質電解的質量則正比於該物質的化學當量,這個發現可以寫成以下定律。

其中 n 為 1 莫耳物質電解時參與電極反應的電子的摩爾數(即化合價),(M/n)又稱化學當量(Eq); F 為法拉第常數,即電解 1 電化學當量物質所需電量。

-----廣告,請繼續往下閱讀-----

法拉第電解定律適用於一切電極反應的氧化還原過程,是電化學反應中的基本定量定律。

晚年

1848 年,受到艾伯特王夫引見,法拉第受賜在薩里漢普頓宮的恩典之屋,並免繳所有開銷與維修費。這曾是石匠師傅之屋, 後稱為法拉第之屋,現位於漢普頓宮道 37 號(No.37 Hampton Court Road)。在 1858 年,法拉第退休並在此定居。

在他有生之年中,他推辭了封爵並且兩次拒絕成為皇家學會會長。他在 1867 年 8 月 25 日死於位於漢普頓宮的家中。 在西敏寺,艾薩克.牛頓的墓旁座落著他的紀念碑。但是他拒絕在西敏寺下葬,而入土於桑地馬尼安教派的海格特墓園中。

結語

在閱讀了法拉第的故事之後,感覺到科學界似乎有兩類不同的典型,像是「法拉第、愛迪生、瓦特、萊特兄弟」等人, 是屬於做實驗與應用的「劍宗高手」,這類科學家往往可以創造出很多偉大的發明與實驗結果。

而另一類科學家,像是「馬克斯威、牛頓、愛因斯坦」等人,則是數學很強的「氣宗高手」,他們雖然實驗與應用能力 不見得很好,但是透過深厚的數學內功,往往可以把前人的實驗結果解讀後,創建出一個完整的理論體系,而這個理論體系, 最後會成為下一波「劍宗高手」的「武學秘笈」,指引他們「邁向下一個偉大的航道」啊!

最令我感動的是,法拉第的謙虛,以及對馬克士威的友好態度,並且與他結成忘年之交,兩人共同構築了電磁學理論的科學體系。 (雖然當初戴維與她太太瞧不起法拉第,但是法拉第成名後並沒有向他們一樣變成高傲的人,相反的卻很樂意提攜後進)。

這種透過「理論與實驗結合」,以及「學術與產業的結合」,讓整個世界的科學,不斷的突破進展的精神,是我一直認為台灣所缺乏的, 我想,整個國家需要的不是「個人利益的算計」,而是一種「無私奉獻精神的良性循環」,只有透過這種良性循環,才能讓國家或全人類都能真正獲得 進步的動力啊!

如果、這個世界只有「氣宗」或者只有「劍宗」的話,應該不會如此多采多姿吧!

參考文獻

【本文由陳鍾誠取材並修改自 維基百科 與 OpenStax College 的 College Physics 一書,採用創作共用的 姓名標示、相同方式分享 授權】

文章難易度
程式人雜誌
9 篇文章 ・ 1 位粉絲
程式人雜誌是一個結合「開放原始碼與公益捐款活動」的雜誌,簡稱「開放公益雜誌」。開放公益雜誌本著「讀書做善事、寫書做公益」的精神,我們非常歡迎程式人認養專欄、或者捐出您的網誌。

0

1
1

文字

分享

0
1
1
室溫超導體:開啟未來世界的鑰匙?
Castaly Fan (范欽淨)_96
・2023/09/26 ・3942字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

2023 年 7 月 23 日,來自南韓的研究團隊發表了《The First Room-Temperature Ambient-Pressure Superconductor》,宣示著世界上第一個室溫常壓超導體被成功發明。文章剛刊登到 arXiv 上,便掀起了全球各地的研究熱潮,不少媒體競相報導,科技市場、各種概念股也沸騰著。那麼,「室溫超導體」究竟是何方神聖?

超導體——能源損耗的救星?

