0

0
0

文字

分享

0
0
0

構成生命的元件出現在泰坦的大氣中?

陸子鈞
・2011/04/30 ・306字 ・閱讀時間少於 1 分鐘 ・SR值 569 ・九年級

-----廣告,請繼續往下閱讀-----

一項模擬泰坦(土星Saturn最大的衛星)化學組成,及氣體密度的實驗,產生了構成生命最基本的元件。2010十月七日在加州舉行的美國天文學會行星科學組會議中,研究人員描述他們如何利用無線電頻率的放射線-太陽紫外線的替代物,將泰坦大氣中主要的成份:甲烷、氮氣、一氧化碳物,轉成兩個最小的胺基酸-胺基乙酸和丙胺酸。實驗中也產生了DNA中的四種鹼基還有RNA中的尿嘧啶。根據研究人員的說法,這項實驗的反應不在液態水中,所以地球上的早期生命,也可能不是過去假設的那樣,來自海中,而是來自於大氣,就像泰坦現在的霧氣較薄的樣子。

資料來源:ScienceShot: Building Blocks of Life in Titan’s Atmosphere? [7 October 2010]

-----廣告,請繼續往下閱讀-----
文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

5
3

文字

分享

0
5
3
星光,指引地球的未來——《困惑的心》推薦跋
時報出版_96
・2023/07/17 ・4372字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

  • 潘康嫻/中研院環境變遷研究中心博士後研究員

人類是天生的科學家。我們生來就想知道為何星星會閃爍,想知道為何太陽會升起。


加來道雄

地球上有一群人總喜歡抬著頭,看著夜空中點亮大地的星燈,這些星光夾藏著宇宙的祕密,穿透無數個光年,抵達藍色的星球。除了欣賞夜色之美,這一群人更試圖從中看出點端倪,這些熠熠星光是怎麼來的?宇宙是什麼樣子?為什麼會有地球?生命從何而來?還有其他如地球般的星球嗎?那裡也有文明嗎?好多個「為什麼」是大自然帶來的啟發,而人類尋找答案的行動,卻是宇宙裡不可思議的精彩。

好多個「為什麼」是大自然帶來的啟發,而人類尋找答案的行動,卻是宇宙裡不可思議的精彩。圖/envatoelements

向遙遠的星系發送信號 尋找未知的外星文明

人類的世界觀從曾經的地球放眼到太陽系,隨著科學與科技的進步,二十世紀的物理學開創宇宙論的發展,至二十一世紀天文觀測的黃金年代,不停歇地向深邃的星空探索,走出新的視野。近二十多年的諾貝爾物理獎,多達三分之一肯定天文學的貢獻,例如 2019 年獲獎的三位學者,一位建構宇宙大霹靂理論模型,另兩位發現一顆繞著另個太陽類型恆星公轉的系外行星。宏觀的宇宙視野,加上相對微觀的行星視角,近代的天文學一再刷新人類對宇宙演化及地球定位的認知。

天文望遠鏡和太空科技的進展,讓現代的天文學家得以挖掘宇宙暗藏的驚奇,透過紅外線觀測,我們看到隱藏在可見光背後恆星誕生的搖籃,也發現了宇宙考古學的線索。2019 年諾貝爾物理學獎得主之一詹姆士・皮博斯(James Peebles)花費大半輩子,帶領我們梳理宇宙 137 億年演化的歷程,如今我們知曉實質物體的總質量佔宇宙的 5%(其餘為 68% 的暗能量,與 27% 的暗物質)。在這 5% 的質量中,粗略估計大大小小星系中的星點,加總起來約略有 1027 顆恆星。假使每顆恆星誕生時也伴隨著行星系統的發展,在如此龐大的總數下,是否也有另一顆適合生命發展的星球?

