0

0
0

文字

分享

0
0
0

PanSci 360活動心得:謝謝你,曉明女中。

阿樹_96
・2012/12/11 ・1347字 ・閱讀時間約 2 分鐘 ・SR值 434 ・四年級

上星期六,帶著太座起了個大早,天還沒亮就出門,跟著z編搭高鐵奔向台中,訪問PanSci 360活動的第4間學校:曉明女中。

說真的,沒在學校當過老師的我,面對這麼一大票學生,而且還是女學生,真的蠻緊張的。好在學生們極度熱情,國威兄在進行PanSci的招牌「自我介紹」活動時,還有不少學生「自願」自我介紹,有記憶以來,我還沒看過課堂上、演講上有學生會搶著麥克風自我介紹的,而且多數的對話內容可以說是侃侃而談、對答如流,跟MIC活動比起來是有過之而無不及(拜託自介活動千萬不要刪掉!)。

 

在國威兄把大夥逗得小鹿亂撞…不是,是熱血沸騰之際,我正好就接手這一鍋滾水啦!而且當問了大家「想先聽什麼?」的時候,竟是先選「地科」,哇,這可是人生中第一次被指名>////<。

 

其實我的主題「地球打了個噴嚏」,其實目的只是在說「日本311地震」,由我擅長的題目出發,給大家一些課本上沒有的地震科學、甚至與社會之間的重要關係。不過講完之後,才發現自己實在把問題「搞大了」,一個地震能說的故事可多的,說了記者、說了災難現場、說了地震預警、當然也說了自己曾待過的氣象局。以整體的配置和現場的演說結果,我應該嚴格的給自己打了60分的成績,當然,過去在氣象局宣導的等級可以說是不及格,其實對學生們很不好意思,因為準備的可能不是很充份,但我又貪心的想傳達很多知識,所以太多東西也只是點到為止,早知道就多放點經典的圖片照片。只能說,我會再精進自己的簡報技巧和編排的!期待剩下的300多所學校,我也希望能留下更多足跡。

-----廣告,請繼續往下閱讀-----

 

 

不管是不是為了寫報告,每個都豎起了耳朵傾聽,努力的抄寫筆記,還留下來把我團團圍住,問了半小時的問題。以我在學校當助教的經驗,這些孩子甚至比國立大學的學生還認真!當然,也十分敬佩老師能教出這些好學的學生,而且老師第一個問題就把我問傻了,不愧是老師~~又引起了我閱讀的動力!

看了z編的演講,覺得有點先天上的不公平,為什麼人家是放昆蟲求愛的影片,但我的影片最有梗的是「塊陶啊~~」看這個誰會開心起來啦!而且我如果把地震和愛情串起來,腦中的畫面只有「唐山大地震」之類生離死別的畫面啊。但回想起來,我還蠻少上到讓人感覺輕鬆愉快又有梗的地球科學課,這次最大的收穫就是,也知道了這個年紀的學生們的普遍的地科程度、能理解的程度、會想再深究的問題;雖然很多都是因為我講得太皮毛了,不過像是對「地震不是發生在一個『點』上」、「斷層不是一口氣就破裂完成」這類高中課程不會出現的探究,已經達到了我原先設定的目的之一了!

 

又到了感謝時間……該感謝的人好多啊~~首先感謝太座一大早陪我衝台中還兼活動攝影,還有z編和國威~~

當然,最感謝的就是曉明女中認真又可愛的師生們,你們太棒了!