相信大家對於這個詞並不陌生、卻又不甚熟悉。在中學時代理化課,我們接觸過「導體」這個詞;在關注科技業或者財經新聞時,可能接觸過「半導體」這個詞。而「超導體」(superconductor)究竟是什麼?

首先,「超導」是一種物理性質,在距今大概一百多年前便被發現。最早可以追溯到 1911 年,科學家發現:將汞(水銀)透過液態氦冷卻至 4.2 K(相當於 -268.95 °C)時,電阻將完全消失,這便是「超導現象」的開端。因此,「低溫」似乎是開啟新世界的一把鑰匙。而電阻消失有什麼幫助?

事實上,我們生活周遭的一切都是在無窮的損耗中進行的,以電子產品和通訊設備為例,這些電路元件與器材的運作源於電流,亦即導線內部電子的游動,但這個傳輸過程是耗能的,因為電子會不斷與導線內壁的原子碰觸、摩擦,從而消耗到不少能量,同時也意味著導線壽命會隨時間衰減。電路損耗的能量與電阻成正比(P = I²R),如果電阻消失了,那意味著損耗的電熱能也將消失,這將大幅提升電子在線路中的傳輸效率,從電力傳輸、通訊、發電機,到交通工具、家用電器等層面,使用效能都將顯著提升。

-----廣告,請繼續往下閱讀-----

到了 1933 年,物理學家發現:當物質低於臨界溫度變成超導體時,會具有「完全抗磁性」,也就是原本應該穿過物體本身的磁力線會巧妙地從旁「繞過」,這個現象被稱為「麥斯納效應」(Meissner effect)。這個效應帶來了超導體的「懸浮」性質,也就是在不用任何外力的接觸下,在足夠的低溫環境中、超導體便可以藉由抗磁性讓物體「懸浮」而起。我們知道,凡是有接觸便有摩擦力的產生,而摩擦力會損耗不少熱能,因此,如果可以不透過外力接觸而操控物體、就意味著沒有了摩擦力、也就可以不再擔心能量的損耗。

A diagram of a sphere and a line

Description automatically generated
麥斯納效應示意圖:當超導材料低於臨界溫度時(右),便可產生完全抗磁性。圖/Wikimedia

簡而言之,我們可以歸納「超導體」具有下列兩大特性:

  • 超導電性:在臨界溫度以下,電阻消失,意味著能量損耗可被降至最小值。
  • 完全抗磁性(麥斯納效應):在臨界溫度以下,磁力線被排斥於物體之外,意味著超導體可具有懸浮特性。

科幻電影中,那些飛快如光的磁浮列車、懸空而起的滑板、或者看似反重力的幽浮,這些都可以透過超導實現,因此,未來世界很可能充滿著各個類型的超導設備。即使在今日,相關的應用也已出現,比如日本便在數十年前研發出「超導磁浮列車」(SCMaglev),2015 年測試的最高時速即達到每小時 603 公里,刷新了地表上速度最快的列車紀錄。

室溫超導體——物理學的聖杯

然而,你或許也發現了,「超導體」並非唾手可得,至少需要「低溫」這個條件,又或者「高壓」 。

-----廣告,請繼續往下閱讀-----

而低溫不僅僅是冰點這樣的溫度,而是接近「絕對零度」(0 K,即 -273.15 °C) 的「極低溫」,因此,開發出「高溫超導體」成為了物理學家的重要目標,而這裡的「高溫」並不是讓水煮沸、會讓你燙傷的溫度,而是指高於絕對溫標 77 K(-196.2 °C,即液態氮的沸點)的溫度。這個對人類來說已是難以想像的低溫、對超導體而言卻是相對的高溫。截至 2023 年,人類所開發出最高溫的超導體是一種名為 lanthanum decahydride(十氫化鑭,LaH₁₀)的化合物,其臨界溫度是 250 K(-23 °C),在 200 GPa(相當於接近兩百萬大氣壓)的環境下才得以實現超導特性。