放眼望去,茫茫星海,僅吾唯一?以地球人的角度思考外星生命的可能性,德雷克公式(Drake equation)將文字的問號轉成可運算的概念,考慮環境因素和發展文明的可能性,估計銀河系中存在著少則一千,多則一億的文明數量。但這些年,沒有人聯絡我們,我們也沒有找到對方,費米悖論提醒了估算與現實的落差。天文學家藉著太空科技的發展得以主動探尋,1972 年的先鋒號和 1977 年的航海家,帶著人類寫給外星人的科學密碼信函,至今持續在星際間航行。除了寫信,還可以像發電報一樣,1974 年的阿雷西波訊息(Arecibo message),對著遠在 25,000 光年外的 M13 球狀星團發送訊號,寄望能在高齡星團中找到找到高智慧文明存在的可能性。然而,這一去一回,收到回音得等上五萬年,已不知道是人類幾代以後的事了。

-----廣告,請繼續往下閱讀-----
1977 年的航海家,帶著人類寫給外星人的科學密碼信函,至今持續在星際間航行。圖/wikipedia

一如 15 至 17 世紀的大航海時代,歐洲船隊面對大海,莫不引頸期盼能在望遠鏡裡看到遠方的陸地。行星猶如當時的目標,由於行星不會自行發光,尋找行星的難度如同在千里之外的明亮燈塔旁邊瞧見一隻蚊子,然而技術的困難並未讓人退卻,科學的精彩就在於想辦法突圍。

更清晰地遙望遠方 用太空望遠鏡在地球上一起遨遊宇宙

1995 年米歇爾・麥耶(Michel Mayor)迪迪爾・奎洛茲(Didier Queloz)藉由分析恆星光譜中的都卜勒效應(目標物遠離觀測者時,其光譜會往長波方向拉長稱作紅移,反之靠近則往短波壓縮稱之藍移),在飛馬座找到繞著太陽類型的恆星公轉的第一顆系外行星飛馬座 51b(51 Pegasi b),為系外行星大發現時代展開序幕,也讓他們在 2019 年共享諾貝爾物理獎的殊榮。至今近 25 年觀測資料的累積,尤其有了克卜勒太空望遠鏡和接續的凌日法系外行星巡天衛星(Transiting Exoplanet Survey Satellite,TESS),系外行星數量自 2014 年開始大幅增加,截至今年 2023 年 6 月統計,約有 5,500 顆系外行星,依據型態將系外行星分成四類:氣體巨行星(又稱熱木星)類海王星超級地球類地行星。天文學家從統計數量和行星形成動力學模型中獲得豐富的訊息,也讓太陽系的形成與演化有了更進一步的認識。以一個系統中的行星質量做序列可以分成四種:由小至大(太陽系即為此類)、由大至小、混合、和大小相似,科學家發現像太陽系八大行星的排序反而非常稀有,像 TRAPPIST-1 系統中七顆行星大小雷同的類型倒是常見,人們才驚覺原來太陽系與其八大行星的組合是如此與眾不同。這個獨特也包含太陽系的氣體行星木星,有顆大質量的木星在外,像吸塵器一樣讓闖入太陽系的天體轉向(例如 1994 年的舒梅克-李維彗星撞擊木星事件),減少外來者體撞擊內太陽系的機會,使得位在適居帶的地球有足夠安全的環境與時間孕育生命。原來要有機會誕生生命,先決條件也要天時地利「星」和。

有沒有一種可能,其實有外星訊號,只是現今的科技還無法察覺和解讀? 二十一世紀的新視野多來自百年前科學家所闢的路,例如愛因斯坦在廣義相對論提出對重力的新見解,物體質量造成的空間扭曲,只是改變的幅度之小不易測量,直至 2015 年天文學家終於在絞盡腦汁精細設計之下,成功打造觀測重力波的天文望遠鏡(Laser Interferometer Gravitational-Wave Observatory,LIGO),2017 年人類首次觀測到雙中子合併事件,解開化學元素週期表上的重金屬形成之謎。在天文學的領域,一個計畫從靈感發想、規劃藍圖、開工建造、出發觀測、收集資料到計畫結束,從開始到最後的時間跨度,往往超過科學家本身的職業生涯。科學家年輕時的構思,常須藉由後生晚輩接棒執行,有生之年不一定看得到科學成果,而這一路上牽起了一代又一代的傳承,一起讓科學的進展跑得更遠,跑向遠在未來的新發現。本篇文章談及的計畫,在筆者的學生時代,早已如火如荼地展開,伴隨著計畫的執行和觀測資料的回傳與分析,是前輩們的堅持與努力,也是帶給新生代天文學家的禮物和邀請:現在的成果來自於我們過去的努力,而未來要由現在的你們來開創。