-----廣告,請繼續往下閱讀-----
文章難易度
阿樹_96
73 篇文章 ・ 21 位粉絲
地球科學的科普專門家,白天在需要低調的單位上班,地球人如果有需要科普時時會跑到《震識:那些你想知道的震事》擔任副總編輯撰寫地震科普與故事,並同時在《地球故事書》、《泛科學》、《國語日報》等專欄分享地科大小事。著有親子天下出版《地震100問》。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
2

文字

分享

0
3
2
大家都知道「地球在動」,但你怎麼知道?
賴昭正_96
・2023/06/19 ・6380字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

  • 賴昭正/前清大化學系教授、系主任、所長;合創科學月刊

在第一本書中,我將描述球體的所有位置,以及我歸因於地球的運動,因此本書可以說是包含宇宙的一般結構。 在剩餘的書中,我將其它恆星和所有球體之運動與地球的移動性聯繫起來,這樣就可以確定如果歸因於地球的運動,它們的運動和外觀可以保存到什麼程度。

-哥白尼(Nicolaus Copernicus,1473 – 1543)

隨便找個國中生問:「地球是宇宙的中心嗎?」相信他們都會回答說:「不是。地球除了自轉外,還在繞著太陽公轉。」可是如果你緊接著問:「你怎麼知道它在動呢?」相信大部分的國中生(甚至大學生)可能就不知道怎麼回答了:「嗯⋯這?⋯那?⋯??」

這事實上是一個非常難以回答的問題,因此雖然早在公元前 250 年希臘天文數學家阿里斯塔克斯(Aristarchus ,公元前 310 – 230)就曾經提出地球繞日說,但這一理論不但不為大眾所接受,還給他帶來了一生的嘲笑。

而希臘數學家蛇床子(Eudoxus of Cnidus,公元前 410 – 347)於公元前 380 年左右提出以不動之地球為中心的宇宙模型則幾乎統領了以後 2000 年的宇宙觀!

你該如何證明地球自轉?圖/envatoelements

1543 年,波蘭哥白尼基於在數學上處理起來比較簡潔,在德國紐倫堡出版六本題為《De Revolutionibus Orbium Coelestium》(論天體運轉)之書,提出日心系統,謂地球不在宇宙中心之特別位置,而是與其它行星一起在圍繞太陽的圓形軌道上運動。

-----廣告,請繼續往下閱讀-----

此後經伽利略(Galileo Galilei,1564 – 1642)、開普勒(Johannes Kepler 1571 – 1630)、及牛頓(Isaac Newton,1643 – 1727)等天文數學家的發展,地球繞日說不但慢慢地為天文學家所接受,也漸漸成為主流的宇宙觀。但這些發展似乎都是紙上談兵而已,並不是真正的觀察實驗結果。

有什麼方法可以證明地球是在動的呢?

加速度運動

相信大部分的讀者都有下面的經驗,那就是坐在平穩(等速)直線行駛的車廂內不會覺得火車在動;如果那個時候旁邊也有一輛類似的火車經過,我們根本無法知道到底是誰在動。

事實上不止不會覺得火車在動,伽利略早在四百多年前就告訴我們:不管在車廂裡做任何實驗都沒有辦法偵測出火車在動的(相對論)。但是如果火車突然加速,我們便可立即警覺到火車在動。

如果坐在等速前進的火車中你不會感受到火車在動。圖/envatoelements

圓周運動因為運動方向一直在改變,所以不是直線運動,而是一種加速度運動。坐遊樂場所裡的旋轉木馬之所以有被往外甩的感覺便是因為加速度造成的。地球的自轉及公轉都是圓周運動,我們不是也應該有被往外甩的感覺嗎?

-----廣告,請繼續往下閱讀-----

高中物理告訴我們圓周運動的加速度 a 為

上式中的 v 為圓周上物體的運動速度,r 為圓半徑。地球自轉運動最厲害的地方在赤道上, 將其值及地球半徑代入上式,得地球自轉在赤道上的加速度為 0.033 m/s2,只有重力加速度 9.8 m/s2 的 300 分之 1 而已。

這加速度需要 14 分鐘才能將車子或火車從零加速到時速 100 公里(「高性能」車子大約只需十秒鐘),我們能感覺出來嗎?此一往外甩的慣性力【常被稱為「離心力」(centrifugal force)與重力方向相反,因此如果有非常精確的體重機,原則上可以讓我們測出赤道上重量減輕,證明地球在自轉的。