A diagram of a molecule

Description automatically generated
目前已知被證實的高溫超導體——「十氫化鑭」的化學結構。圖/acs.org

由此可知,要開發出「高溫超導體」實屬不易,發明出「室溫」、「常壓」的超導體基本上更是難上加難。且液態氦、液態氮這些低溫材料都是需要一定的成本,再加上要定溫保存更是不易,因此,倘若室溫超導體能被成功發明,這意味著不僅能大幅降低成本、還能大幅提升運作效能。

LK-99——睽違已久的聖杯、或是泡影?

回到文章一開始的新聞:2023 年 7 月下旬,韓國科學技術研究院 (KIST)以李石培、金智勳為主的研究團隊宣稱他們開發的材料「LK-99」在「室溫」、「常壓」環境下具有超導特性。這次的實驗紀錄號稱:他們的 LK-99 材料具有室溫超導特性,且上限可以到達 400 K(127 °C)這名副其實的「高溫」,並且是在正常大氣壓力下完成的——這遠遠勝過上一個高溫超導體 250 K、200 GPa 的紀錄;不僅如此,這個「LK-99」製作過程超乎想像地簡易,基本上待在實驗室不用三天就可以完成!擁有這麼良好特性、且製作過程又特別上手的超導材料如果被證實,勢必掀起第四次工業革命。

A diagram of a molecule

Description automatically generated
LK-99 的晶體結構側視圖。圖/https://arxiv.org/pdf/2307.16040.pdf

讓我們先來看看這個團隊在論文中的研究內容:首先,這個「LK-99」是近似於 Pb₉Cu(PO₄)₆O 的化合物,從化學式來看,可以發現鉛(Pb)、銅(Cu)、磷(P)這些都是不難到手的化學元素。而製作過程基本上就是研磨、混合、加熱、密封、抽真空等步驟,來回大概三天以內、就能生成 Pb₉Cu(PO₄)₆O,也就是 LK-99。根據他們的論文所述,這個晶體結構的形變會在材料內部產生應力,從而在特定截面產生「超導量子阱」(superconducting quantum well,SQW),致使材料產生了超導特性。這一系列過程都在常溫、常壓下進行的,且LK-99的超導特性可以維持到攝氏 127 度的高溫。

-----廣告,請繼續往下閱讀-----

簡單來說,這個 LK-99 的超導性質與溫度、壓力無關,而是肇因於晶體本身,特定的結構形變導致了物質產生超導現象。在他們發布的影片中,可以看見灰黑色的 LK-99「部分懸浮」在磁鐵上,這是他們用來佐證「完全抗磁性」(麥斯納效應) 的證據,之所以沒有完美地懸浮是因為晶體的雜質所導致;此外,他們也宣稱測量結果顯示零電阻率,也就是電阻完全消失的「超導電性」。當「零電阻率」、「完全抗磁性」這兩個條件充分具備後,LK-99 便可以被視為一個成功的室溫超導體。

A black piece of coal on a round metal container

Description automatically generated
影片中所顯示的 LK-99 具有部分懸浮的特性。圖/Wikimedia

在論文推出後,世界各地的學術機構與實驗室開始著手復現 LK-99 的製備過程、並競相發表研究成果,短短不到兩週時間,關於 LK-99 的復現實驗以及理論相關的研究已經有二十多項。然而,截至目前(2023 年 8 月 10 日)為止,尚未有成功復現、且通過同行審核被登上期刊的成果(論文發表在學術預印本網站 arXiv,一般需要通過同行審核才有機會被刊登在期刊)。實驗的成果不盡相同,有些證明了 LK-99 的懸浮與抗磁性、有些證明了零電阻率,但也有一些只有觀測到電阻的跳變、有些甚至沒有觀測到任何結果。

