Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

泡泡堆的物理

科學人_96
・2013/09/18 ・1282字 ・閱讀時間約 2 分鐘 ・SR值 570 ・九年級

-----廣告,請繼續往下閱讀-----

文/麥森(John Matson)
譯/洪艾彊

sci-am-bubblemath泡泡堆的變化,裡面盡是科學。

大多數的人都曾駐足欣賞過肥皂泡的美麗。這顆隨著視角幻變五彩色澤、卻又容易破滅的小球,頂多撐個幾分鐘,就會在瞬間消失無蹤。不管是愛吹肥皂泡的小孩,還是享受躺在浴缸裡沉思的大人,都是它的粉絲。

幾百年來的物理學家和數學家也不例外,他們做過不少努力來試圖了解並預測泡泡的基本性質。成團的泡泡在數學上更加吸引人,原因是它們之間不只存在簡單的幾何規則(例如相鄰的泡泡表面夾角只允許若干特別的角度),並且為了使泡泡表面的總面積達到最小,不同的泡泡會不斷移動和改變大小來配合彼此,表現得有如一台合作無間的簡易電腦。

-----廣告,請繼續往下閱讀-----

最近提出來描述泡泡堆特性的電腦模型,將有助於科學家善用泡泡的物理性質,來發展更有效的滅火器、腳踏車頭盔和其他相關產品。

這個由美國加州大學柏克萊分校兩位數學家設計的模型,把泡泡堆的變化分解成三個不同階段:首先,泡泡表面的表面張力和空氣流動會促使泡泡堆重新排列,以尋找穩定的巨觀結構;接著重力效應不斷把肥皂液往下拉,使得這些泡泡的液體薄膜(lamellae)厚度越來越小;最後當部份泡泡破裂時,整體結構變得不再穩定,泡泡堆又重新回到第一階段,如此不斷往復。這篇論文發表在5月10日的《科學》

這三個階段有各自不同的空間和時間尺度。作者之一的數學教授賽西恩(James Sethian)表示:「例如泡泡液體薄膜在微觀上變薄的速度就非常慢,有時可達數百秒;而泡泡破裂的速度則高達每秒數百公尺。」電腦模擬泡泡堆的動態變化時,有一項需要克服的主要技術:如何在忽略那些會拖慢模擬速度的枝節時,還能同時正確捕捉到重要的微觀過程。

賽西恩和合作者賽耶(Robert Saye)提出的解決辦法是,針對不同的階段採取不同的手段。在牽涉到泡泡破裂和液體薄膜厚度變薄的第三階段,他們放慢模擬速度,並且小心微觀細節;反之,在緩慢的大尺度結構變動時,則睜一眼閉一眼地加快速度。愛爾蘭都柏林三一學院的物理學家維埃爾(Denis Weaire)說:「只要把不同階段的銜接過程處理好,各個階段是可以分開來模擬的。」每一個階段的模擬結果可以利用程式,逐次輸入到下個階段,在第三階段的結果,再送回原始階段重新模擬──巨觀的泡泡堆結構變動決定了微觀的泡泡表面液體如何流失,後者再導致泡泡液體薄膜的瞬間破裂,並因此使泡泡堆失去平衡,再度變動起來。維埃爾表示,把這些過程分開模擬,「能得到以前的人想像不到的妙處。」

-----廣告,請繼續往下閱讀-----

維埃爾提醒我們,相較於靜態的泡泡堆,例如啤酒上頭好像「久久不散」的啤酒泡,過去已經累積不少文獻。他和合作者在10多年前就出版過《泡泡堆的物理》(The Physics of Foams)一書,並敦促同事致力於探討泡泡堆的動態變化,不過維埃爾表示,這一方面的研究還是大致停滯不前。雖然目前提出來的新模型還有些受限,例如只適用於乾泡泡堆,也就是液體含量不高的情形,但他樂觀相信這是「朝正確方向邁進的第一步」。

 

SA原文:Physics Gets Frothy as Mathematicians Dissect Mister Bubbl [May 9,2013]

研究文獻:Saye, R. I., & Sethian, J. A. (2013). Multiscale Modeling of Membrane Rearrangement, Drainage, and Rupture in Evolving Foams. Science, 340(6133), 720-724.