將地球公轉的平均速度及半徑代入上式,則得地球公轉的加速度為 0.006 m/s2,與重力加速度一比更是微乎其微。所以想靠地球自轉及公轉的加速度來偵測地球在動顯然是相當困難的。

-----廣告,請繼續往下閱讀-----

恆星視差

坐火車的人都有這一經驗:窗外比較近的東西從眼前飛過,越遠的東西就越不動。所以如果火車是從左往右,當你比較圖一中遠近不同之 A、B 兩點的相對位置時,你將發現中非常遠的 A 點不動;但是比較近的 B 點則會從 A 之右邊 B’ 移到 A 之左邊 B”。事實上這視差與火車動不動無關,而是因 A、B、及觀察者三者的相對位置而異。

圖/作者提供

同樣的道理,因為地球繞太陽公轉,我們可以在兩個不同的軌跡點(例如夏至及冬至兩點)看到這「恆星視差」(stellar parallax)現象(圖一)。1838 年,德國天文學家貝塞爾(Friedrich Bessel)成功測量了天鵝座(Cygni)61 號恆星的視差,證明地球並不是一年四季都在同一個位置。當然,不在同一個位置表示「動過」,所以間接地證明了地球在動。

星光像差

站在大雨筆直而下的大街上時,你只需將雨傘直接舉過頭頂即可保持乾爽。可是當你開始走路時,你便必須將雨傘朝行走方向傾斜以免被淋濕,走得越快,傾斜度就需要越大。如果不知道雨是垂直而下(對地球而言),你將誤以為雨是從前方傾斜而至(對你而言)。

(左)在雨中靜止不動;(右)在雨中往右跑。 圖/作者提供

同樣的道理。當地球繞太陽公轉運動時,我們也可以檢測到與運動速度有關之入射星光的「傾斜」(見圖二)——在天文學上稱為「星光像差」(stellar aberration)。因為地球一年四季的運動速度不同,所以「像差」也將因之而異。。

-----廣告,請繼續往下閱讀-----

1725 年起,英國天文學家布拉德利(James Bradley)及同事一直在努力想測量天龍座伽馬(Gamma Draconis)的視差;他們雖然沒有找到預期的現象,但卻發現天龍座伽馬在三天內往「錯誤」的方向移動了驚人的弧度。在同事去世後不久,布拉德利終於意識到這無法用視差來解釋的現象是:因地球在恆星方向運動速率不同之「光像差」(light aberration)和光速有限所引起的。

布拉德利於 1729 年元月向英國皇家學會宣布此一首次確鑿證明地球在「動」的發現,提供了阿里斯塔克斯、哥白尼、和開普勒理論正確性的觀察證據。巴黎天文台台長德蘭布爾(Jean Delambre)認為這是「(18 世紀)最輝煌、最有用的發現」;在其 1821 年所出版之《18 世紀天文學史》中謂:「正是由於布拉德利的這⋯發現,我們才有了現代天文學的準確性。」 

圖/作者提供

傅科

最能夠直接證明地球每日自轉的實驗是「傅科擺」(Foucault pendulum)。法國人傅科(Léon Foucault,1819 – 1868) 小時候對學校功課沒興趣,喜歡自己在家建造玩具和機器。1839 年進入巴黎醫學院,看到血就昏暈,因此只好放棄從醫。但指導教授多內(Alfred Donné)慧眼識英雄,把他留聘為助手從事研究,兩人於 1845 年合作出版了《顯微鏡課程》(A Course of Microscopy)。

傅科與多內的合作開啟他作為科學傳播者的職業生涯:多內退休後,傅科成為具有影響力之《辯論雜誌》(Journal de Débats ) 的科學編輯,接替了多內向公眾報導最新科學領域發展的角色。透過每週生動地報導巴黎科學院會議,傅科很快引起了公眾和科學精英的注意,包括了法國具有影響力的數學家和政治家阿拉戈(François Arago)。