一個值得注意的部分是:即使韓國研究團隊的論文中宣稱他們觀測到 LK-99 的抗磁性,也有不少團隊復現 LK-99 的懸浮特性,然而,這並不能斷定它來自於「麥斯納效應」。事實上,不少磁性物質都會有「抗磁性」,這來自於微觀的分子磁矩;但超導體所具備的是由宏觀「超導電流」產生的「完全抗磁性」(注意:本文目前為止強調的都是「完全」抗磁性),甚至能因麥斯納效應產生的磁通量而「固定懸浮」在同一位置(即使將底座磁鐵 180 度反轉,它也應當平穩地懸浮在相同的角度——這背後是複雜的量子機制,而非磁場或靜力平衡的結果)。另一方面,即使一些實驗發現了該物質有「零電阻」的結果,但這並不全然等同於「零電阻率」,因為如果測量的尺寸過小、也是會有量測不出電阻的可能性。因此,目前大部分的研究指向大概是:LK-99 或許具有抗磁性,但並未被證實存在有明確的超導行為。

歷史借鏡與未來展望

事實上,物理學家對於室溫超導的聖杯之旅一直以來從未間斷。舉例而言,2020 年,美國羅徹斯特大學以迪亞斯(Ranga P. Dias)為首的團隊便號稱開發出了一種名為 carbonaceous sulfur hydride 的超導材料,利用鑽石生成,並在 288 K (15 °C)、267 GPa 的環境下具有超導特性,甚至登上《自然》期刊,但該論文在兩年後因為統計分析結果的瑕疵而被撤銷;2023 年初,該團隊再次宣稱開發出了以 lutetium hydride(氫化鑥)為主的超導材料,這次的結果更令人驚豔——在 294 K (23 °C)、1 GPa(約莫一萬大氣壓)下便具有超導特性。可惜的是,該論文後來也因為涉嫌抄襲與偽造數據而被撤下。

-----廣告,請繼續往下閱讀-----

科學最重要的一個評判標準就是它必須是「可證偽的」(falsifiable),對於從事實驗的科研人員而言,一個發明是否能被確立最關鍵的要素便在於實驗「可復現」(repeatable) 與否。如果一個實驗無法被成功復現,便很難說服學界接受研究成果。目前看來,南韓團隊所研發的 LK-99 可能無法算是成功的室溫超導體,不過我們也無需氣餒;儘管 LK-99 的超導行為目前尚未被成功復現與證實,但多少也給人們開闢一條研究蹊徑。

人類對於室溫超導體的探索從未間斷,物理學家們也嘗試以各種材料進行研發、希冀能儘早將璀璨的遠景付諸現實。雖然人們所憧憬的那種像科幻片中先進且便捷的「未來世界」可能不會在明天就來臨,但以當前科學日新月異的發展步調來說,也許已是指日可待。

A train on a track

Description automatically generated
超導的應用早已陸續浮現在生活中,日本的超高速列車 SCMaglev 便用到了低溫超導的磁浮特性。圖/scmaglev.jr
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及文學創作。

0

9
0

文字

分享

0
9
0
一樣都是「work」,物理的「work」定義好像比較簡單?——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/25 ・2489字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

功與工作

有些大家慣用的字彙常常會被專業學科借用,專家賦予這些字新的定義,比平常的意思更具體、也更有技術性。物理學有個例子是「功」(work)。如果向一個粒子施加定力,並推動一段距離,你所做的功就定義為施力(沿著粒子運動方向的分量)乘上粒子移動的距離。

這是個很具體的物理量,實際上也是能量的一種形式。做多少功,物體的能量就會增加多少。顯而易見的,這個定義和日常生活中我們對工作(work)的理解有點相關:世人為了完成一些目標(大多是想獲取金錢報酬),而費心費力工作。

