0

3
0

文字

分享

0
3
0

有圖沒真相!?GAN 人工智慧系統的發展與未來——《AI 製造商沒說的祕密》

時報出版_96
・2023/01/31 ・4731字 ・閱讀時間約 9 分鐘

醉後成為 GAN 之父

2013年秋天,伊恩.古德費洛(Ian Goodfellow)與大學實驗室夥伴在酒吧舉行歡送派對。大家就座,開始猛灌精釀啤酒。酒過三巡,古德費洛已有些微醺,這群研究員開始爭論什麼才是製造能夠自我創造相片寫實影像的機器之最佳途徑。

他們知道可以訓練一套神經網路來辨識影像,然後逆向操作,使其產生影像。但它只能產生一些精細、有如相片的影像,這樣的結果實在難以令人信服。

不過古德費洛的夥伴們有一個主意。他們可以對神經網路產生的影像進行統計分析──辨識特定像素的頻率、亮度,以及與其他像素間的關係。

然後將這些分析結果與真正的相片進行比對,這樣就可以顯示神經網路哪裡出錯了。問題是他們不知道該如何將這些資料編碼輸入他們的系統之中──這可能需要數十億的統計次數。

-----廣告,請繼續往下閱讀-----

古德費洛提出一個完全不同的解決之道。他解釋,他們應該做的是建立一套能夠向另一套神經網路學習的神經網路。第一套神經網路製造影像,企圖欺騙第二套神經網路認為這是真的。第二套會指出第一套的錯誤,第一套於是繼續嘗試欺騙,就這樣周而復始。他表示,如果這兩套相互對抗的神經網路對峙得夠久,他們就能製作出寫實的影像。

但是古德費洛的夥伴們並不認同。他們說這主意甚至比他們的還爛。同時,若非他已有些醉了,古德費洛可能也有同感。

「要訓練一套神經網路已經夠難了,」清醒時的古德費洛可能會這麼說,「你不可能在正在學習演算法的神經網路中訓練另一套神經網路。」不過他在當時完全相信可以做到。

當天晚上他返回公寓,他摸黑坐在床邊的桌前,仍然有些微醺,筆記型電腦螢幕的光反射在他臉上。「我的朋友是錯的!」他不斷告訴自己,同時用其他計畫的舊編碼來拼湊他所說的兩套對抗的神經網路,並且開始以數百張相片來訓練這套新裝置。

-----廣告,請繼續往下閱讀-----

幾個小時後,它開始顯現他所預期的效能。生成的影像很小,和一片指甲一樣,而且還有一些模糊。不過它們看來就和相片一樣。他後來表示,他完全是運氣來了。

「如果它不成功,我可能就會放棄了。」他後來在發表此一概念的論文中將它稱作「生成對抗網路」(generative adversarial networks,GANs)。自此之後,他成為全球人工智慧研究圈口中的「GAN之父」。

生成對抗網路的蓬勃發展

2014年夏天,他正式加入谷歌,當時他已在積極推廣GAN,強調這有助於加速人工智慧的研發。他在說明概念時,往往會以理查.費曼為例。費曼曾在教室黑板上寫道:「我創造不出來的東西,我就不了解。」

古德費洛相信費曼此一名言除了人類之外,也可以適用於機器:人工智慧創造不出來的東西,它就不了解。他們指出,創造,能夠幫助機器了解周遭的世界。

-----廣告,請繼續往下閱讀-----
GAN使人工智慧互相訓練與學習。圖/envatoelements

「如果人工智慧可以用逼真的細節去想像世界──能夠學習如何想像逼真的影像與逼真的聲音──這樣可以鼓勵人工智慧學習現實存在的世界結構,」古德費洛說道,「它能幫助人工智慧了解所看到的影像與所聽到的聲音。」如同語音、影像辨識與機器翻譯,GAN代表深度學習又向前邁進一大步。或者,至少深度學習的研究人員是這麼認為。

臉書人工智慧研究中心主任楊立昆(Yann LeCun)在2016年盛讚GAN「是深度學習近二十年來最酷的概念」。古德費洛的成就激發出許多圍繞其概念的計畫,有的是加以改進,有的是據此進一步發展,有的則是發起挑戰。