-----廣告,請繼續往下閱讀-----
圖/作者提供

1850 年傅科突發出奇想:如果能夠設計出一個鐘擺,其頂點雖可以隨地球上的支架移動,但能完全自由轉動(也就是與支架間的旋轉摩擦力為零);那麼鐘擺一旦開始擺動,因為不會跟著地球旋轉,地球將在其下方旋轉——但對地球上觀察者來說,將是擺動平面在旋轉。1851 年元月,傅科在家中地下室成功地建造了這樣一個鐘擺後,阿拉戈要求他在巴黎天文台也裝置一個。

不久後,巴黎的每一位科學家都收到了前往巴黎天文台參觀鐘擺的邀請。在天文台進行實驗證明地球確實在旋轉的 1851 年 2 月 3 日,阿拉戈也向科學院宣讀了現在稱為「傅科擺」的論文。幾週後,傅科在巴黎萬神殿(Panthéon)的圓頂上用一根 67 米長的金屬絲懸掛了一個重 28 公斤的黃銅塗層鉛擺,又復製了一個「傅科擺」(圖三,註 1)。

傅科擺的物理

台灣早期科教館曾經展示過「傅科擺」,現在已經找不到了。但相信許多讀者都曾在世界其它各地(如北京或廣州)看過。如果在北極的正上方掛一個「傅科擺」,我們很容易直覺地了解地球將在其下方以 24 小時的週期旋轉。將鐘擺掛在赤道上某一點的正上方,則它只受到地球自轉的前進推力(見後),筆者還可以了解(看出)地球在其下方不會旋轉;但筆者很難想像掛在台北的上空時,地球如何在其下方旋轉?

在忘寢廢食之苦思後,筆者終於領悟到伽利略 1630 年用來錯誤地「證明」地球在動的例子,事實上正是解釋 1851 年「傅科擺」的最佳工具。一個往東方前進之逆時針方向旋轉輪子,在任何一瞬間,對「一位靜止不動的旁觀者 A」來說(圖四左),最上方那一點的速度應該比中間點慢,最下方那一點則比中間點快(註 2)。

-----廣告,請繼續往下閱讀-----

但是對於與輪子同時前進、但不旋轉之中間觀察者 B 來說(圖四中),兩個向量相減的結果,上方那一點的速度將是往左,下方那一點的速度則是往右,這正是為什麼他只看到輪子在逆時針方向旋轉的原因。對一位隨輪子旋轉及前進之中間觀察者 C 來說,則輪子不轉不動:如果觀察者 B 不是一個數學點的話,將依順時針方向旋轉(圖四右,註 3)!

圖/作者提供

地球自轉造成台北 101 大樓往右的旋轉推力;大樓南方因為旋轉圈子比正上方的中間點大,速度因之比中間點快;反之,大樓北方則因為旋轉圈子較小,速度應比中間點慢(圖五白色箭頭)。所以對旁觀者 A 來說, 101 大樓中間點及南、北方兩點之表面速度如圖四左所示;圖四中則為觀察者 B 所看到的:整個台北(地球表面)在圍他逆時針方向旋轉。

住在地球上的我們當然是隨著台北地球表面旋轉的觀察者 C:整個台北不轉不動,B 在順時針方向旋轉;如果 B 是「傅科擺」(記得掛它的條件嗎?),則是鐘擺平面在順時針方向旋轉!同樣的原理我們可以推論到:「傅科擺面」在北極會順時針方向旋轉(週期 24 小時);在赤道上不旋轉(因南、北方兩點之速度一樣);越北的「傅科擺」週期越短(因南、北方兩點之速度差別越大,註 5)。

結論

在「加速度運動」一節裡,我們談到了地球的自轉及公轉所產生的效應在日常物體的運動中,因與其它力相比太小了,很難偵測到。但在長距離和長時間的大規模運動中(如大氣中之空氣或海洋中之水),它還是可能脫穎而出變得很明顯的,例如海邊高(低)潮之所以每天出現兩次,正是因為地球自轉的關係(註 2)。

