0

0
0

文字

分享

0
0
0

電磁學奇才:麥可.法拉第 (Michael Faraday)

程式人雜誌
・2013/10/15 ・5455字 ・閱讀時間約 11 分鐘 ・SR值 570 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文/陳鍾誠(國立金門大學資工系助理教授)
圖、麥可·法拉第的肖象素描由約翰·瓦特金所畫,現存於大英圖書館
圖/麥可.法拉第的肖象素描
由約翰.瓦特金所畫,現存於大英圖書館

麥可.法拉第(英語:Michael Faraday,1791 年 9 月 22 日-1867 年 8 月 25 日),英國物理學家在電磁學及電化學領域做出很多重要貢獻。

西方科學與工業之間,總是存在某種相互促進的關係,在科學的發展過程當中,總是呈現「理論 – 實驗 – 理論 – 實驗……」 這樣的發展循環,而法拉第所代表的,極度的偏向「實驗」這一端,他一生當中做過了無數的實驗,這些實驗遍佈了 整個電磁學領域,讓後來的「馬克斯威」可以透過解讀他的實驗結果,運用深厚的數學內功提出了電磁學的完整理論架構, 並創造出了「馬克斯威方程式」,如果沒有法拉第,或許就沒有「馬克斯威」的電磁學理論了。

出身

法拉第出生於英國紐因頓,接近現在的倫敦大象堡。法拉第家的經濟狀況並不好,他的父親詹姆士是個鐵匠以及基督教桑地馬尼安教派的一員,於 1780 年代從英格蘭的西北部來到倫敦。由於家境貧窮,因此他只好靠自學求取知識。14 歲時,他成為書本裝訂商及銷售人喬治.雷伯的門生。7 年學徒生涯中,他讀過大量書籍,包括以撒.華茲的「悟性的提升」,書中對於學習的原則與建議,法拉第一直遵行不輟。另外,他也從由珍.瑪西女士 所寫的「化學閒聊」中得到很多啟發。在這些大量的閱讀之中,法拉第漸漸樹立起對科學的興趣,這其中, 又以電學為甚。

1812 年,時齡二十歲,隨著門生生涯走入尾聲,法拉第開始旁聽由赫赫有名的皇家研究機構的一員以及英國皇家學會會長:漢弗里.戴維爵士以及市立哲學協會的創始者:約翰.塔特姆所開的演講。 參加這些演講的門票大多是由威廉.譚斯(皇家愛樂協會的創辦人之一)給予法拉第。之後有一次,法拉第將自己在演講中細心抄錄,並旁徵博引,內容達三百頁的筆記拿給戴維過目,戴維立刻給予他相當友善且正面的答覆。 也因此,戴維在一次三氯化氮實驗中發生意外,視力受損之後,便僱用了法拉第作為他的秘書。當皇家研究院中一位助手約翰.培恩離開後,他們便請求戴維尋找替代人選。戴維在 1813 年 3 月 1 日推薦法拉第成為化學助理。 由於法拉第在印書店的新僱主亨利.德拉羅許脾氣暴躁,他毫不猶豫的離開了這份舊工作。

-----廣告,請繼續往下閱讀-----

行事作風在當時的階級分明的英國社會中,出身卑微的法拉第並不被認同為一個紳士

在 1813 年五月,戴維展開一次長期的歐洲巡迴。由於他的侍從並不想跟隨,法拉第原本是以助手的身份跟去, 卻被要求同時作戴維的僕人,直到在巴黎找到人代替為止。戴維最後沒有找到代替者, 法拉第也因此被強迫在整個旅行中同時兼任僕人與助手。戴維的妻子珍.亞普莉絲不願意平等 對待法拉第,旅行時要他坐在馬車外,與傭人一起吃飯,法拉第的處境越來越悽慘,甚至開始 考慮獨自回到英國放棄科學研究。不過這次旅行,也讓他接觸了歐洲許多的科學菁英, 刺激出他許多想法。逆境最終沒有阻擋住法拉第在科學上的貢獻。在旅行過後不久, 法拉第的成就便超越了戴維。

法拉第的主要贊助者兼顧問為約翰.『瘋狂傑克』.富勒,他在皇家研究院裡創立了富勒里安化學教授這個職位。

在 1824 年,法拉第被選為皇家學會院士,並於 1825 年被指派為實驗室主任。1833 年他被選為皇家研究院終身職,任職而不需講課。

法拉第是一名高度虔誠的教徒,他是桑地馬尼安教派(蘇格蘭國教會的一分支)的信徒,曾在其中任兩任長老。 此教派是由蘇格蘭長老會牧師格拉斯於 1730 年創立,此教要求完全的信奉和承諾。傳記學家曾經認為「一種神與自然融為一體的感覺貫穿了法拉第的生活與工作」。法拉第在 1821 年娶沙拉.巴娜德為妻,不過膝下無子。 他們由於參加桑地馬尼安教會而認識。

雖然法拉第只受過很少的正式教育,這使得他的高等數學知識(例如微積分)相對有限,但不可否認, 法拉第仍是歷史上最有影響力的科學家之一。某些科學史學家認為他是科學史上最優秀的 「實驗主義者」。其科學知識可能主要是在擔任另一科學家戴維的助手時所學習而來,因而雖然法拉第不曾受過高等教育,但仍可把漢弗里.戴維視為法拉第的指導教授。