世人為了完成一些目標(大多是想獲取金錢報酬),而費心費力工作。圖/pixabay

不過,物理所講的功有明確的意義,使用的範圍也很清楚;相較之下,平常大家說的工作的意思就有些模糊,泛指很多事情。

動力與動量

動量(momentum)這個字看來不太一樣。物理學的動量是 γmv(相對論的珈瑪符號乘上物體靜止質量、再和物體速度相乘),是一種量化方式,用來描述粒子以已知速率往某個固定方向持續前進的傾向。若粒子的速率遠比光速小,γ會非常接近一, 所以能省略掉。

-----廣告,請繼續往下閱讀-----

而更廣義的動力(momentum)用來指稱政治運動,或其他社會變動及政策背後的推力。同樣的,一件事的動力愈大,也暗示它愈難停下。不過,這些領域都沒有明確定義何謂「動力」。

物理學中的「場」

到目前為止,我試著不要太常用一些字,但在之後的章節這些字會很常出現。其中一個就是「場」(-eld)。通常場是一片平坦土地的代稱,上頭種了些植物,可能有農夫在照顧,也許還會有幾頭乳牛。

此外這個字也可以代表特定的研究領域或專業,往前翻你就會知道我已經用過這個意思了。這兩個意思其實也可以合併使用,像在解釋稻草人為什麼可以獲得終生教職的時候,就會用到。

物理學的「場」有個更技術性,但還是和前面意義相關的定義。物理學家說的場是個物理量,在空間中某個區域的每個點上都有特定的對應值。如果你待在一個房間內,就可以用各式各樣的場來描述這個環境。身為一位物理學家,你或許會這麼做:

-----廣告,請繼續往下閱讀-----

首先你要想出一個方式來明確指出房間中的每一個點。有個好辦法是先選定房間地面的某個角落為「原點」。

首先你要想出一個方式來明確指出房間中的每一個點。有個好辦法是先選定房間地面的某個角落為「原點」。圖/pixabay

然後選取交於原點的其中一個牆面,沿著地面平行於這面牆的方向走過一段距離(稱為x);接著再順著平行另一面牆的方向走一段(稱為y),你就能碰到地上所有的點。進一步的,只要往上走段距離(叫作z),就可以抵達房間內所有的點了。你需要的只有三個數字:x、y、z。

幾種有用的場

現在可以來談談幾種有用的場了。舉例來說,溫度就是一種場,房間裡的每一點都有一個溫度值。假設平均來看,我們說房內的溫度是攝氏二十一度;如果房間中每一處的溫度都和平均值一樣,那麼你得到的就是一個常量場(constant field):場的值和點的位置無關,也就是和x、y、z沒有關係。

溫度就是一種場。圖/pixabay

然而,天花板附近的溫度很有可能比地面的高出一點,因為熱空氣的密度比冷空氣小,會升向天花板。我們可以用某個場來描述溫度與高度的關係,好比T(z),換句話說,溫度T只和高度z有關。

-----廣告,請繼續往下閱讀-----

T是z的函數(function。另一個生活常用字「功能」,這次是被數學家借去用了),可能像T(z) =20.5 + 0.5z,這裡的z以公尺為單位、而T以攝氏溫標(℃)為單位,舉例來說。在兩公尺高的房間內,地面的溫度是 20.5 + 0.5×0 = 20.5℃,而天花板的溫度則是 20.5 + 0.5×2 =21.5℃。

至於天花板和地板之間其他每一點的溫度,都可以用這個溫度場的函數計算出來。其他的場可以用來描述不同的事情,好比空氣密度,或甚至是噪音量。

以上所談的場在每個點都只由一個數字代表。這些場有大小,卻沒有方向。因此我們稱它為「純量場」(scalar -eld)。「純量」(scalar)代表只有大小、卻沒有方向的東西。

某些種類的場則擁有方向,我們叫這種場為「向量場」(vector field)。我之前有提到一些向量場的例子,像是大型強子對撞機的磁鐵製造的電場與磁場。這個房間也有重力場這個向量場。重力場在房內的每一點都有個值(力的大小大約是每公斤九.八牛頓),以及方向(指向地面)。

