0

1
1

文字

分享

0
1
1

數學差,不是你的錯@《一個數學家的嘆息》

鄭國威 Portnoy_96
・2013/06/26 ・2106字 ・閱讀時間約 4 分鐘 ・SR值 531 ・七年級

國小高年級科普文,素養閱讀就從今天就開始!!

先說個我自己的真實故事吧。

我小學的時候在學校功課排名前列,主要的原因是因為我就讀的學校規模非常小,一個年級才兩班,競爭不激烈,另一個原因是我的確有點小聰明,而且蠻喜歡唸書。那年頭,學業功課好,加上比較聽老師的話,很容易就獲得其他課外表現的機會,代表班級或學校去外頭參加比賽,也因此當了好幾年的模範生,拿了個縣長獎畢業。囂張的咧。數學?對學過珠心算的我太簡單了!

但一上了國中,全都變了。我依舊很用功、大部分的科目考試成績不是滿分就是逼近滿分,但唯有數學,我連及格的一半都拿不到。「數學」,光是看到這兩個字就足以讓我產生頭昏想吐的感覺,甚至還更嚴重些,會緊張到冒汗、肚子痛。老師在黑板上用大大的三角尺跟大圓規畫的圖依舊精美,板書我能抄的都抄了,但我就是沒辦法理解這些數字跟圖形的邏輯。我慌了。

於是我開始竄改成績單、竄改考卷分數,或是跟大雄一樣,總是以考卷沒帶回家或是丟了為藉口,不讓父母簽名。雖然現在回想起來真是很傻,但當時的我真的快被數學逼瘋了,每天提心吊膽。

升上國二,狀況依舊沒變,但班導師換成了另一位在學校號稱王牌的數學老師。一天晚上,全家人都在客廳看電視的時候,電話響起,我坐在接起電話的父親對面,聽到他對話筒說「喔!老師好!」的時候,我的眼淚無法克制地決堤了。

好消息是,後來在新任班導師的細心教導之下,我的數學解題能力提升了很多,應該說,他讓我學會用我能理解的方式把答案交出來。我心知肚明,我雖然同樣考90分、100分,但跟班上數學真的好的同學比起來,我的程度還是很差。我順利考上第一志願的高中,但我完全沒有跟父母商量,就決定去唸文組。因為那種根深柢固對數學的恐懼,始終沒有離去,高中的數學對我來說更是百倍猙獰的惡魔。

於是我大學唸外語、研究所唸傳播,但也避開做量化研究。工作之後,做各式各樣的計畫,只要跟數學、算錢、預算有關,我就推掉。我生活節約,不想花錢,因為我不想算數學。但如果我花錢,我也不太在乎多少錢,有沒有打折,也不記錄開支,因為我不想算數學。我也不做任何投資理財,一切都交給家人處理。

我不知道打開這本書的你是誰。是同樣害怕數學的學生,還是正在讓學生害怕數學的老師,抑或是擔憂孩子數學成績,正在物色補習班或家教老師的父母親。如果你都不屬於這三者,而是一個非常喜歡數學的人,那麼我反而要問:怎麼可能?

這本書的英文原名是「一位數學家的嘆息」(A Mathematician’s Lament),本來也不是一本書,而是一篇2002年起開始在美國數學教師社群中流傳的文章。我看了前五頁,就覺得受震撼。而這種震撼,是一種「總算有人了解我的感覺」加上「曾經的恐懼跟傷疤又被碰觸」的綜合感受。每多讀一段,就越覺得明朗,了解自己為何當初會那麼畏懼數學。一口氣看完全書,彷彿是做了一次心理療程,把這段影響我人生選擇至巨的數學夢魘給重新詮釋了,原來數學差,並不是我的錯。

作者將數學與繪畫、音樂相比,突顯出數學教育之僵硬跟死板。原來問題就是出在我們看待這門學科的角度完全錯誤,將數學當作其他理科的基礎,要求絕對的精準跟正確,按照既定的公式,強調快速(為了考試)、強調術語(為了顯得專業)、強調一切大部分人在日常生活中根本使用不到的東西(為了培養數學家……但到底為甚麼每個人都要被培養成數學家呢?)