太空望遠鏡的升空協助天文學家得以更清晰地遙望遠方,讓系外行星的發現轉為低風險的冒險之旅,安全地帶著大家想像另一個世界的雛形,正當書中的主角,天文生物學家拜恩教授,為兒子羅賓說起異星見聞時,好似向星空開啟一扇扇門,父子倆得以一起遨遊宇宙。

-----廣告,請繼續往下閱讀-----

穿越都市的水泥叢林,遠離學校與人群,當我讀到書中拜恩教授帶著羅賓前往國家公園露營,徜徉在大自然的聲音與光影,兩個人在星光下深度傾聽彼此,為人生的焦慮與困惑尋找方向,令我不禁想起,曾經只是為了想看星星,所以去登山的自己,無意間在山林尋回自己的心。臺灣的山勢陡峭地形多變,得要十分專注在腳下的步伐與眼前的山徑,此刻陪伴自己的只有呼吸和心跳。踩著吃力的腳步,一瞬間,世界難得寧靜,只聽得見自己的聲音,「離目標還有些距離,繼續是前進,回頭是放棄。若是堅持,不知還有多少難關?若是放棄,我能接受放棄的自己嗎?難道是走錯路或迷路,所以才這麼難行,那麼路又在何方?」為一睹繁星,在光害日趨嚴重的情況下只得越走越深山,不只用腳感受臺灣地貌的鬼斧神工,還要感官全開地觀察瞬息萬變的天氣,多認識她才能做出適當的應變確保登山安全。白天的路上觀察自然的氣息,與重建內在的自己,晚上終見美麗的星空,走在一條條的山岳路線,整頓人生朝著目標向前行。

書中拜恩教授帶著羅賓前往國家公園露營,徜徉在大自然的聲音與光影,兩個人在星光下深度傾聽彼此,為人生的焦慮與困惑尋找方向。圖/envatoelements

回首看看我們腳下的地球

天文學總是背對著地球往外尋找新的未知,試圖解讀新收到的觀測資料與訊息,然而來自腳下的訊號呢?地球也是行星,是離我們最近的行星,她孕育了這世界的美好,但她的語言,我們真的懂了嗎?羅賓對外界的反應多來自於他所觀察到的地球,作為父親的拜恩教授要怎麼回應孩子呢?

當我們汲汲營營想向外拓展新知識、新世界時,可曾留意腳下正在發燙?若將地球的呼喊換成人類的語言,環境變遷的種種跡象就是地球發燒的訊號。以往科幻災難片當中的賣座奇觀,漸漸成為生活新聞,熱浪、野火、水災旱災、劇烈天氣變化,讓全球不只要解決眼下的困境,也要未雨綢繆地做永續經營的規劃,即刻採取行動已是迫在眉睫。

2021 年,聯合國政府間氣候變遷專門委員會(IPCC)公布第六回的全球氣候變遷評估報告,提及全球暖化現象在冰河面積、海平面上升、全球氣溫,及海洋酸化等等的科學研究報告中,出現許多令人擔憂的新紀錄,並指出二氧化碳與溫室氣體排放量的關聯性,巨變的環境讓各類生物物種面臨生存威脅。因應這場危機,全球達成共識目標於二十一世紀的地球平均氣溫,相比十九世紀最多僅能上升攝氏 1.5 度,並且在 2050 年達成全球淨零碳排放。今日世界各國包含臺灣正積極發展替代能源減少碳排放,同時開發技術增加碳匯,企圖集結眾人的力量把大氣中的碳存回大地。但我們能在有限的時間內力挽狂瀾嗎?假使目標如期達成,是否就高枕無憂了呢?地球和我們的日子就美好了嗎?