-----廣告,請繼續往下閱讀-----

由於道德原因,法拉第拒絕參與為「克里米亞戰爭」製造化學武器。在倫敦薩弗伊廣場,電工程師協會外,聳立著一個法拉第的雕像, 而在布魯內爾大學新建的一個接待廳以法拉第為名。

電磁學研究

1821 年,在丹麥化學家「漢斯.奧斯特」發現電磁現象後,「戴維」和「威廉.海德.渥拉斯」頓嘗試設計一部電動機,但沒有成功。 法拉第在與他們討論過這個問題後,繼續工作並建造了兩個裝置以產生他稱為「電磁轉動」的現象:由線圈外環狀磁場造成的連續旋轉運動。 他把導線接上化學電池,使其導電,再將導線放入內有磁鐵的汞池之中,則導線將繞著磁鐵旋轉。這個裝置現稱為單極電動機。 這些實驗與發明成為了現代電磁科技的基石。

但此時法拉第卻做了一件不智之舉,在沒有通知戴維跟渥拉斯頓情況下,擅自發表了此項研究成果。此舉招來諸多爭議, 也迫使他離開電磁學研究數年之久。

在這個階段,有些證據指出戴維可能有意阻礙法拉第在科學界的發展。如在 1825 年,戴維指派法拉第進行光學玻璃實驗, 此實驗歷時六年,但沒有顯著的進展。直到 1829 年,戴維去世,法拉第停止了這個無意義的工作並開始其他有意義的實驗。 在 1831 年,他開始一連串重大的實驗,並發現了電磁感應,雖然在福朗席斯科.札德啟稍早的工作可能便預見了此結果, 此發現仍可稱為法拉第最大的貢獻之一。

-----廣告,請繼續往下閱讀-----

這個重要的發現來自於,當他將兩條獨立的電線環繞在一個大鐵環,固定在椅子上,並在其中一條導線通以電流時, 另外一條導線竟也產生電流。他因此進行了另外一項實驗,並發現若移動一塊磁鐵通過導線線圈,則線圈中將有電流產生。 同樣的現象也發生在移動線圈通過靜止的磁鐵上方時。

他的展示向世人建立起「磁場的改變產生電場」的觀念。此關係由法拉第電磁感應定律建立起數學模型, 並成為四條馬克士威方程組之一。這個方程組之後則歸納入場論之中。

1839 年他成功了一連串的實驗帶領人類了解電的本質。法拉第使用「靜電」、電池以及「生物生電」已產生靜電相吸、 電解、磁力等現象。他由這些實驗,做出與當時主流想法相悖的結論,即雖然來源不同,產生出的電都是一樣的, 另外若改變大小及密度(電壓及電荷),則可產生不同的現象。

在他生涯的晚年,他提出電磁力不僅存在於導體中,更延伸入導體附近的空間裡。這個想法被他的同儕排斥, 法拉第也終究沒有活著看到這個想法被世人所接受。法拉第也提出電磁線的概念:這些流線由帶電體或者是磁鐵 的其中一極中放射出,射向另一電性的帶電體或是磁性異極的物體。這個概念幫助世人能夠將抽象的電磁場具象化, 對於電力機械裝置在十九世紀的發展有重大的影響。而這些裝置在之後的十九世紀中主宰了整個工程與工業界。

1845 年他發現了被他命名為抗磁性 (diamagnetism) 的現像 (現在則稱為法拉第效應):一個線性極化的光線在經過一物體介質時,外加一磁場並與光線的前進方向對齊,則此磁場將使光線在空間中劃出的平面轉向。 他在筆記本中寫下:「我終於在『闡釋一條磁力曲線』——或者說『力線』——及『磁化光線』中取得成功。」(”I have at last succeeded in illuminating a magnetic curve or line of force and in magnetising a ray of light“)。這個實驗證明了光和磁力有所聯繫。

-----廣告,請繼續往下閱讀-----

筆者註:這個實驗暗示了光很可能是一種電磁波,於是後來馬克士威推論出電磁波速度等於光速時,幾乎就立刻體悟了這個結論。

在對於靜電的研究中,法拉第發現在帶電導體上的電荷僅依附於導體表面,且這些表面上的電荷對於導體內部沒有任何影響。 造成這樣的原因在於在導體表面的電荷彼此受到對方的靜電力作用而重新分佈至一穩定狀態,使得每個電荷對內部造成的 靜電力互相抵銷。這個效應稱為遮蔽效應,並被應用於「法拉第籠」這個隔絕電磁波的裝置上。

化學研究

法拉第最早的化學成果來自於擔任戴維助手的時期。他花了很多心血研究氯氣,並發現了兩種碳化氯。 他也研究過氣體擴散現象,並成功的液化了多種氣體;然後研究過不同的鋼合金,並進行過光學的實驗,更製造出多種新型的玻璃。 其中一塊玻璃樣品後來在歷史上佔有一席之地,因為在一次當法拉第將此玻璃放入磁場中時,他發現了極化光平面受磁力造成偏轉及被磁力排斥。

法拉第在戴維去旅行時曾代理職務,並接受分析委託,其中最著名的三項委託是:

  1. 分析源自托斯卡尼的天然生石灰
  2. 原住土著的標槍頭研究(分析出「矽鋼」)
  3. 大馬士革騎兵彎刀

其中第三項的彎刀研究,發現古敘利亞可能有鉑礦場,並加入鉑礦使之輕巧但卻鋒利無比,連西方騎兵重軍刀都能被削斷。

後來英國人經過不斷的嘗試之後,終於發明了「碳鋼」,這使大英帝國的騎兵在中東戰場能夠擊破大馬士革的彎刀。

-----廣告,請繼續往下閱讀-----

他也盡心於創造出於一些化學的常用方法,用結果、研究目標以及大眾展示做為分類,並從中獲得一些成果。 他發明了一種加熱工具,是本生燈的前身,在科學實驗室廣為採用,作為熱能的來源。