是甚麼讓這樣的教學結構如此穩固?是教科書跟參考書出版社、補習班產業、還是學校教育本身?看完這本書,我再次確認肯.羅賓森爵士(Sir Ken Robinson) 2006 年在TED 大會上的演說的確一點沒錯:「學校扼殺了創意」,而且是刻意為之。

因為當代的教育制度繼承自工業革命時期,所以教育的目的就是為了創造工業需要的人才,到現在也沒有改變。大量產出工業需求的一致性勞動力是學校教育的目標,因此教學方式必須要有效率、必須要全國一致。美其名是公平,實際上是奴役。如今結合了教科書業者、補習班業者,成了龐大的教育控制複合體。

數學教育特別嚴重。數學本該是供人無限想像空間的學科,因為不管思考的數學題目多麼天馬行空,多麼不切實際,都無所謂,沒有任何現實會受到傷害,除了成績單。因為害怕錯誤、對分數錙銖必較,有太多像我一樣的學生用背誦的方式學數學,靠著不斷解參考書跟考卷上的題目來磨練自己動筆的速度,但從來沒有體會過數學的樂趣,連想都沒想過數學會是有趣的。

大多數看過這本書的國外讀者都給予很高的評價,或許因為作者揭開了國王新衣的真相,但作者除了對數學教育拋出銳利無比的批判,也在書的第二部分嘗試用他覺得真正對學生有益處的教學方式與每一位讀者互動。雖然作者只給了幾個案例,但我看見了他想要帶領學生進入的數學奇妙世界是甚麼樣子,而我也好希望在我國中或是更小的時候,就能夠看見這個世界。如果你是學生,希望這本書可以讓你重拾對自己的信心。如果你是老師,請審視自己到底是在教學還是扼殺學生。如果你是家長,請理解你的孩子正在遭受折磨,而那本不該發生,也不該是他的錯。

本文為《一個數學家的嘆息》之推薦序(經濟新潮社出版)

文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 879 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

2

2
2

文字

分享

2
2
2
買樂透真的可以賺錢?大數法則揭示了賭博的真相!——《統計,讓數字說話》
天下文化_96
・2023/03/05 ・2394字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是大數法則?

期望值的定義是:它是可能結果的一種平均,但在計算平均時,機率大的結果占的比重較高。我們認為期望值也是另一種意義的平均結果,它代表了如果我們重複賭很多次,或者隨機選出很多家戶,實際上會看到的長期平均。這並不只是直覺而已。數學家只要用機率的基本規則就可以證明,用機率模型算出來的期望值,真的就是「長期平均」。這個有名的事實叫做大數法則。

大數法則
大數法則(law of large numbers)是指,如果結果為數值的隨機現象,獨立重複執行許多次,實際觀察到的結果的平均值,會趨近期望值。

大數法則和機率的概念密切相關。在許多次獨立的重複當中,每個可能結果的發生比例會接近它的機率,而所得到的平均結果就會接近期望值。這些事實表達了機遇事件的長期規律性。正如我們在第 17 章提過的,它們是真正的「平均數定律」。

大數法則解釋了:為什麼對個人來說是消遣甚至是會上癮的賭博,對賭場來說卻是生意。經營賭場根本就不是在賭博。大量的賭客贏錢的平均金額會很接近期望值。賭場經營者事先就算好了期望值,並且知道長期下來收入會是多少,所以並不需要在骰子裡灌鉛或者做牌來保證利潤。

賭場只要花精神提供不貴的娛樂和便宜的交通工具,讓顧客川流不息進場就行了。只要賭注夠多,大數法則就能保證賭場賺錢。保險公司的運作也很像賭場,他們賭買了保險的人不會死亡。當然有些人確實會死亡,但是保險公司知道機率,並且依賴大數法則來預測必須給付的平均金額。然後保險公司就把保費訂得夠高,來保證有利潤。

  • 在樂透彩上做手腳

我們都在電視上看過樂透開獎的實況轉播,看到號碼球上下亂跳,然後由於空氣壓力而隨機彈跳出來。我們可以怎麼樣對開出的號碼做手腳呢? 1980 年的時候,賓州樂透就曾被面帶微笑的主持人以及幾個舞台工作人員動了手腳。

他們把 10 個號碼球中的 8 顆注入油漆,這樣做會把球變重,因此可保證開出中獎號碼的 3 個球必定有那 2 個沒被注入油漆的號碼。然後這些傢伙就下注買該 2 個號碼的所有組合。當 6-6-6 跳出來的時候,他們贏了 120 萬美元。是的,他們後來全被逮到。

歷史上曾有主持人在樂透上做手腳,後來賺了 120 萬美元隨後被逮捕。圖/envatoelements

深入探討期望值

跟機率一樣,期望值和大數法則都值得再花些時間,探討相關的細節問題。

  • 多大的數才算是「大數」?