-----廣告,請繼續往下閱讀-----

又如時常發生在台灣之熱帶氣旋(颶風)的形成,事實上也正是因地球自轉之故:在北半球產生逆時針的氣旋(註四),在南半球將產生順時針的氣旋。但赤道附近因旋轉太小,不會有颱風的。

除傅科擺外,要證明地球在動的原理似乎都很容易理解,但不容易執行;反之,傅科擺似乎容易製作,卻不容易理解。怪不得雖然早有人懷疑地球在動,但卻必須等了兩千年才能觀測到。即使在科技突飛猛進的今天,要證明地球在動似乎也不是幾個字就可以解釋清楚的,怪不得國中生(甚至大學生)只能支吾以對了。

*************** 猜猜看:旁觀者 A 是誰 ***************

我們在圖四及文中提到了「一位靜止不動的旁觀者 A」;不知讀者是否曾在心中質問「他是誰呢?」牛頓也曾想過這個問題:這位靜止不動的旁觀者在他心中是「絕對空間」——一個永遠存在那裡靜止不動的宇宙背景。

但是與他同時代的德國哲學家、科學家和數學家萊布尼茲(Gottfried Leibniz,1646 -1716)卻認為根本沒有這種空間,空間只是一種幻覺。對愛因斯坦發展廣義相對論有巨大啟發的馬赫(Ernst Mach,1838 -1916,奧地利物理學家兼哲學家)是一位十足的實證派人物,他認為任何可觀察到的現象都是相對於遙遠的恆星(或宇宙中所有的物體),因此從這裡得出地球在旋轉的結論是不合理的:我們怎麼知道不是恆星在旋轉呢?當太空沒有任何物體時,地球是否還在自轉呢?

德國哲學家、科學家兼數學家,萊布尼茲(Gottfried Leibniz,1646 -1716) 圖/wikimedia
奧地利物理學家與哲學家,馬赫(Ernst Mach,1838 -1916) 圖/wikimedia

他認為如果沒有其它物體比較,地球與靜止無異,旋轉沒有任何意義。因此對馬赫來說,加速不是絕對的、也是相對的!所以地球的自旋是相對於這「一位靜止不動的旁觀者」(遙遠的恆星)而言的,是它造成的!讀者相信馬赫的觀點嗎?或者根本沒有這個人(萊布尼茲幻覺空間)?或者還是比較相信牛頓的絕對空間? ⋯⋯甚或是因為我去看它,所以地球才在旋轉的近代量子物理觀?對這些爭論有興趣的讀者請參考《我愛科學》。

註解

  1. 原來之擺錘在 2010 年 4 月 6 日因電纜斷裂損壞無法修復,現在的鉛擺為複製品。
  2. 伽利略錯誤地認為這一快一慢的(地球)速度變化正是造成潮汐現象的原因;依照他這一個理論,海邊高(低)潮每天只出現一次,但事實上我們知道因為地球自轉的關係,高(低)潮每天出現兩次。牛頓正確地解釋了潮汐現象主要是因月球引力造成的。
  3. 如果 B 或 C 向前丟出去一顆石子,則 B 將看到該石子直線前進;但是因為「科氏力」(Coriolis force )的關係,C 將看到該顆石子沿右彎的曲線前進;詳見『「 離心力 」真的存在嗎?』。所以「科氏力」可用來解釋「傅科擺」在地球表面的軌跡(與地點緯度、從什麼地方啟動鐘擺、及鐘擺長度有關;加上鍾擺頂點雖然不隨地面旋轉,但並不是「絕對」靜止不動,而是隨地球自轉及公轉,因此細節上是很複雜的,以至於在網路上可以看到許多不同或不完全正確的軌跡圖)。
  4. 因為註 3 之「科氏力」。在網絡上可以看到不少用同樣的原理來解釋水槽、浴缸、或抽水馬桶排水時,在北半球的水流將是逆時針方向旋轉。筆者家中兩個抽水馬桶排水時都是逆時針旋轉,不知讀者府上是否也是一樣?但筆者覺得像加速度一樣,我們不可能偵測到地球自轉對這麼小之水體影響的,有興趣的讀者可參考英文《科學美國人》 2001 年的『有人終於以解決了「水流下排水管的方向是否會因您所在的半球而異」這個爭論?如果有,為什麼?』。
  5. 我們可以利用微積分來計算圖四中之旋轉速度。如果地球的半徑為 R,該中心點是地球表面緯度 Φ 上的一點,則其地球旋轉半徑應該是 Rcos(Φ),將它乘以地球自轉速率 ė,即得在該點的直線速度。其上下兩點的直線速度微差 dėRcos(Φ) 造成對該點的旋轉(圖四中),將它除以旋轉微半徑 RdΦ 則得附近表面對該點的旋轉速率: 。鐘擺的週期與之成反比;台北的緯度為 25°N,故「傅科擺」的週期為 56.8小時[=(24小時)/sin (25°)]