法拉第在多個化學領域中都有所成果,發現了諸如苯等化學物質(他稱此物質為雙碳化氫 bicarburet of hydrogen),發明氧化數,將如氯等氣體液化。他找出一種氯水合物的組成,這個物質最早在 1810 年由戴維發現。

法拉第也發現了電解定律,以及推廣許多專業用語,如陽極、陰極、電極及離子等,這些詞語大多由威廉.休艾爾 發明。由於這些成就,很多現代的化學家視法拉第為有史以來最出色的實驗科學家之一。

法拉第電磁感應定律

法拉第電磁感應定律是電磁學中的一條基本定律,跟變壓器、電感元件及多種發電機的運作有密切關係。定律指出: 任何封閉電路中感應電動勢的大小,等於穿過這一電路磁通量的變化率。

-----廣告,請繼續往下閱讀-----

這個定律與安培定律,基本上就是馬克斯威方程式的兩大核心定律。

這兩大定律,讓「電生磁、磁生電」的循環建立起來了,於是、「電磁學的世界」有了一個堅實的理論基礎。

然後、這個世界裏更多的科學家與工程師連手,打造出了「發電機、馬達、天線、電磁爐、有線與無線的電子電機設備」等等, 像是「馬達」與「發電機」就完全是依靠「法拉第與安培」定律所打造出來的設備,如下圖所示。

MotorEGenerator
圖/馬達與發電機的構造與原理

法拉第電解定律

法拉第在電化學上也貢獻良多,例如他發現在物質電解過程中,參與電極反應的質量與通過電極的電量成正比。 換句話說,不同物質電解的質量則正比於該物質的化學當量,這個發現可以寫成以下定律。

其中 n 為 1 莫耳物質電解時參與電極反應的電子的摩爾數(即化合價),(M/n)又稱化學當量(Eq); F 為法拉第常數,即電解 1 電化學當量物質所需電量。

-----廣告,請繼續往下閱讀-----

法拉第電解定律適用於一切電極反應的氧化還原過程,是電化學反應中的基本定量定律。

晚年

1848 年,受到艾伯特王夫引見,法拉第受賜在薩里漢普頓宮的恩典之屋,並免繳所有開銷與維修費。這曾是石匠師傅之屋, 後稱為法拉第之屋,現位於漢普頓宮道 37 號(No.37 Hampton Court Road)。在 1858 年,法拉第退休並在此定居。

在他有生之年中,他推辭了封爵並且兩次拒絕成為皇家學會會長。他在 1867 年 8 月 25 日死於位於漢普頓宮的家中。 在西敏寺,艾薩克.牛頓的墓旁座落著他的紀念碑。但是他拒絕在西敏寺下葬,而入土於桑地馬尼安教派的海格特墓園中。

結語

在閱讀了法拉第的故事之後,感覺到科學界似乎有兩類不同的典型,像是「法拉第、愛迪生、瓦特、萊特兄弟」等人, 是屬於做實驗與應用的「劍宗高手」,這類科學家往往可以創造出很多偉大的發明與實驗結果。

而另一類科學家,像是「馬克斯威、牛頓、愛因斯坦」等人,則是數學很強的「氣宗高手」,他們雖然實驗與應用能力 不見得很好,但是透過深厚的數學內功,往往可以把前人的實驗結果解讀後,創建出一個完整的理論體系,而這個理論體系, 最後會成為下一波「劍宗高手」的「武學秘笈」,指引他們「邁向下一個偉大的航道」啊!

最令我感動的是,法拉第的謙虛,以及對馬克士威的友好態度,並且與他結成忘年之交,兩人共同構築了電磁學理論的科學體系。 (雖然當初戴維與她太太瞧不起法拉第,但是法拉第成名後並沒有向他們一樣變成高傲的人,相反的卻很樂意提攜後進)。

這種透過「理論與實驗結合」,以及「學術與產業的結合」,讓整個世界的科學,不斷的突破進展的精神,是我一直認為台灣所缺乏的, 我想,整個國家需要的不是「個人利益的算計」,而是一種「無私奉獻精神的良性循環」,只有透過這種良性循環,才能讓國家或全人類都能真正獲得 進步的動力啊!

如果、這個世界只有「氣宗」或者只有「劍宗」的話,應該不會如此多采多姿吧!

參考文獻

【本文由陳鍾誠取材並修改自 維基百科 與 OpenStax College 的 College Physics 一書,採用創作共用的 姓名標示、相同方式分享 授權】

-----廣告,請繼續往下閱讀-----
文章難易度
程式人雜誌
9 篇文章 ・ 1 位粉絲
程式人雜誌是一個結合「開放原始碼與公益捐款活動」的雜誌,簡稱「開放公益雜誌」。開放公益雜誌本著「讀書做善事、寫書做公益」的精神,我們非常歡迎程式人認養專欄、或者捐出您的網誌。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
2

文字

分享

0
1
2
室溫超導體:開啟未來世界的鑰匙?
Castaly Fan (范欽淨)_96
・2023/09/26 ・3942字 ・閱讀時間約 8 分鐘

2023 年 7 月 23 日,來自南韓的研究團隊發表了《The First Room-Temperature Ambient-Pressure Superconductor》,宣示著世界上第一個室溫常壓超導體被成功發明。文章剛刊登到 arXiv 上,便掀起了全球各地的研究熱潮,不少媒體競相報導,科技市場、各種概念股也沸騰著。那麼,「室溫超導體」究竟是何方神聖?