大數法則是說,當試驗的次數愈來愈多,許多次試驗的實際平均結果會愈來愈接近期望值。可是大數法則並沒有說,究竟需要多少次試驗,才能保證平均結果會接近期望值。這點是要看機結果的變異性決定。

結果的變異愈大,就需要愈多次的試驗,來確保平均結果接近期望值。機遇遊戲一定要變化大,才能保住賭客的興趣。即使在賭場待上好幾個鐘頭,結果也是無法預測的。結果變異性極大的賭博,例如累積彩金數額極大但極不可能中獎的州彩券,需要極多次的試驗,幾乎要多到不可能的次數,才能保證平均結果會接近期望值。

(州政府可不需要依賴大數法則,因為樂透彩金不像賭場的遊戲,樂透彩用的是同注分彩系統。在同注分彩系統裡面,彩金和賠率是由實際下注金額決定的。舉例來說,各州所辦的樂透彩金,是由全部賭金扣除州政府所得部分之後的剩餘金額來決定的。賭馬的賠率則是決定於賭客對不同馬匹的下注金額。)

雖然大部分的賭博遊戲不及樂透彩這樣多變化,但要回答大數法則的適用範圍,較實際的答案就是:賭場的贏錢金額期望值是正的,而賭場玩的次數夠多,所以可以靠著這個期望值贏錢。你的問題則是,你贏錢金額的期望值是負的。全體賭客玩的次數合起來算的話,當然和賭場一樣多,但因為期望值是負的,所以以賭客整體來看,長期下來一定輸錢。

然而輸的金額並不是由賭客均攤。有些人贏很多錢,有些人輸很多,而有些人沒什麼輸贏。賭博帶給人的誘惑,大部分是來自賭博結果的無法預測。而賭博這門生意仰賴的則是:對賭場來說,結果並非不可測的。

對賭場來說,贏錢金額期望值為正。圖/envatoelements
  • 有沒有保證贏錢的賭法?

把賭博很當回事的賭客常常遵循某種賭法,這種賭法每次下注的金額,是看前幾次的結果而定。比如說,在賭輪盤時,你可以每次把賭注加倍,直到你贏為止—或者,當然,直到你輸光為止。即使輪盤並沒有記憶,這種玩法仍想利用你有記憶這件事來贏。

你可以用一套賭法來戰勝機率嗎?不行,數學家建立的另一種大數法則說:如果你沒有無窮盡的賭本,那麼只要遊戲的各次試驗(比如輪盤的各次轉動)之間是獨立的,你的平均獲利(期望值)就會是一樣的。抱歉啦!

  • 高科技賭博

全美國有超過 700,000 台吃角子老虎(拉霸)。從前,你丟硬幣進去再拉下把手,轉動三個輪子,每個輪子有 20 個圖案。但早就不是這樣了。現在的機器是電動遊戲,會閃出許多很炫的畫面,而結果是由隨機數字產生器決定的。

機器可以同時接受許多硬幣,有各種讓你眼花撩亂的中獎結果,還可以多台連線,共同累積成連線大獎。賭徒仍在尋找可以贏錢的賭法,但是長期下來,隨機數字產生器會保證賭場有 5% 的利潤。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

所有討論 2
天下文化_96
129 篇文章 ・ 610 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
2

文字

分享

0
2
2
假藥也能治療?安慰劑效應的原因:「不」隨機化實驗!——《統計,讓數字說話》
天下文化_96
・2023/03/03 ・1932字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • 作者:墨爾 David S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

實驗法中「隨機化」的必要性

隨機化比較實驗是統計學裡面最重要的概念之一。它的設計是要讓我們能夠得到釐清因果關係的結論。我們先來弄清楚隨機化比較實驗的邏輯:

  • 用隨機化的方法將受試者分組,所分出的各組在實施處理之前,應該各方面都類似。
  • 之所以用「比較」的設計,是要確保除了實驗上的處理外,其他所有因素都會同樣作用在所有的組身上。
  • 因此,反應變數的差異必定是處理的效應所致。

我們用隨機方法選組,以避免人為指派時可能發生的系統性偏差。例如在鐮形血球貧血症的研究中,醫師有可能下意識就把最嚴重的病人指派到羥基脲組,指望這個正在試驗的藥能對他們有幫助。那樣就會使實驗有偏差,不利於羥基脲。

從受試者中取簡單隨機樣本來當作第一組,會使得每個人被選入第一組或第二組的機會相等。我們可以預期兩組在各方面都接近,例如年齡、病情嚴重程度、抽不抽菸等。舉例來說,隨機性通常會使兩組中的吸菸人數差不多,即使我們並不知道哪些受試者吸菸。

實驗組與對照組除主要測量變數外,其餘條件必需盡可能相似。圖/envatoelements

新藥研究上不隨機分組帶來的後果:安慰劑效應

如果實驗不採取隨機方式,潛藏變數會有什麼影響呢?安慰劑效應就是潛藏變數,只有受試者接受治療後才會出現。如果實驗組別是在當年不同時間進行治療,所以有些組別是在流感季節治療,有些則不是,那麼潛藏變數就是有些組別暴露在流感的程度較多。

在比較實驗設計中,我們會試著確保這些潛藏變數對全部的組別都有相似的作用。例如為了確保全部的組別都有安慰劑效應,他們會接受相同的治療,全部的組別會在相同的時間接受相同的治療,所以暴露在流感的程度也相同。

要是告訴你,醫學研究者對於隨機化比較實驗接受得很慢,應該不會讓你驚訝,因為許多醫師認為一項新療法對病人是否有用,他們「只要看看」就知道。但事實才不是這樣。有很多醫療方法只經過單軌實驗後就普遍使用,但是後來有人起疑,進行了隨機化比較實驗後,卻發覺其效用充其量不過是安慰劑罷了,這種例子已經不勝枚舉。

曾有人在醫學文獻裡搜尋,經過適當的比較實驗研究過的療法,以及只經過「歷史對照組」實驗的療法。用歷史對照組做的研究不是把新療法的結果和控制組比,而是和過去類似的病人在治療後的效果做比較。結果,納入研究的 56 種療法當中,用歷史對照組來比較時,有 44 種療法顯示出有效。然而在經過使用合適的隨機化比較實驗後,只有 10 種通過安慰劑測試。即使有跟過去的病人比,醫師的判斷仍過於樂觀。

過去醫學史上常出現新藥實際沒療效,只能充當安慰劑效果的情況。圖/envatoelements

目前來說,法律已有規定,新藥必須用隨機化比較實驗來證明其安全性及有效性。但是對於其他醫療處置,比如手術,就沒有這項規定。上網搜尋「comparisons with historical controls」(以歷史對照組來比較)這個關鍵字,可以找到最近針對曾使用歷史對照組試驗的其他醫療處置,所做的研究。

對於隨機化實驗有一件重要的事必須注意。和隨機樣本一樣,隨機化實驗照樣要受機遇法則的「管轄」。就像抽一個選民的簡單隨機樣本時,有可能運氣不好,抽到的幾乎都是相同政治傾向一樣,隨機指派受試者時,也可能運氣不好,把抽菸的人幾乎全放在同一組。

我們知道,如果抽選很大的隨機樣本,樣本的組成和母體近似的機會就很大。同樣的道理,如果我們用很多受試者,加上利用隨機指派方式分組,也就有可能與實際情況非常吻合。受試者較多,表示實驗處理組的機遇變異會比較小,因此實驗結果的機遇變異也比較小。「用足夠多的受試者」和「同時比較數個處理」以及「隨機化」,同為「統計實驗設計」的基本原則。

實驗設計的原則
統計實驗設計的基本原則如下:
1. 要控制潛在變數對反應的影響,最簡單的方法是同時比較至少兩個處理。
2. 隨機化:用非人為的隨機方法指派受試者到不同的實驗處理組。
3. 每一組的受試者要夠多,以減低實驗結果中的機遇變異。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