二氧化碳與其他溫室氣體排放帶來的環境巨變,讓各類生物物種面臨生存威脅。圖/envatoelements

從人類張開眼睛認識日月星辰,建立了神話、曆法和文明,發展農耕,再到科學與工業革命,一路解析宇宙和地球的起源、歷史、環境、命運。星星帶給人類的啟發,讓人類的足跡已從地球走向太陽系,從更高的視野回頭凝視地球那令人屏息的湛藍,離開地球的探索,讓我們重新看見地球。文化藝術與科技文明的發展一直以來與大自然息息相關,進步固然帶給人類生活和思維的改變,然而過度的開發讓環境失衡,讓現在的我們必須啟動地球生命保衛戰,永續經營之前要先理解,如何理解則引發更多的提問,解答提問的過程中人類將深刻感受地球的脈動,為身為地球人感到驕傲。BE-WILD-ER-MENT 的故事在過去已開始,現在的行動是創造機會、還是命運?未來,讓我們和這顆有心跳的藍色星球一起來回答吧。

-----廣告,請繼續往下閱讀-----

——本文摘自《困惑的心》,2023 年 7 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

11
4

文字

分享

0
11
4
宇宙文明演化史(上):能量觀點下的先進文明
Castaly Fan (范欽淨)_96
・2023/06/26 ・3182字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

編按:說到星際文明的發展程度,科幻愛好者必定會提到「卡爾達肖夫指數」,以使用的能源多寡,來區分文明發達程度。然而,除了從能源來評斷文明進程,其實還有其他的評判方式。

「宇宙文明演化史」系列,將在上篇回顧「卡爾達肖夫指數」,下篇介紹較少討論的「資訊量」與「微觀尺度」的評斷觀點。

地球數以萬億計的物種中,人類算得上是最具高等智慧的生物。

但假設——遙遠的某顆行星上也有「智慧生命」的存在,那麼,對方是否有可能比我們先進?他們能透過量子力學的應用而發明電子產品嗎?他們能掌握陽光、電磁等能源嗎?他們是否有完善的醫療、教育、經濟、社會結構?又或者,他們是否已然可以達成人類難以觸及的瞬時旅行?

智慧生命的演進

誠如在這篇文章所提過的,碳基生命自發形成的機率極為渺小,從有機分子組合成蛋白質、基因序列、細胞、再到個體的行程,這個機率相當於「一陣龍捲風掃過垃圾場、從中隨機拼湊出一架波音 747」那樣渺茫,更何況是演化成像人類這樣的「智慧生命」。

我們不僅僅具有生物體的基本特徵,還具有思考能力、邏輯、記憶力、甚至是預測與規劃未來的能力,這些可以說是人類與其他生命體最與眾不同之所在。人類之所以成為「智慧生命」,便是因為擁有了自己的語言、文字,使資訊得以保留並傳承。回溯到百萬年前,從演化論的角度來看,當時人類與其他靈長類動物差異並不大;然而,我們的老祖先發現了「火」,並且懂得如何生成並且控制「火」,使得我們不再像其他動物那樣直接生食獵物;另一方面,我們開始懂得用遮羞布、乃至於之後縫製衣服。

-----廣告,請繼續往下閱讀-----

此外,我們能表達自己的情緒,能輕易地展現喜怒哀樂溝通,進行交際活動——這些都是人類得以成為智慧生命的原理。

順帶一提,根據物理學家加來道雄(Michio Kaku)所提出的「穴居人原理」(caveman principle),我們人類依然存有百萬年前老祖宗們「原始慾望」的影子——換句話說,數十萬年來人類雖然不斷演化,然而我們的人格依然保有原始穴居人的基因本質。舉例而言:即使有先進的電腦把文件處理完善,我們仍習慣把文件影印成紙本,之所以如此,係因原始人類捕獵動物時要求「獵殺證明」,習慣取信於親眼所見的事實。