超導體——能源損耗的救星?

相信大家對於這個詞並不陌生、卻又不甚熟悉。在中學時代理化課,我們接觸過「導體」這個詞;在關注科技業或者財經新聞時,可能接觸過「半導體」這個詞。而「超導體」(superconductor)究竟是什麼?

首先,「超導」是一種物理性質,在距今大概一百多年前便被發現。最早可以追溯到 1911 年,科學家發現:將汞(水銀)透過液態氦冷卻至 4.2 K(相當於 -268.95 °C)時,電阻將完全消失,這便是「超導現象」的開端。因此,「低溫」似乎是開啟新世界的一把鑰匙。而電阻消失有什麼幫助?

事實上,我們生活周遭的一切都是在無窮的損耗中進行的,以電子產品和通訊設備為例,這些電路元件與器材的運作源於電流,亦即導線內部電子的游動,但這個傳輸過程是耗能的,因為電子會不斷與導線內壁的原子碰觸、摩擦,從而消耗到不少能量,同時也意味著導線壽命會隨時間衰減。電路損耗的能量與電阻成正比(P = I²R),如果電阻消失了,那意味著損耗的電熱能也將消失,這將大幅提升電子在線路中的傳輸效率,從電力傳輸、通訊、發電機,到交通工具、家用電器等層面,使用效能都將顯著提升。

-----廣告,請繼續往下閱讀-----

到了 1933 年,物理學家發現:當物質低於臨界溫度變成超導體時,會具有「完全抗磁性」,也就是原本應該穿過物體本身的磁力線會巧妙地從旁「繞過」,這個現象被稱為「麥斯納效應」(Meissner effect)。這個效應帶來了超導體的「懸浮」性質,也就是在不用任何外力的接觸下,在足夠的低溫環境中、超導體便可以藉由抗磁性讓物體「懸浮」而起。我們知道,凡是有接觸便有摩擦力的產生,而摩擦力會損耗不少熱能,因此,如果可以不透過外力接觸而操控物體、就意味著沒有了摩擦力、也就可以不再擔心能量的損耗。

A diagram of a sphere and a line

Description automatically generated
麥斯納效應示意圖:當超導材料低於臨界溫度時(右),便可產生完全抗磁性。圖/Wikimedia

簡而言之,我們可以歸納「超導體」具有下列兩大特性:

  • 超導電性:在臨界溫度以下,電阻消失,意味著能量損耗可被降至最小值。
  • 完全抗磁性(麥斯納效應):在臨界溫度以下,磁力線被排斥於物體之外,意味著超導體可具有懸浮特性。

科幻電影中,那些飛快如光的磁浮列車、懸空而起的滑板、或者看似反重力的幽浮,這些都可以透過超導實現,因此,未來世界很可能充滿著各個類型的超導設備。即使在今日,相關的應用也已出現,比如日本便在數十年前研發出「超導磁浮列車」(SCMaglev),2015 年測試的最高時速即達到每小時 603 公里,刷新了地表上速度最快的列車紀錄。

室溫超導體——物理學的聖杯

然而,你或許也發現了,「超導體」並非唾手可得,至少需要「低溫」這個條件,又或者「高壓」 。

-----廣告,請繼續往下閱讀-----

而低溫不僅僅是冰點這樣的溫度,而是接近「絕對零度」(0 K,即 -273.15 °C) 的「極低溫」,因此,開發出「高溫超導體」成為了物理學家的重要目標,而這裡的「高溫」並不是讓水煮沸、會讓你燙傷的溫度,而是指高於絕對溫標 77 K(-196.2 °C,即液態氮的沸點)的溫度。這個對人類來說已是難以想像的低溫、對超導體而言卻是相對的高溫。截至 2023 年,人類所開發出最高溫的超導體是一種名為 lanthanum decahydride(十氫化鑭,LaH₁₀)的化合物,其臨界溫度是 250 K(-23 °C),在 200 GPa(相當於接近兩百萬大氣壓)的環境下才得以實現超導特性。

A diagram of a molecule

Description automatically generated
目前已知被證實的高溫超導體——「十氫化鑭」的化學結構。圖/acs.org

由此可知,要開發出「高溫超導體」實屬不易,發明出「室溫」、「常壓」的超導體基本上更是難上加難。且液態氦、液態氮這些低溫材料都是需要一定的成本,再加上要定溫保存更是不易,因此,倘若室溫超導體能被成功發明,這意味著不僅能大幅降低成本、還能大幅提升運作效能。

LK-99——睽違已久的聖杯、或是泡影?