懷俄明大學的研究人員建造一套系統,能夠產生細小但是完美的影像,包括昆蟲、教堂、火山、餐廳、峽谷與宴會廳。輝達(NVIDIA)的一個研究團隊則是建造一套神經網路,可以將一幅顯示炎炎夏日的相片影像轉變成死氣沉沉的冬日。

加州大學柏克萊分校的研究小組則設計出一套系統,能夠將馬匹的影像轉變成斑馬,把莫內的畫變成梵谷的畫。這些都是科技界與學界最受人矚目與最有趣味的研發計畫。

-----廣告,請繼續往下閱讀-----

可是,就在這時,世界發生劇變。2016年11月,唐納.川普贏得美國總統大選。美國生活與國際政局隨之出現天翻地覆的變化,人工智慧也難以倖免。幾乎是立即出現的衝擊,政府開始打壓移民引發人才流動的憂慮。

美國排外政策造成 AI 產業衝擊

在美國就讀的國際學生已在減少之中,如今更是大幅銳減,對外國人才依賴甚重的美國科學與數學界也因此開始受創。「我們是開槍打自己的腦袋,」西雅圖著名的艾倫人工智慧研究所(Allen Institute for Artificial Intelligence)的執行長說,「我們不是打在腳上,是腦袋。」

一些大企業已在擴張他們的海外研發作業。臉書分別在蒙特婁與楊立昆的家鄉巴黎設立實驗室。川普政府移民政策所帶來的威脅在2017年4月就已顯現,距離他上任不過三個月。

與此同時,「深度學習運動之父」傑弗瑞.辛頓(Geoffrey Hinton)幫助成立向量人工智慧研究所(Vector Institute for Artificial Intelligence)。這是多倫多的一所研發育成機構,設立資金達一億三千萬美元,其中包括美國科技巨擘如谷歌與輝達的挹注。

-----廣告,請繼續往下閱讀-----

此外,加拿大總理賈斯汀.杜魯道(Justin Trudeau)也承諾以九千三百萬美元來扶持在多倫多、蒙特婁與愛德蒙頓的人工智慧研發中心。年輕的研究員莎拉.薩波爾(Sara Sabour)是辛頓一位關鍵性的合作夥伴,她的事業歷程足以說明人工智慧圈內的國際色彩是多麼容易受到政治影響。

2013年,在伊朗的謝里夫理工大學(Sharif University of Technology)完成電腦科學的學業之後,薩波爾申請到華盛頓大學深造,攻讀電腦視覺與其他方面的人工智慧,校方接受了她的申請。但是美國政府卻拒絕給予簽證,顯然是因為她在伊朗長大與就學的關係,而且她所要攻讀的領域,電腦視覺,也是潛在的軍事與安全科技。第二年,她成功進入多倫多大學,之後追隨辛頓加入谷歌。

在此同時,川普政府持續阻擋移民進入美國。「現在看來是美國企業獲益,」亞當.席格(Adam Segal)說道,他是美國外交關係協會(Council on Foreign Relations)有關新興科技與國家安全的專家,「但是就長期來看,科技與就業機會都不會在美國實現。」

2016年川普當選美國總統,開始打壓外國移民。圖,/wikipedia

人工智慧等技術讓製造假訊息變得更容易

但是人才的遷移還不是川普入主白宮所造成的最大變化。自選舉一結束,國內媒體就開始質疑網上假訊息對選舉結果的影響,引發社會大眾對「假新聞」的憂慮。

-----廣告,請繼續往下閱讀-----

起初祖克柏試圖消除這樣的關切,他在選舉的幾天後於矽谷的一個公開場合,輕描淡寫地表示,選民受假新聞左右是一個「相當瘋狂的想法」。但是許多記者、立法者、名嘴與公民都不予苟同。

事實上此一問題在選舉期間十分猖獗,尤其在臉書的社交網路,有數以萬計,甚至可能是百萬計的網民,分享一些虛假編造的故事,這些故事的標題例如「涉嫌希拉蕊電郵洩密案的聯邦調查局人員被發現死亡,顯為謀殺後自殺」或是「教宗方濟各支持川普競選總統震驚世界」。

臉書後來揭露有一家與克里姆林宮關係甚密的俄羅斯公司,花了超過十萬美元向470個假帳戶與頁面買網路廣告,散播有關種族、槍枝管制、同性戀權利與移民等方面的假訊息,此一事件使得公眾更感關切。