-----廣告,請繼續往下閱讀-----

實際上,電場和磁場都是量子場,重力場可能也是,但科學家還不清楚相關理論。在日常用途中這件事常被忽略掉,但如果你在極小的尺度下觀察這些場,就會發現它其實不是個數值連續體,而是底層的量子場中一連串離散(discrete,意思是不連續,如階梯般一級一級,而不是如漸層色彩一樣柔和變化)的量子、或激發(excitation)的總和(疊加)。

discrete,意思是不連續,如階梯般一級一級,而不是如漸層色彩一樣柔和變化。圖/pixabay

這些激發有點像是波又有點像粒子。電磁學的量子理論―量子電動力學擁有兩個場,分別是光子場以及電子場。我們量測到的電磁波,或是獨立的光子及電子,都是這兩個場的激發。這裡我們又看到一個科學家借用日常名詞的例子。很明顯「激發」和平常我們的用法緊密相關,因為量子場論是個扣人心弦(exciting)的理論。

無論是不是量子理論,場的概念都是一樣的。場是個物理量,在你感興趣的空間範圍內的每一點,都擁有對應的值,可能是單純的數值或是很多個量子的總和。

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
貓頭鷹出版社_96
62 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

3
1

文字

分享

0
3
1
一卡在手便利無窮,悠遊卡的設計原理——《我們的生活比你想的還物理》
商周出版_96
・2022/12/05 ・2482字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

時事話題

NEWS|在課堂介紹電磁波概念時,有位同學佳琦舉手提問筆者:「老師,用悠遊卡刷進捷運站非常方便,那個背後的原理和電磁波有關嗎?」另一位同學婕妤回答:「應該是悠遊卡會發出電磁波,傳遞訊息到門閘的感應器吧?」

悠遊卡如今早已融入臺灣大都會的生活中,不論是捷運、超商、購物或搭乘公車,悠遊卡在手,便利許多。然而,悠遊卡內並無電池,也不需要插入讀卡機,為何能夠溝通而傳遞資訊呢?

刷悠遊卡進出捷運站,其背後原理和電磁波有關嗎?圖/Pixabay

為何沒裝電池的悠遊卡可以產生電流?

悠遊卡系統主要是應用法拉第電磁感應定律來辨識與傳遞資訊,此與無接觸感應技術有關,該技術稱為「無線射頻辨識系統」(radio frequency identification,RFID)。完整的一套無線射頻辨識系統,是由讀卡機(reader)、電子標籤(tag)和應用程式資料庫電腦系統部分所組成。

運作過程先由讀卡機發射一特定頻率的無線電波能量給電子標籤,藉此驅動標籤內建電路,輸送內部的身分代碼,以開啟溝通之路。

-----廣告,請繼續往下閱讀-----

若以法拉第電磁感應的物理概念解釋,讀卡機產生變動磁場, 同步提供電子標籤變動磁場,驅動電子標籤產生感應電流,也就是讓悠遊卡內部迴路產生感應電流,並讓電子標籤發送身分代碼訊息給讀卡機,也即驅動內部晶片能夠發送訊號,讀卡機依序接收資訊、解讀此身分代碼,再透過應用程式資料庫系統讀取悠遊卡內的晶片資料,完整達成溝通與解讀任務。

電子標籤發送身分代碼訊息給讀卡機,即驅動內部晶片發送訊號。圖/維基百科

每一張悠遊卡都有獨立的電子標籤,當卡片靠近悠遊卡標誌的磁場感應範圍內,即可透過電磁感應的原理,驅使電子標籤內的線圈產生感應電流,此電流供應電子標籤傳送資訊至讀卡機,以解讀晶片資料。