回到文章一開始的新聞:2023 年 7 月下旬,韓國科學技術研究院 (KIST)以李石培、金智勳為主的研究團隊宣稱他們開發的材料「LK-99」在「室溫」、「常壓」環境下具有超導特性。這次的實驗紀錄號稱:他們的 LK-99 材料具有室溫超導特性,且上限可以到達 400 K(127 °C)這名副其實的「高溫」,並且是在正常大氣壓力下完成的——這遠遠勝過上一個高溫超導體 250 K、200 GPa 的紀錄;不僅如此,這個「LK-99」製作過程超乎想像地簡易,基本上待在實驗室不用三天就可以完成!擁有這麼良好特性、且製作過程又特別上手的超導材料如果被證實,勢必掀起第四次工業革命。

A diagram of a molecule

Description automatically generated
LK-99 的晶體結構側視圖。圖/https://arxiv.org/pdf/2307.16040.pdf

讓我們先來看看這個團隊在論文中的研究內容:首先,這個「LK-99」是近似於 Pb₉Cu(PO₄)₆O 的化合物,從化學式來看,可以發現鉛(Pb)、銅(Cu)、磷(P)這些都是不難到手的化學元素。而製作過程基本上就是研磨、混合、加熱、密封、抽真空等步驟,來回大概三天以內、就能生成 Pb₉Cu(PO₄)₆O,也就是 LK-99。根據他們的論文所述,這個晶體結構的形變會在材料內部產生應力,從而在特定截面產生「超導量子阱」(superconducting quantum well,SQW),致使材料產生了超導特性。這一系列過程都在常溫、常壓下進行的,且LK-99的超導特性可以維持到攝氏 127 度的高溫。

-----廣告,請繼續往下閱讀-----

簡單來說,這個 LK-99 的超導性質與溫度、壓力無關,而是肇因於晶體本身,特定的結構形變導致了物質產生超導現象。在他們發布的影片中,可以看見灰黑色的 LK-99「部分懸浮」在磁鐵上,這是他們用來佐證「完全抗磁性」(麥斯納效應) 的證據,之所以沒有完美地懸浮是因為晶體的雜質所導致;此外,他們也宣稱測量結果顯示零電阻率,也就是電阻完全消失的「超導電性」。當「零電阻率」、「完全抗磁性」這兩個條件充分具備後,LK-99 便可以被視為一個成功的室溫超導體。

A black piece of coal on a round metal container

Description automatically generated
影片中所顯示的 LK-99 具有部分懸浮的特性。圖/Wikimedia

在論文推出後,世界各地的學術機構與實驗室開始著手復現 LK-99 的製備過程、並競相發表研究成果,短短不到兩週時間,關於 LK-99 的復現實驗以及理論相關的研究已經有二十多項。然而,截至目前(2023 年 8 月 10 日)為止,尚未有成功復現、且通過同行審核被登上期刊的成果(論文發表在學術預印本網站 arXiv,一般需要通過同行審核才有機會被刊登在期刊)。實驗的成果不盡相同,有些證明了 LK-99 的懸浮與抗磁性、有些證明了零電阻率,但也有一些只有觀測到電阻的跳變、有些甚至沒有觀測到任何結果。

一個值得注意的部分是:即使韓國研究團隊的論文中宣稱他們觀測到 LK-99 的抗磁性,也有不少團隊復現 LK-99 的懸浮特性,然而,這並不能斷定它來自於「麥斯納效應」。事實上,不少磁性物質都會有「抗磁性」,這來自於微觀的分子磁矩;但超導體所具備的是由宏觀「超導電流」產生的「完全抗磁性」(注意:本文目前為止強調的都是「完全」抗磁性),甚至能因麥斯納效應產生的磁通量而「固定懸浮」在同一位置(即使將底座磁鐵 180 度反轉,它也應當平穩地懸浮在相同的角度——這背後是複雜的量子機制,而非磁場或靜力平衡的結果)。另一方面,即使一些實驗發現了該物質有「零電阻」的結果,但這並不全然等同於「零電阻率」,因為如果測量的尺寸過小、也是會有量測不出電阻的可能性。因此,目前大部分的研究指向大概是:LK-99 或許具有抗磁性,但並未被證實存在有明確的超導行為。

歷史借鏡與未來展望

事實上,物理學家對於室溫超導的聖杯之旅一直以來從未間斷。舉例而言,2020 年,美國羅徹斯特大學以迪亞斯(Ranga P. Dias)為首的團隊便號稱開發出了一種名為 carbonaceous sulfur hydride 的超導材料,利用鑽石生成,並在 288 K (15 °C)、267 GPa 的環境下具有超導特性,甚至登上《自然》期刊,但該論文在兩年後因為統計分析結果的瑕疵而被撤銷;2023 年初,該團隊再次宣稱開發出了以 lutetium hydride(氫化鑥)為主的超導材料,這次的結果更令人驚豔——在 294 K (23 °C)、1 GPa(約莫一萬大氣壓)下便具有超導特性。可惜的是,該論文後來也因為涉嫌抄襲與偽造數據而被撤下。

-----廣告,請繼續往下閱讀-----

科學最重要的一個評判標準就是它必須是「可證偽的」(falsifiable),對於從事實驗的科研人員而言,一個發明是否能被確立最關鍵的要素便在於實驗「可復現」(repeatable) 與否。如果一個實驗無法被成功復現,便很難說服學界接受研究成果。目前看來,南韓團隊所研發的 LK-99 可能無法算是成功的室溫超導體,不過我們也無需氣餒;儘管 LK-99 的超導行為目前尚未被成功復現與證實,但多少也給人們開闢一條研究蹊徑。

人類對於室溫超導體的探索從未間斷,物理學家們也嘗試以各種材料進行研發、希冀能儘早將璀璨的遠景付諸現實。雖然人們所憧憬的那種像科幻片中先進且便捷的「未來世界」可能不會在明天就來臨,但以當前科學日新月異的發展步調來說,也許已是指日可待。