與此同時,社會大眾的憂慮也投射到GAN與其他相關的科技上,使它們以完全不同於過去的面貌成為世人焦點:這些科技看來是產生假新聞的管道。

-----廣告,請繼續往下閱讀-----
人工智慧讓假新聞更容易。圖/envatoelements

然而人工智慧科學家當時的研究卻完全是在助長這種看法。華盛頓大學的一支團隊,利用神經網路製作出一段冒用歐巴馬說話的影片。中國一家新創企業的工程師則利用相同的科技讓川普說中文。

其實偽造的影像並不是新玩意兒。自照相術發明以來,人們就開始利用技術來偽造相片。不過由於新式的深度學習可以自我學習這些工作──或者至少部分的工作──它們使得這樣的編輯變得更容易。

政治人物與活動、民族國家、社會運動人士、不滿分子往後不需要僱用大批人手來製造與散播假圖片和假影片,他們只要建造一套神經網路就能自動完成這些工作。

在美國總統大選期間,人工智慧的圖像操作潛能距離完全發揮仍有幾個月的時間。當時GAN只能產生如指甲大小的圖像,而要將字句置入政治人物的口中仍需要罕有的專業技能,更別說其他一些費力的工作了。

不過,在川普勝選一週年時,輝達在芬蘭實驗室的一支團隊開發出新款GAN,稱作「漸進式GAN」,可以利用對抗式的神經網路製造出實際尺寸的圖像,包括植物、馬匹、巴士與自行車,而且幾可亂真。

圖像不再能代表證據

不過這項科技最受矚目的是它能夠製造人臉。在分析數千張名人照片後,輝達這套系統可以製造出看來像是某位名人,但其實並不是的人臉圖像──一張看來像是珍妮佛.安妮斯頓(Jennifer Aniston)或席琳娜.戈梅茲(Selena Gomez)的臉孔,而實際上並非真人。這些被製造出來的臉孔看來都像真人,有他們自己的皺紋、毛孔、暗影,甚至個性。

「這項科技的進步速度太快,」菲利浦.艾索拉(Phillip Isola)說道,他是幫助開發此類科技的麻省理工學院教授,「剛開始時是這樣的,『好吧,這是一項有趣的學術性問題,你不可能用來製造假新聞,它只能產生一些略顯模糊的東西。』結果卻演變成『噢,你真的可以製作出像照片一樣逼真的臉孔。』」

在輝達宣布此一新科技的幾天後,古德費洛在波士頓一間小會議室發表演說,演說的幾分鐘前,一位記者問他該科技的意義何在。他指出他知道其實任何人都早已可以用 Photoshop 來製造假圖像,不過他也強調,重點是使得這項工作更為容易。「我們是促使已經具有可能性的事情加速實現。」他說道。

他解釋,隨著這些方法的改進,「有圖有真相」的時代也將結束。

「從歷史來看,這其實有些僥倖,我們能夠依賴影片作為事情曾經發生過的證據,」他說道,「我們過去常常是根據誰說的、誰有動機這麼說、誰有可信度、誰又沒有可信度,來看一件事情。現在看來我們又要回到那個時代。」

可是中間會有一段很艱難的過渡期。「遺憾的是現今世人不太會批判性思考。同時大家對於誰有可信度與誰沒有可信度都比較傾向於從族群意識去思考。」這也代表至少會有一段調整期。

「人工智慧為我們打開了許多我們不曾打開的門。我們都不知道在門的另一邊會有什麼東西,」他說道,「然而在此一科技方面,卻更像是人工智慧關閉了我們這一代人已經習慣打開的門。」

人們若不具有批判性思考的能力,就會容易被假圖像欺騙。圖/envatoelements

調整期幾乎是立即展開,某人自稱為「深度偽造」(Deepfakes),開始將一些名人的頭像剪接至色情影片中,然後再上傳至網路。這個匿名的惡作劇者後來把能搞出這些花樣的應用程式公開,這類影片立刻大量出現在討論板、社交網路與如 YouTube 的影音網站。

如 Pornhub、Reddit 與推特等平台趕忙禁止這種行為,但是此一操作與相關概念已滲透進入主流媒體。「深度偽造」也變成一個專有名詞,意指任何以人工智慧偽造,並在線上散播的影片。

——本文摘自《AI製造商沒說的祕密: 企業巨頭的搶才大戰如何改寫我們的世界?》,2022 年 8 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1256 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。