刊載於《科學人》2013年第138期08月號

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
科學人_96
39 篇文章 ・ 5 位粉絲
《科學人》雜誌-遠流出版公司於2002年3月發行Scientific American中文版,除了翻譯原有文章更致力於本土科學發展與關懷。

0

3
2

文字

分享

0
3
2
【2023 諾貝爾物理獎】什麼是「阿秒脈衝雷射」?能捕捉到電子運動的脈衝雷射?
PanSci_96
・2023/11/28 ・5966字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

林俊傑《江南》:「相信愛一天,抵過永遠,在這一剎那凍結了時間」

這一剎那持續了多久?這出自佛經的時間單位有多個解讀,其中最短,可以對應的國際單位制是阿秒。 1 阿秒又有多快呢? 1 阿秒等於一百萬兆分之一秒,是已經短到不行的飛秒的千分之一。在這段時間,別說是談戀愛了,連世界上行動最快的光,也只能移動一顆原子直徑的距離。

在阿秒的時間尺度裡,連光都得停下腳步,過去我們認為捉摸不定的電子,也終於將在我們眼前現身。 2023 年的諾貝爾物理學獎,正是頒給了三位帶領人類進入阿秒領域,探索全新世界的科學家。而這項技術,還可能讓電腦的運算速度加快一萬倍!

就讓我們一起來進入阿秒的領域吧,領域展開!

什麼是阿秒脈衝雷射?

今年諾貝爾物理學獎的三位得主分別是 Pierre Agostini 、 Ferenc Krausz 、和 Anne L’Huillier ,表彰他們對阿秒脈衝雷射實驗技術的貢獻。

-----廣告,請繼續往下閱讀-----
圖/X

所謂的阿秒脈衝雷射,指的是持續時間僅有數十到數百阿秒的雷射。當我們能使用脈衝雷射來觀察目標,就好比使用快門時間極短的相機對目標拍照,能捕捉到瞬間的畫面。

2018 年的諾貝爾物理學獎,就頒給了極短脈衝雷射的研究。短短 5 年後,雷射領域再次得獎,但這次是更快的阿秒雷射,能捕捉到電子運動的超快脈衝雷射。

世界上沒有東西能真正的觸碰彼此?看見電子能帶來什麼突破?

為什麼看見電子的運動那麼重要呢?我們複習一下原子的基本構造,在原子核之外,帶有微小負電荷的電子,被帶正電的原子核束縛住。量子力學告訴我們電子沒有確切的位置,而是以特定的機率分布在原子核周圍的不同地方,也就是所謂的電子雲。

圖/YouTube

雖然電子的體積比原子核小很多,但電子雲的範圍,卻占了原子體積的絕大部分。在物理或化學反應中,真正和其他原子產生交互作用的,幾乎都是這些外面的電子。在電影《奧本海默》中,當男女主角手心貼著手心,奧本海默這時卻說:「世界上沒有東西能真正的觸碰彼此,因為我們觸摸到的物體,都只是其中原子的電子雲和我們手上的電子雲產生的斥力。」

-----廣告,請繼續往下閱讀-----
圖/screenrant

對了,這種話也只有奧本海默跟五條悟可以講,一般人請不要隨便亂牽別人的手。

除了和心儀的他牽手,不同的電子排列狀態也會直接影響物質的化學活性、材料的導電導熱等基本性質,各種化學和物理過程都和電子息息相關。從非常實際的層面來說,電子可以說是物質世界最重要的基本單位。所以不難想像,如果我們能看見電子,甚至獲得可以操縱個別電子排列與能量的技術,我們能真正成為材料的創世神,許多不可能都將化為可能,是相當重大的突破。

捕捉電子運動有多困難?