A train on a track

Description automatically generated
超導的應用早已陸續浮現在生活中,日本的超高速列車 SCMaglev 便用到了低溫超導的磁浮特性。圖/scmaglev.jr
-----廣告,請繼續往下閱讀-----
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。

0

0
0

文字

分享

0
0
0
電磁學奇才:麥可.法拉第 (Michael Faraday)
程式人雜誌
・2013/10/15 ・5455字 ・閱讀時間約 11 分鐘 ・SR值 570 ・九年級

  • 文/陳鍾誠(國立金門大學資工系助理教授)

圖、麥可·法拉第的肖象素描由約翰·瓦特金所畫,現存於大英圖書館
圖/麥可.法拉第的肖象素描
由約翰.瓦特金所畫,現存於大英圖書館

麥可.法拉第(英語:Michael Faraday,1791 年 9 月 22 日-1867 年 8 月 25 日),英國物理學家在電磁學及電化學領域做出很多重要貢獻。

西方科學與工業之間,總是存在某種相互促進的關係,在科學的發展過程當中,總是呈現「理論 – 實驗 – 理論 – 實驗……」 這樣的發展循環,而法拉第所代表的,極度的偏向「實驗」這一端,他一生當中做過了無數的實驗,這些實驗遍佈了 整個電磁學領域,讓後來的「馬克斯威」可以透過解讀他的實驗結果,運用深厚的數學內功提出了電磁學的完整理論架構, 並創造出了「馬克斯威方程式」,如果沒有法拉第,或許就沒有「馬克斯威」的電磁學理論了。

出身

法拉第出生於英國紐因頓,接近現在的倫敦大象堡。法拉第家的經濟狀況並不好,他的父親詹姆士是個鐵匠以及基督教桑地馬尼安教派的一員,於 1780 年代從英格蘭的西北部來到倫敦。由於家境貧窮,因此他只好靠自學求取知識。14 歲時,他成為書本裝訂商及銷售人喬治.雷伯的門生。7 年學徒生涯中,他讀過大量書籍,包括以撒.華茲的「悟性的提升」,書中對於學習的原則與建議,法拉第一直遵行不輟。另外,他也從由珍.瑪西女士 所寫的「化學閒聊」中得到很多啟發。在這些大量的閱讀之中,法拉第漸漸樹立起對科學的興趣,這其中, 又以電學為甚。

-----廣告,請繼續往下閱讀-----

1812 年,時齡二十歲,隨著門生生涯走入尾聲,法拉第開始旁聽由赫赫有名的皇家研究機構的一員以及英國皇家學會會長:漢弗里.戴維爵士以及市立哲學協會的創始者:約翰.塔特姆所開的演講。 參加這些演講的門票大多是由威廉.譚斯(皇家愛樂協會的創辦人之一)給予法拉第。之後有一次,法拉第將自己在演講中細心抄錄,並旁徵博引,內容達三百頁的筆記拿給戴維過目,戴維立刻給予他相當友善且正面的答覆。 也因此,戴維在一次三氯化氮實驗中發生意外,視力受損之後,便僱用了法拉第作為他的秘書。當皇家研究院中一位助手約翰.培恩離開後,他們便請求戴維尋找替代人選。戴維在 1813 年 3 月 1 日推薦法拉第成為化學助理。 由於法拉第在印書店的新僱主亨利.德拉羅許脾氣暴躁,他毫不猶豫的離開了這份舊工作。

行事作風在當時的階級分明的英國社會中,出身卑微的法拉第並不被認同為一個紳士

在 1813 年五月,戴維展開一次長期的歐洲巡迴。由於他的侍從並不想跟隨,法拉第原本是以助手的身份跟去, 卻被要求同時作戴維的僕人,直到在巴黎找到人代替為止。戴維最後沒有找到代替者, 法拉第也因此被強迫在整個旅行中同時兼任僕人與助手。戴維的妻子珍.亞普莉絲不願意平等 對待法拉第,旅行時要他坐在馬車外,與傭人一起吃飯,法拉第的處境越來越悽慘,甚至開始 考慮獨自回到英國放棄科學研究。不過這次旅行,也讓他接觸了歐洲許多的科學菁英, 刺激出他許多想法。逆境最終沒有阻擋住法拉第在科學上的貢獻。在旅行過後不久, 法拉第的成就便超越了戴維。

法拉第的主要贊助者兼顧問為約翰.『瘋狂傑克』.富勒,他在皇家研究院裡創立了富勒里安化學教授這個職位。

在 1824 年,法拉第被選為皇家學會院士,並於 1825 年被指派為實驗室主任。1833 年他被選為皇家研究院終身職,任職而不需講課。

法拉第是一名高度虔誠的教徒,他是桑地馬尼安教派(蘇格蘭國教會的一分支)的信徒,曾在其中任兩任長老。 此教派是由蘇格蘭長老會牧師格拉斯於 1730 年創立,此教要求完全的信奉和承諾。傳記學家曾經認為「一種神與自然融為一體的感覺貫穿了法拉第的生活與工作」。法拉第在 1821 年娶沙拉.巴娜德為妻,不過膝下無子。 他們由於參加桑地馬尼安教會而認識。

-----廣告,請繼續往下閱讀-----

雖然法拉第只受過很少的正式教育,這使得他的高等數學知識(例如微積分)相對有限,但不可否認, 法拉第仍是歷史上最有影響力的科學家之一。某些科學史學家認為他是科學史上最優秀的 「實驗主義者」。其科學知識可能主要是在擔任另一科學家戴維的助手時所學習而來,因而雖然法拉第不曾受過高等教育,但仍可把漢弗里.戴維視為法拉第的指導教授。