天下文化_96
129 篇文章 ・ 610 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
0

文字

分享

0
2
0
強核力與弱核力理論核心:非阿貝爾理論——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/28 ・1733字 ・閱讀時間約 3 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

非阿貝爾理論

量子色動力學與弱核力理論有個更為奇特的性質,兩者都是「非阿貝爾理論」 (non-Abeliantheories)。非阿貝爾的意思是強核力與弱核力理論核心(參見【科學解釋 6】)的對稱群代數是不可交換的。簡單來說就是「A 乘 B」不等於「B 乘 A」。

一般人的常識會告訴你,如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣,你用計算機怎麼試答案都不變。一個袋子裝三塊錢、兩個袋子總共是六塊錢;一個袋子裝兩塊錢,三個袋子總共還是六塊錢。

如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣。圖/pixabay

這件事對數字永遠都成立,是千真萬確的事實。然而,我們有個很好的方法能定義出一套數學架構,其中的 AB 不等於 BA。實際上,數學家已經鑽研這個領域很多年了。

條條大路通數學

或許更驚人的是,物理學家竟然也在許多地方應用這套數學,因為某些和物理學相關的事物也是 AB 不等於 BA。矩陣就是我們表示這些東西的一種方式。現在我在倫敦大學學院為新生上的數學方法課就有介紹矩陣力學。以前我的學校制定了一套「新數學」的課綱,所以我在年僅十五歲的時候就多少認識一點矩陣了。

數學的一個矩陣是一群按照行列排列整齊的數字。把兩個矩陣 A 和 B 相乘,會得到另一個矩陣 C,方法是把對應的列和行上面的數字依序相乘。

這種矩陣聽起來可能不像某部電影裡面那掌控一切、創造虛擬實境的超級電腦一樣迷人,卻有用的多。這部電影的角色身穿黑色皮衣,還有出現著名的慢動作躲子彈鏡頭

慢動作躲子彈鏡頭。圖/giphy

我來舉個例子。

你可以用一個矩陣來描述你移動某個物體的結果。相乘的順序(AB 或 BA)在這個例子有明顯的區別。物體先在原地轉九十度再向前直直走十公尺,和先走十公尺再轉九十度,兩種移動方式最後的終點顯然不會相同。假設矩陣B代表旋轉,矩陣 A 代表直行,那麼合在一起的「旋轉後直行」就是矩陣(C = AB);這和「直行後旋轉」的矩陣(D = BA)必定不會相同。C 不等於 D,所以 AB 不等於 BA。要是 AB 和 BA 永遠相同,我們就沒辦法用矩陣來描述這類的移動過程了。正是因為矩陣的乘法不可交換―非阿貝爾,這個工具才會如此有用。

數學和真實世界密不可分

在狄拉克試圖要找出能描述高速電子的量子力學方程式時,矩陣被證實是他所需要的工具。實際上,電子有某項特性讓狄拉克不得不使用矩陣來表示它,這項特性與他描述電子自旋的語言同出一轍;所有原子的行為和元素周期表的規律,都與自旋有深刻的關聯。除此之外,這個性質也啟發狄拉克去預測有反物質的存在。

數學和真實世界之間似乎有緊密的關係,這讓我讚嘆不已。優秀的研究要能解決問題、也要能提出好的問題。而問題永遠比解答還要多,為了研究我們要付出許多的時間和金錢,因此大家得做出抉擇。數學是威力極大的工具,能幫助科學家檢查實驗數據、並從結果當中尋找最有趣的新實驗方向。就算有些方法和結論,好比矩陣及反物質,看起來可是相當古怪的。

秉持著這份精神,我要在繼續討論希格斯粒子搜索實驗之前,先繞個路來講微中子,最後這回要介紹的是一個很重要的真實結果。2012 年 3 月 7 日,中國的大亞灣核反應爐微中子實驗(DayaBay Reactor Neutrino Experiment)發表了最新的研究成果。

One of the Daya Bay detectors.圖/wikipedia

他們的實驗結果不但對標準模型影響重大,也會決定粒子物理學未來的研究走向。如果你只想要繼續讀希格斯粒子的故事,大可跳過這一段沒關係,下一節再見。但是微中子的粉絲可千萬別錯過精彩好戲了!

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

貓頭鷹出版社_96
59 篇文章 ・ 23 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。