參考資料

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
2

文字

分享

0
2
2
30年來全球最大的火山爆發?日本都發布海嘯警報了,臺灣呢?feat. 不會冷&阿樹【科科聊聊 EP.77】
PanSci_96
・2022/01/28 ・2692字 ・閱讀時間約 5 分鐘

泛泛泛科學Podcast這裡聽:

你覺得「海嘯」和臺灣人的距離有多遠?1 月 15 日東加王國的海底火山大爆發,不僅炸毀了當地的無人島和海底電纜使得對外通訊全部中斷,火山灰、海嘯的威脅更使得環太平洋國家人心惶惶,臺灣的鄰居——日本甚至發布了大範圍的海嘯警報。

這個三十年來全球最大的火山爆發,究竟是怎麼一回事?們有辦法透過科學儀器提前偵測海嘯嗎?臺灣有沒有被海嘯侵襲的紀錄和可能性?讓我們一起和 y 編、泛科學專欄作者阿樹以及從事海嘯和地震觀測工作的不會冷,一起聊出這些問題的答案!

  • 00:36 引起全球矚目的「東加火山大爆發」

不會冷指出,東加火山在臺灣時間 1 月 15 日 12 點 15 分左右爆發後,有很多氣壓計都有顯示出異常的訊號,並引發地球科學社群的熱烈討論。傍晚時,國內的新聞媒體也開始陸陸續續出現海嘯相關的報導。 此次東加爆發的火山是由洪加湯加、洪加哈派兩座無人島組成,是一座大型的海底火山,上一次的噴發紀錄落在 2014 年附近,而這一次的大規模爆發其實有點出乎科學家的意料。阿樹補充道,以當前地球科學界而言,海底火山非常難以被偵測,不僅聲納所得出的精確度不高,就連許多監測陸地火山的方法如氣體、地表變形都難以應用,現在大都只能用地震資料來監測海底火山。

-----廣告,請繼續往下閱讀-----
  • 10:35 東加火山爆發後,發生了什麼事情?

阿樹表示,近日有許多媒體會以「 30年來全球最大的火山爆發」來形容東加事件,在此前就是 1991 年於菲律賓爆發的皮納土波火山,它與 1815 年印尼坦博拉火山引起的「無夏之年」一樣,當時都對地球的氣候造成了嚴重的影響。而根據科學家們的判斷,這一次東加海底火山爆發事件,並不會大範圍的改變氣溫或氣候,也不會對臺灣產生什麼顯著的災害,後續的觀測也顯示海嘯傳遞到臺灣時,浪高少於 30 公分。

三人組, 人, 公寓 的 免費圖庫相片
東加海底火山爆發,被地球科學家認為是當地「千年難得一遇」的大規模爆發事件。圖/NASA
  • 15:36 日本都發布海嘯警報了,臺灣卻沒什麼感覺?