由於道德原因,法拉第拒絕參與為「克里米亞戰爭」製造化學武器。在倫敦薩弗伊廣場,電工程師協會外,聳立著一個法拉第的雕像, 而在布魯內爾大學新建的一個接待廳以法拉第為名。

電磁學研究

1821 年,在丹麥化學家「漢斯.奧斯特」發現電磁現象後,「戴維」和「威廉.海德.渥拉斯」頓嘗試設計一部電動機,但沒有成功。 法拉第在與他們討論過這個問題後,繼續工作並建造了兩個裝置以產生他稱為「電磁轉動」的現象:由線圈外環狀磁場造成的連續旋轉運動。 他把導線接上化學電池,使其導電,再將導線放入內有磁鐵的汞池之中,則導線將繞著磁鐵旋轉。這個裝置現稱為單極電動機。 這些實驗與發明成為了現代電磁科技的基石。

但此時法拉第卻做了一件不智之舉,在沒有通知戴維跟渥拉斯頓情況下,擅自發表了此項研究成果。此舉招來諸多爭議, 也迫使他離開電磁學研究數年之久。

-----廣告,請繼續往下閱讀-----

在這個階段,有些證據指出戴維可能有意阻礙法拉第在科學界的發展。如在 1825 年,戴維指派法拉第進行光學玻璃實驗, 此實驗歷時六年,但沒有顯著的進展。直到 1829 年,戴維去世,法拉第停止了這個無意義的工作並開始其他有意義的實驗。 在 1831 年,他開始一連串重大的實驗,並發現了電磁感應,雖然在福朗席斯科.札德啟稍早的工作可能便預見了此結果, 此發現仍可稱為法拉第最大的貢獻之一。

這個重要的發現來自於,當他將兩條獨立的電線環繞在一個大鐵環,固定在椅子上,並在其中一條導線通以電流時, 另外一條導線竟也產生電流。他因此進行了另外一項實驗,並發現若移動一塊磁鐵通過導線線圈,則線圈中將有電流產生。 同樣的現象也發生在移動線圈通過靜止的磁鐵上方時。

他的展示向世人建立起「磁場的改變產生電場」的觀念。此關係由法拉第電磁感應定律建立起數學模型, 並成為四條馬克士威方程組之一。這個方程組之後則歸納入場論之中。

1839 年他成功了一連串的實驗帶領人類了解電的本質。法拉第使用「靜電」、電池以及「生物生電」已產生靜電相吸、 電解、磁力等現象。他由這些實驗,做出與當時主流想法相悖的結論,即雖然來源不同,產生出的電都是一樣的, 另外若改變大小及密度(電壓及電荷),則可產生不同的現象。

在他生涯的晚年,他提出電磁力不僅存在於導體中,更延伸入導體附近的空間裡。這個想法被他的同儕排斥, 法拉第也終究沒有活著看到這個想法被世人所接受。法拉第也提出電磁線的概念:這些流線由帶電體或者是磁鐵 的其中一極中放射出,射向另一電性的帶電體或是磁性異極的物體。這個概念幫助世人能夠將抽象的電磁場具象化, 對於電力機械裝置在十九世紀的發展有重大的影響。而這些裝置在之後的十九世紀中主宰了整個工程與工業界。

-----廣告,請繼續往下閱讀-----

1845 年他發現了被他命名為抗磁性 (diamagnetism) 的現像 (現在則稱為法拉第效應):一個線性極化的光線在經過一物體介質時,外加一磁場並與光線的前進方向對齊,則此磁場將使光線在空間中劃出的平面轉向。 他在筆記本中寫下:「我終於在『闡釋一條磁力曲線』——或者說『力線』——及『磁化光線』中取得成功。」(”I have at last succeeded in illuminating a magnetic curve or line of force and in magnetising a ray of light“)。這個實驗證明了光和磁力有所聯繫。

筆者註:這個實驗暗示了光很可能是一種電磁波,於是後來馬克士威推論出電磁波速度等於光速時,幾乎就立刻體悟了這個結論。

在對於靜電的研究中,法拉第發現在帶電導體上的電荷僅依附於導體表面,且這些表面上的電荷對於導體內部沒有任何影響。 造成這樣的原因在於在導體表面的電荷彼此受到對方的靜電力作用而重新分佈至一穩定狀態,使得每個電荷對內部造成的 靜電力互相抵銷。這個效應稱為遮蔽效應,並被應用於「法拉第籠」這個隔絕電磁波的裝置上。

化學研究

法拉第最早的化學成果來自於擔任戴維助手的時期。他花了很多心血研究氯氣,並發現了兩種碳化氯。 他也研究過氣體擴散現象,並成功的液化了多種氣體;然後研究過不同的鋼合金,並進行過光學的實驗,更製造出多種新型的玻璃。 其中一塊玻璃樣品後來在歷史上佔有一席之地,因為在一次當法拉第將此玻璃放入磁場中時,他發現了極化光平面受磁力造成偏轉及被磁力排斥。

法拉第在戴維去旅行時曾代理職務,並接受分析委託,其中最著名的三項委託是:

  1. 分析源自托斯卡尼的天然生石灰
  2. 原住土著的標槍頭研究(分析出「矽鋼」)
  3. 大馬士革騎兵彎刀

其中第三項的彎刀研究,發現古敘利亞可能有鉑礦場,並加入鉑礦使之輕巧但卻鋒利無比,連西方騎兵重軍刀都能被削斷。

-----廣告,請繼續往下閱讀-----

後來英國人經過不斷的嘗試之後,終於發明了「碳鋼」,這使大英帝國的騎兵在中東戰場能夠擊破大馬士革的彎刀。

他也盡心於創造出於一些化學的常用方法,用結果、研究目標以及大眾展示做為分類,並從中獲得一些成果。 他發明了一種加熱工具,是本生燈的前身,在科學實驗室廣為採用,作為熱能的來源。

法拉第在多個化學領域中都有所成果,發現了諸如苯等化學物質(他稱此物質為雙碳化氫 bicarburet of hydrogen),發明氧化數,將如氯等氣體液化。他找出一種氯水合物的組成,這個物質最早在 1810 年由戴維發現。

法拉第也發現了電解定律,以及推廣許多專業用語,如陽極、陰極、電極及離子等,這些詞語大多由威廉.休艾爾 發明。由於這些成就,很多現代的化學家視法拉第為有史以來最出色的實驗科學家之一。

-----廣告,請繼續往下閱讀-----

法拉第電磁感應定律

法拉第電磁感應定律是電磁學中的一條基本定律,跟變壓器、電感元件及多種發電機的運作有密切關係。定律指出: 任何封閉電路中感應電動勢的大小,等於穿過這一電路磁通量的變化率。

這個定律與安培定律,基本上就是馬克斯威方程式的兩大核心定律。

這兩大定律,讓「電生磁、磁生電」的循環建立起來了,於是、「電磁學的世界」有了一個堅實的理論基礎。

然後、這個世界裏更多的科學家與工程師連手,打造出了「發電機、馬達、天線、電磁爐、有線與無線的電子電機設備」等等, 像是「馬達」與「發電機」就完全是依靠「法拉第與安培」定律所打造出來的設備,如下圖所示。

MotorEGenerator
圖/馬達與發電機的構造與原理

-----廣告,請繼續往下閱讀-----

法拉第電解定律

法拉第在電化學上也貢獻良多,例如他發現在物質電解過程中,參與電極反應的質量與通過電極的電量成正比。 換句話說,不同物質電解的質量則正比於該物質的化學當量,這個發現可以寫成以下定律。

其中 n 為 1 莫耳物質電解時參與電極反應的電子的摩爾數(即化合價),(M/n)又稱化學當量(Eq); F 為法拉第常數,即電解 1 電化學當量物質所需電量。

法拉第電解定律適用於一切電極反應的氧化還原過程,是電化學反應中的基本定量定律。

晚年

1848 年,受到艾伯特王夫引見,法拉第受賜在薩里漢普頓宮的恩典之屋,並免繳所有開銷與維修費。這曾是石匠師傅之屋, 後稱為法拉第之屋,現位於漢普頓宮道 37 號(No.37 Hampton Court Road)。在 1858 年,法拉第退休並在此定居。

在他有生之年中,他推辭了封爵並且兩次拒絕成為皇家學會會長。他在 1867 年 8 月 25 日死於位於漢普頓宮的家中。 在西敏寺,艾薩克.牛頓的墓旁座落著他的紀念碑。但是他拒絕在西敏寺下葬,而入土於桑地馬尼安教派的海格特墓園中。

結語

在閱讀了法拉第的故事之後,感覺到科學界似乎有兩類不同的典型,像是「法拉第、愛迪生、瓦特、萊特兄弟」等人, 是屬於做實驗與應用的「劍宗高手」,這類科學家往往可以創造出很多偉大的發明與實驗結果。

而另一類科學家,像是「馬克斯威、牛頓、愛因斯坦」等人,則是數學很強的「氣宗高手」,他們雖然實驗與應用能力 不見得很好,但是透過深厚的數學內功,往往可以把前人的實驗結果解讀後,創建出一個完整的理論體系,而這個理論體系, 最後會成為下一波「劍宗高手」的「武學秘笈」,指引他們「邁向下一個偉大的航道」啊!

最令我感動的是,法拉第的謙虛,以及對馬克士威的友好態度,並且與他結成忘年之交,兩人共同構築了電磁學理論的科學體系。 (雖然當初戴維與她太太瞧不起法拉第,但是法拉第成名後並沒有向他們一樣變成高傲的人,相反的卻很樂意提攜後進)。

這種透過「理論與實驗結合」,以及「學術與產業的結合」,讓整個世界的科學,不斷的突破進展的精神,是我一直認為台灣所缺乏的, 我想,整個國家需要的不是「個人利益的算計」,而是一種「無私奉獻精神的良性循環」,只有透過這種良性循環,才能讓國家或全人類都能真正獲得 進步的動力啊!

如果、這個世界只有「氣宗」或者只有「劍宗」的話,應該不會如此多采多姿吧!

參考文獻

【本文由陳鍾誠取材並修改自 維基百科 與 OpenStax College 的 College Physics 一書,採用創作共用的 姓名標示、相同方式分享 授權】

-----廣告,請繼續往下閱讀-----
文章難易度
程式人雜誌
9 篇文章 ・ 1 位粉絲
程式人雜誌是一個結合「開放原始碼與公益捐款活動」的雜誌,簡稱「開放公益雜誌」。開放公益雜誌本著「讀書做善事、寫書做公益」的精神,我們非常歡迎程式人認養專欄、或者捐出您的網誌。