但要操縱電子可不是什麼簡單的事,不只是因為電子非常小,更重要的是他們動得非常快。具體來說,電子在原子周圍跳動的週期時間尺度大約是十的負十八次方秒,也就是一阿秒。一顆原子的大小約是十的負十次方公尺,速度等於距離除以週期,換算下來,電子雲差不多是以光速等級的速度在原子核周圍跳動。

圖/wikipedia

如果要捕捉到阿秒尺度的電子運動,就必須將實驗的時間解析度也提升到阿秒等級,否則就會像是用長曝光鏡頭拍攝亞運競速滑冰比賽一樣,只能拍到一團糊糊的影像,而沒辦法分出勝負。

-----廣告,請繼續往下閱讀-----

可是,在 1980 年代,脈衝雷射最快只能達到十的負十五次方左右,還只有飛秒等級。而且光靠當時的技術和材料優化,已經沒辦法再縮短脈衝時間了,因此這時候,就要從原理上重新打造一套方法了。

如何製造更快的脈衝?

首先,要製造更快的脈衝並不是用頻率更高的電磁波就好。你想,我們在拍照時,想要讓曝光時間更短,要改善的不是把室內光源從可見光改成頻率更高的紫外光,而是調快快門的開闔速度,讓光一段一段進入感光元件中,變成影片一幀一幀的畫面。而這一段一段進入像機的光訊號,就像是我們的脈衝。

不論是皮秒雷射、飛秒雷射還是阿秒雷射,一直以來在做的都是同一件事,在整體輸出功率不變的情況下,讓每一次脈衝的持續時間更短,同時單一次的功率也會更高。簡單來說,就是要從無數次的普通攻擊,變成每一次都是集氣後再攻擊。

但要怎麼為光集氣呢?光和其他波動一樣,可以和其他波動疊加。把不同頻率的光疊加在一起,波峰和波谷會抵消,波峰遇上波峰則會增強。只要用特定的比例組合許多不同頻率的光,就可以在整體總能量不變的情況下,產生一個超級窄的波峰,其他地方全部抵銷。

-----廣告,請繼續往下閱讀-----

1987 年,本次諾貝爾獎得主之一的 Anne L’Huillier 教授發現,當紅外線雷射穿過惰性氣體時,氣體會被激發放出整數倍頻的光。也就是氣體放出許多不同頻率的光,而這些頻率都是原本光源頻率的整數倍,從兩倍三倍到三十幾倍以上的高倍頻光都有。而橫跨這麼大頻率範圍的光,就能組合出時間長度很短的脈衝光。

不過這聽起來未免也太好康了,真的有那麼簡單嗎?

這個看似魔法的實驗背後其實有著相當簡潔的物理圖像。電子原本是被電磁力束縛在原子中,當一道強度夠強的雷射通過氣體原子,原本抓住電子的電位能被雷射削弱。

雖然這道牆只是矮了一些可是還是存在,但此時,在電子的大小尺度下,量子力學發揮了作用。調皮的電子有機會透過量子穿隧現象,穿過這道束縛,暫時逃離原子核的掌控。關於量子穿隧效應的介紹,我們近期也會再做一集節目來專門介紹。

-----廣告,請繼續往下閱讀-----

但電子還來不及逃遠,雷射光已經從波谷翻到波峰。電磁波的波谷與波峰,不是指能量的高和低,而是指方向相反。因此在相反的電磁場方向下,不幸的電子被推回原子核附近,再度被原子核捕獲。但在這欲擒故縱、七擒七縱的過程後,電子並非一無所獲,他所得到的動能會以光的形式重新放出。

而因為這些能量最早都來自雷射,因此電子放出的光波長,也剛好會是雷射的整數倍。再說的細一些,你可以理解為這些電子在吸收一顆顆光子後,一口氣釋放這些能量,所以能量都是一開始光子的整數倍。

在 1990 年代,科學家已經掌握了這個現象背後的原理。但一直到千禧年過後。這次諾貝爾獎得主之一 Pierre Agostini 教授和他的研究團隊才終於在適當的實驗條件之下,利用高倍頻光打造出了一連串寬度只有 250 阿秒的脈衝。同時第三位得主 Ferenc Krausz 也使用不同方法,分離出 650 阿秒的脈衝。

最後,獲得阿秒脈衝這個祕密武器之後,我們的世界將迎來哪些變化呢?