不會冷指出,一般而言,比起地震、斷層、海溝引起的海嘯,火山爆發所導致的海嘯波長都會比較短,衰減的速度較快,也不會影響到太遠的地方。此外,以臺灣的海嘯預警作業而言,針對像是東加火山這種遠地的事件,就必須仰賴太平洋海嘯警報中心所提供的訊息,才可以評估要不要發布海嘯警報。

延伸閱讀:

台灣面臨海嘯威脅時,該如何應對?專訪海嘯專家吳祚任

逼逼逼~海嘯警報,別成國家級邊緣人!——《震識》

爆發當天,除了太平洋海嘯警報中心沒有立即的動作、美國地質調查所沒有上傳地震資訊,普遍認知上也大都不認為火山會引發嚴重海嘯,因此中央氣象局並沒有發布海嘯警報。反觀日本發布海嘯警報的作法,反而是違反經驗和常理的,而後續的觀測也顯示海嘯的高度並沒有日本預測的 3 公尺那麼驚人。

  • 22:05 海嘯不是一波高浪打來,而是永無止盡的漲潮

海嘯是週期很長、波長也長的水波,波長可以高達數公里到數百公里。當地震、斷層或海溝產生錯動時,容易使地表產生大範圍的形狀變化,進一步對海水造成擾動,最後就有可能形成「海嘯」。不會冷表示,由於海嘯的波長很長,所以其實海嘯不是大家想像的被浪打到,更像是一場永無止盡又快速的漲潮。如果只是浪高很高,波長很短,那就不是海嘯,而是瘋狗「浪」。

-----廣告,請繼續往下閱讀-----
  • 24:40 臺灣的海嘯紀錄竟然要去廟裡看?

阿樹指出,較近期的、討論較多的海嘯紀錄是 1867 年的基隆海嘯,但原因並不明,當時也沒有什麼科學儀器和資料留下來,只有一些歷史文獻記錄著當地有大水。不會冷說明,國內經確認的海嘯紀錄不多,但未經確認的海嘯文獻其實很多,像是屏東、臺東的廟誌都有許多像是「大水」逞罰不孝子、八重山地震引發 80 公尺高的海嘯紀錄,可惜的是,我們很難確認這到底是煞有其事,抑或只是古人們的誇大其實。

延伸閱讀:

面對海嘯有三寶,水門、堤防、趕快跑!──《課本沒教的天災日本史》

海嘯石辨認指南:颱風都能搬大石頭了,還需要海嘯嗎?

18 世紀臺灣西南沿海真的發生海嘯嗎?——《科學月刊》

你以為海嘯就像是一波大浪拍到岸上?不不不,這個觀念是錯誤的!圖/Flickr @Douglas Sprott
  • 29:00 「東部海很深所以不會有海嘯」是真的還是假的?

坊間傳聞,因為臺灣東部的海域很深,所以我們才不會面對來自東加的海嘯?這個說法是錯誤的!不會冷澄清,海嘯會有所謂的「淺化」現象,當水深越來越淺,波速會越來越慢,波長會越來越短,使得能量被累積、浪高也越來越高,而人類住在陸地上,只要海嘯來,就會經過淺化,不會因為東部的海深而沒有海嘯。

  • 34:18 經過東加火山事件,臺灣學到了什麼?

不會冷認為,當前中央氣象局的海嘯發布作業有極大的程度仰賴太平洋海嘯警報中心,也許未來在發布作業上可以有檢討和調整的空間,而近年氣象局也建置了海嘯浮標、海底電纜等等非常先進的儀器,這一次東加火山事件也可以成為這些儀器使用上的寶貴觀測經驗。

延伸閱讀:

臺灣會發生海嘯嗎?東部海域的地震「烽火台」海纜觀測系統

那些海嘯教我們的事

阿樹則感慨的說,相比起地震,臺灣人對於海嘯還是太陌生,從基礎研究、發布作業、預警配套到海嘯的科普教育,都非常的不足。從歷史的經驗來看,人們總是要經過一次嚴重的天災,才會懂得重視、懂得害怕,例如經過九二一大地震後,臺灣的防災教育、相關法規和研究才有了大幅度的進步,難道海嘯也要透過血淚才能得到教訓嗎?想必這是大家都不樂見的未來。

-----廣告,請繼續往下閱讀-----
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。