或許讀者會好奇,沒有電池的悠遊卡怎麼產生電流呢?這個問題也需要以法拉第電磁感應定律說明。

依法拉第電磁感應定律,悠遊卡的線圈迴路會因為磁場強弱的變化,以及通過的面積區域角度變化而產生類似電池驅動電流功能的「感應電動勢」,或稱為感應電壓。此感應電壓大小與線圈匝數及每匝線圈中磁場隨時間的變化率有關。匝數愈多,磁場變化率愈大,悠遊卡迴路中的感應電壓愈大,產生的感應電流就愈大。

-----廣告,請繼續往下閱讀-----
當卡片靠近標誌的磁場感應範圍內,即透過電磁感應產生感應電流。圖/《我們的生活比你想的還物理

因此,悠遊卡雖然沒有內建電池,但可以透過電磁波的應用,採用無線射頻辨識系統,在運作時,讀卡機持續發出電磁波,當卡片接近時,其內部線圈產生感應電動勢,再進一步驅動感應電流。此感應電流讓卡片內的晶片發出電磁波,回傳必要的資訊給讀卡機,完成感應過閘的流程。

以臺北、臺中和高雄的悠遊卡來說,採用的是無線射頻辨識系統模式,屬於比較低頻率的電磁波,卡片必須距離讀卡機約 14 公分內,才能讀取卡片的晶片資料。因此若將悠遊卡裝在比較厚的皮夾或兩張磁卡疊在一起,可能無法第一時間完成讀卡,而形成「卡片無法讀取」的「卡卡」現象,建議單純使用悠遊卡過閘,較能順暢通過閘門。

其他如進出家門的感應磁扣、停車場的票卡、信用卡感應支付、國道收費系統 ETC 等,皆是應用無線射頻辨識系統 RFID 的技術,只不過國道收費系統 ETC 的感應器的感應距離約需 60 公尺內,才能順利讀取通過車輛的相關資訊。

台灣高速公路的電子道路收費系統(electronic toll collection, ETC)。圖/維基百科

物理小教室

  • 手機行動支付的物理學原理

手機支付的運作原理也是基於 RFID 發展而出的近場通訊(near-field communication,NFC) 技術。目前近場通訊技術採用頻率為 13.56 MHz 的電磁波,以 106 kbit/s、212 kbit/s 或 424 kbit/s 這 3 種速率傳輸資料,bit 翻譯為位元,是電腦資料的最小單位。

-----廣告,請繼續往下閱讀-----

利用手機支付時,須靠近刷卡機約 4 公分距離內,此時可藉由電磁波傳遞相關資訊,完成付款手續。近場通訊技術不只有用在手機支付, 也可運用傳輸文字、照片、音樂檔案,是目前手機常見的內建功能。

  • 電磁感應的進階說明

電動勢(electromotive force, emf)可以驅動導體內的電荷移動, 產生電流。電池因為內部材料的屬性,會在正負極產生固定的電位差或電壓。電動勢是電池正負極間的電位差,也常稱為電壓,其國際單位制(SI)單位為伏特(V)。

導體內的電流與電壓成正比,假設導線的電阻及電池的內電阻都可略去不計,電路中流動的電流是電壓與電阻相除後的數值。可知電池的電動勢,可以驅動迴路上的電流,讓燈泡發光發熱。

然而,一個未接電源的迴路導線圈,可不可能產生電流?可以。若是通過迴路導線圈的磁場變化或磁通量改變,也會產生感應電流,這是發電機的原理,也是物理學家法拉第和冷次的電磁感應概念。

-----廣告,請繼續往下閱讀-----

電磁爐和捷運列車的磁煞車也是運用電磁感應的概念。電磁爐內部的主要構造是由絕緣體包覆的導線環繞的線圈,當交流電通過線圈時, 電磁爐表面就會產生隨時間改變的磁場,這個磁場的變化會同時在鍋子底面產生應電流,再透過電流熱效應加熱鍋子,也加熱食物。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。