-----廣告,請繼續往下閱讀-----

阿秒脈衝在各領域的應用

其實啊,有在關注諾貝爾獎都知道,諾貝爾獎通常不會頒給時下正夯的新興研究,前面講的研究,實際上都已經是二十多年前的往事了,而這些辛苦的科學家會在這麼多年後拿下諾貝爾獎的榮耀,正是因為阿秒雷射的發明經過了時間的考驗,成為非常普及的實驗技術,而且被大家公認為重要的科學貢獻。

當然,今年生醫獎的 mRNA 是個超快例外,有興趣的話,別忘了點擊下方影片,看看編劇都編不出來的 mRNA 研究歷程。

說了那麼多,阿秒雷射究竟對人類生活有什麼幫助呢?當然,它能讓我們更深刻了解物質還有光的本質,但是除了幫電子拍下美美的照片放在期刊的封面上,阿秒雷射可以用來做什麼?

在過去這二十年,許多研究已經找到了相當有潛力的應用。

-----廣告,請繼續往下閱讀-----

舉例來說,在醫療方面,阿秒雷射可以用來分析血液或尿液樣本。控制良好的超短脈衝可以精準的刺激生物樣本中的各種有機分子,讓這些分子震動並放出紅外線訊號。如果使用的脈衝長度太長,分子釋放的訊號就很容易和原本施加刺激的雷射混在一起,造成量測的困難。唯有阿秒等級的超短脈衝能夠實現這樣的量測。

這些紅外線光譜就像是質譜儀一樣,能幫助我們快速分析血液中的蛋白質、脂質、核酸等重點物質的關鍵官能基狀態。並透過機器學習的方式整合,成為個人化的健康狀態報表,或是做為診斷的依據,將精準醫療提升到全新的層次。

圖/attoworld

不只如此,發送超短脈衝的技術也可能革新當今的電腦運算。電腦運作的方式就是利用電晶體這種微小的開關,不斷的開開關關去發送一跟零的訊號,所以開關電流的速度便決定了你的運算速度。以半導體為基礎的電晶體,工作頻率通常不超過上百 GHz ,在時間上也就是十的負十一次方秒。

自從阿秒雷射技術普及之後,就有科學家想到:既然雷射脈衝的速度更快,那不如就別用半導體了,改用光學脈衝來控制電流作為運算的媒介。這個概念叫做光學電晶體(Optical Transistor)。

今年初,亞利桑那大學的團隊便發展示了如何利用小於十的負十五次方秒的超短雷射脈衝,來開關電流並傳送一與零的位元,這個頻率比現有半導體電晶體快了一萬倍以上。這顯示了光學方法的操作頻率可以有多快,或許能讓我們突破訊號處理和運算上的速度瓶頸。

看完這些便可以理解,阿秒等級的超快雷射脈衝的確是相當近代的一個科學里程碑。就像是科學革命時望遠鏡和顯微鏡的發明,讓人們看見那些最遠和最小的事物,超快脈衝用最快的時間解析度,讓我們看到許多人類從未看過的景象。

阿秒脈衝雷射的出現,是科學上的一個里程碑,讓我們能用更高的時間解析度,讓我們看到許多過去從未看到的景象。最後也想問問大家,在雷射這一塊,你最期待有哪些應用,或者最希望我們接著來講哪個主題呢?

  1. 為什麼醫美、眼科手術那麼喜歡用飛秒、阿秒雷射,真的有比較好嗎?
  2. 使用雷射脈衝的光學電晶體真的有可能取代傳統電晶體嗎?
  3. 除了光學電晶體,最近很夯的矽光子技術,聽說裡面也有用到雷射,可以一起來介紹嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2405 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

5
0

文字

分享

0
5
0
恭請德前總理梅克爾示範「泡泡認屍法」
胡中行_96
・2023/08/03 ・1414字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

由德、日鑑識專家組成的研究團隊,於 2021 年的《國際法醫期刊》(International Journal of Legal Medicine)上,說他們採用網路流傳的偽裸照修圖技巧,設計出比較不嚇人的「泡泡認屍法」(the “bubbling” procedure)。然後順帶奉上一張照片,以時任德國總理的梅克爾(Angela D. Merkel)女士,作為範例。[1]

被「泡泡」埋沒的前德國總理梅克爾女士。圖/參考資料 1,Figure 1a(CC BY-SA 4.0)

認屍

某些命案發生後,家屬必須前往停屍間,或是透過照片指認死者身份。屍體可能事先經過重建或防腐處理,並且在法醫動刀解剖前進行。最好未卸妝,也不取下首飾,完整保留生前的打扮。儘管這個鑑識程序有時的確無法避免,但是其失誤率高達 50%,而且會造成家屬的心理衝擊。若是遇到不知該找誰認領的無名屍,媒體還得四處散佈照片,觸及的人數勢必更多。研究團隊於是以移除創傷影像為目的,開發新的認屍方式。[1]

知覺填補

假設這裡有個電子圖檔,畫面上主角穿著泳裝之類的清涼衣著。首先,以常見的影像編輯軟體,例如: Photoshop、Paintshop 或 GIMP,開啟檔案。接著,用圓圈框選髮膚暴露處,並刪除衣物等剩餘區塊,就會得到一張狀似被泡泡網覆蓋的照片。此時,觀者會因為知覺填補(perceptual filling-in)機制,無視消失的部份,自動把影像腦補成裸照。根據該論文的說法,上述居心不良的修圖技巧,在網路論壇上相當風行。且不論研究團隊平常都在逛什麼網站,而如此熟悉這種不入流的勾當;他們想說的是,同樣的招數可以輔助認屍。[1]

人物照 b 經過「泡泡」處理,變成偽裸照圖 c。圖/參考資料 1,Figure 1 b & c(CC BY 4.0)

泡泡認屍照

現在把編輯的影像主角,從活人改為死者。先用大泡泡選取無創傷的廣大面積,再以小泡泡保存細節,並塗去其他部位。過程中,盡可能留下眼、鼻、耳和髮線等特徵。等能蓋的都蓋掉了,如果剩餘的區域,有屍斑、瘀青、腐化等情形,看了還是怵目驚心,那就降低整體畫面的彩度,或者套用灰階效果。[1]

-----廣告,請繼續往下閱讀-----
蓋上「泡泡」後,再進行灰階處理。圖/參考資料 1,Figure 2 c & d(CC BY 4.0)

泡泡辨識實驗

為了瞭解辨識的準確度,研究團隊在德國洪堡(Homburg)及匈牙利布達佩斯(Budapest),分別招募 38 與 15 名學生。請這些為數不多的受試者,指認經過「泡泡」處理的 10 張照片。裏頭可能出現的名人,包括:德國的球星 Lothar Matthäus、主持人 Inka Bause、超模 Heidi Klum 和政治人物 Frauke Petry;歐盟執委會主席 Ursula von der Leyen、匈牙利總理 Viktor Orbán、瑞典環保倡議人士 Greta Thunberg、教宗方濟各;以及演藝明星李小龍、Tom Cruise 與 Rihanna。另外,學生認識的教師跟絕對沒見過的陌生人,也各有一張,作為對照。全部辨識完後,受試者會看到沒有「泡泡」的版本,確定是否真的不知道某人。[1]

實驗結果顯示,這些學生認得 72.1% 的人物;而其中 66.8% 的照片,蓋上「泡泡」後,依然能被準確指認。研究團隊頗滿意此成功率,並覺得這個方法簡單、經濟又快速。不過,死者的臉部創傷若是太大,就不適合以「泡泡」遮掩,畢竟觀者腦補的能力有其極限。在那種情況下,他們建議改採臉部重建等其他繪圖技術。[1]

  

  1. Potente S, Ramsthaler F, Kettner M, et al. (2021) ‘Application of the “bubbling” procedure to dead body portraits in forensic identification’. International Journal of Legal Medicine, 135, 1655–1659.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
0

文字

分享

0
1
0
如果子彈飛到最高點時,伸手抓住會怎樣?——《如果這樣,會怎樣?2》
天下文化_96
・2023/05/10 ・1577字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

有什麼方法可以開槍讓子彈在空中飛,然後安全的用手接住?比方說,開槍射擊的人在平地,而接住子彈的人在山上,位於射程的最遠處。
——艾德蒙.許(Edmond Hui),倫敦

接住!

「接住子彈」是舞台上的特技,表演者看似接住射擊出來飛到一半的子彈——通常是用牙齒接住的。當然啦,這是錯覺,像那樣接住子彈是不可能的。

但在適當的條件下,你可能接得住子彈,只是要有很多的耐心和運氣。

直直向上射擊的子彈最終會達到最大高度。子彈可能不會完全停止;比較可能的是,它會以每秒若干公尺的速率往旁邊偏移。

如果有人舉槍向上射擊子彈……。

-----廣告,請繼續往下閱讀-----

……而你乘著熱氣球在射程範圍的正上方閒晃……

……當子彈飛到最高點時,你伸手出去抓住子彈,這是有可能的。

你不應該做的事情

(清單已更新)

#156,812 吃洗衣膠囊球

-----廣告,請繼續往下閱讀-----

#156,813 在雷雨中踩高蹺

#156,814 在加油站放煙火

#156,815 餵你的貓吃「與人類手部形狀質地」一模一樣的零食

#156,816 在間歇泉噴口上方彎腰低頭想要一窺究竟

-----廣告,請繼續往下閱讀-----

#156,817(新增!)搭乘熱氣球飛越射程範圍

如果你在子彈弧線的最高點成功抓住子彈,或許你會注意到奇怪的事情:子彈除了很燙之外,還會自旋。

它會失去向上的動量,但不會失去自旋角動量;子彈仍然具有槍管造成的自旋。

當子彈射擊在冰面時,可以很明顯的看到這種效應。正如數十部 YouTube 影片所證實的那樣,我們常發現射進冰中的子彈仍在快速自旋。你必須緊緊抓住子彈,不然它可能會跳出你的手掌心。

如果你沒有熱氣球,在山頂很有機會行得通。加拿大索爾山(Mount ­Thor)的垂直落差有 1,250 公尺。根據「近距離對焦研究」(Close Focus Research)彈道學實驗室的數據,這幾乎剛好是 0.22 長步槍子彈直直向上射擊會飛的高度。

-----廣告,請繼續往下閱讀-----

如果你想要用更大的子彈,就需要更大的落差;AK-47 子彈向上射擊可能超過 2 公里。地球上沒有那麼高的垂直懸崖,因此你需要以某個角度發射子彈,結果子彈在弧線頂點會具有顯著的橫向速度。不過,夠硬的棒球手套也許有辦法接住子彈。

其中任何一種情境下,你都必須非常走運。由於子彈的弧線有不確定性,你恐怕必須射擊數千發子彈才能碰巧接個正著。

等到那個時候,你可能會發現自己招來了某些人的關注。

——本文摘自《如果這樣,會怎樣?2:千奇百怪的問題 嚴肅精確的回答》,2023 年 3 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。