同理,我們傾向於參與音樂會或去電影院體驗現場氛圍,而非一味觀賞電子螢幕前的動態;我們習慣社交與打扮,因此多數重要聚會並不容易被虛擬會議所取代;而在古代社會,小道消息的流通會幫助某些人們知悉高層的行動,因而扮演著一定程度重要性——而這也呼應了我們周遭充斥著娛樂與八卦的報刊,畢竟這些事物總會激起人性深處的好奇心。另一方面,穴居人法則似乎也意味著藝術、娛樂並不會因為科技發展而消失,因為這些事物能滿足人類的需求與愉悅,而這並非科技所能取而代之的。

根據穴居人原理,我們依然保有原始人類的慾望。圖/Mrs J’s science

回歸根本,可以發現,身為智慧生命,必然要有「視力」的存在、而非像螞蟻那樣透過觸角溝通,包含情緒的表達、語言的交流,這方面可以歸功於「大腦」的演化;再者,人類的「腳趾」的演化也是關鍵,這使得人類得以直立行走、改變對世界的視角與行動;此外,「前肢可握物」也扮演著重要角色,亦即靈活的手指——這使得人類可以精準地操作物件、製造工具。

-----廣告,請繼續往下閱讀-----

先進文明的分級

因此,我們假定這些智慧生命都擁有這些生理構造與功能,他們可以溝通、可以發明器物。那麼,有沒有一個指標能告訴我們一個「文明」究竟能多發達?

1964 年,蘇聯科學家卡爾達肖夫(Nikolai Kardashev)提出了一個度量文明先進程度的指標——「卡爾達肖夫指數」(Kardashev Scale)。經由天文學家卡爾.薩根(Carl Sagan)修正過後,可以歸結為下列公式:

其中 K 代表卡爾達肖夫指數,P 代表文明所消耗的總能量。基本上,我們可以將文明依據「駕馭能量」的量級區分成三大類型:

  1. I 型文明(K=1)
    該文明能駕馭 10¹⁶ W 的能量,相當於掌握所處行星的能量,因此又稱「行星文明」。這類型的文明可以控制天氣、調節海洋、並且到地底深處採礦,徹底運用星球資源;並且,這一類文明將能任意造訪附近行星,並在後期發展出接近光速的太空旅行。
  2. II 型文明(K=2)
    該文明能駕馭 10²⁶ W 的能量,相當於掌握所處恆星系統的能量,因此又稱「恆星文明」或「星際文明」。這類型的文明能夠透過戴森球(參見下文)或相關科技、徹底利用恆星系統的能量;他們可在各個行星、恆星之間任意穿梭,並且相繼朝往其他恆星系統殖民。
  3. III 型文明(K=3)
    該文明能駕馭 10³⁶ W 的能量,相當於掌握所處星系的能量,因此又稱「星系文明」。這類型的文明不再受限於附近的恆星系統,他們將能夠隨心所欲駕馭整個星系、甚至宇宙尺度級別的能量,並可以在星系之間來去自如;他們甚至已熟悉時空物理、得以透過蟲洞或先進技術穿越時空。
卡爾達肖夫指數示意圖,由左而右分別是:行星文明(I 型)、恆星文明(II 型)、星系文明(III 型)。圖/http://www.maximusveritas.com/wp-content/uploads/2016/06/

作為宇宙文明的分級,文明所駕馭的總能量可以視為一個標竿。宇宙中的能量是無所不在、甚至可以說是取之不盡用之不竭的。因此,能妥善利用這些能量到什麼程度,便可以視為文明「先進與否」的標準。當然,還有一些人把這列表往下延伸,諸如宇宙文明(IV 型)、多重宇宙文明(V 型)、神靈文明(VI 型)、未知文明(VII 型)等等——不過這些級別距離目前人類還算是遙不可及,我們甚至無法保證在宇宙 137 億這年齡下是否已有這麼先進的文明誕生。

-----廣告,請繼續往下閱讀-----

就目前而言,顯然,人類縱使歷經工業革命、資訊革命,也開發出原子能、得以進行太空探索——但似乎尚未能被列入其中之一——我們尚未有能力操控天氣、就連地底結構也都是透過震波才得以探知的。那麼,人類目前究竟處在哪一階段?讓我們簡單計算一下:根據世界能源消耗量的統計,截至 2021 年底,人類所消耗的能量約為 176,431 TWh(百萬兆瓦時),相當於 20.14 TW(百萬兆瓦),代入卡爾達肖夫指數公式:

可以直接得出卡爾達肖夫指數 K≈0.73 ——因此,人類目前約是落在「0.73 型文明」,依然位在「第零型文明」的階段。

目前人類的能量來源主要仍是石油、煤炭、天然氣;除此之外還有傳統生質能、水力發電、以及核能。在數十年內,風力發電、太陽能、生質能會慢慢取代化石燃料,而核融合技術很可能帶領人類走向 I 型文明。

當人類開始進行太空殖民、並且能妥善運用母恆星(太陽)所供應的能量後,才會慢慢朝向 II 型文明發展;而在 I 型或者 II 型文明階段,另一個能催動科技進展的很可能就是反物質(antimatter)的製造與普及。加來道雄認為,我們有機會在本世紀末或是兩百年內躍升成為 I 型文明;到達 II 型文明需要數千年;至於到達可以隨心所欲駕馭時空的 III 型文明,可能還需要數十萬至百萬年。

-----廣告,請繼續往下閱讀-----
1800 年代至 2021 年的世界能源消耗總量:目前人類消耗能源仍以化石燃料為多數。圖/our world in data

參考文獻 / 延伸閱讀

  1. Kardashev, N.S. (1964). Transmission of information by extraterrestrial civilizations. articles.adsabs.harvard.edu.
  2. 加來道雄,《穿梭超時空》,台北:商周出版,2013
  3. 加來道雄,《平行宇宙》,台北:商周出版,2015
  4. 卡爾.薩根,《宇宙・宇宙》,台北:遠流出版事業股份有限公司,2010
  5. 史蒂芬.霍金,《胡桃裡的宇宙》,台北:大塊文化,2001
-----廣告,請繼續往下閱讀-----
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。

0

5
2

文字

分享

0
5
2
迷航的中國氣球怎麼飄到美國?其實早能預測飛行路徑?
PanSci_96
・2023/02/14 ・2263字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

日前,在距離美國海岸線一萬八千公尺的領空,飛彈 AIM-9X 擊中了一顆大型高空氣球;美國與加拿大國防部公開聲明,該氣球來自中國。

這顆氣球在被擊落之前經歷了一段相當漫長的旅程,從中國出發後,沿途經過日本、阿拉斯加、加拿大、美國本土,最後才在大西洋外海被擊落。

如何推算飛行路線

該飛行路徑是由美國國家海洋暨大氣總署(NOAA)使用 HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory)模型計算出的。

HYSPLIT 為一計算模型,可模擬在 100 公里內大氣環境中,任何位置釋放煙霧等粒子後,其隨著大氣傳播和轉移的軌跡;常用於森林大火、工業區廢氣的擴散,如:加州大火、福島核災等事件,以模擬污染物擴散軌跡,確保其不會進入人口密集區。

-----廣告,請繼續往下閱讀-----

若將 HYSPLIT 反向應用,就可透過計算擴散軌跡回推污染傳播路徑,以定位污染源位置。而此次的氣球事件,就是分析大氣氣流方向回推其可能路徑,最終推測出飛行起點位於中國。

氣球為何往東飛

氣球從太平洋西岸飛往東岸,原因不僅僅是為了要避開其他國家的領空,還因為這條「高空航線」只向東開放。在北半球的大氣環境中,風的方向通常是由副熱帶高壓帶吹向極地區域,加上科氏力影響,在中緯度高空會形成一條相當寬的「西風帶」;可想而知,也就成為了氣球環遊世界的最佳航線。西風帶會持續向東移動,對於颱風、洋流以及全球氣候系統都有深遠的影響。

中緯度盛行西風(藍色箭頭)。圖/維基百科

既然氣球乘西風飛翔,為何氣球走的不是直線,而像是繞遠路呢?難道它真的利用自主動力,繞開敏感地區嗎?

打開空中地圖來看,這顆氣球在進入加拿大後,一路向南抵達美國本土,這與「空中快速道路」——噴射氣流的路徑高度相似,因此很可能氣球就是搭著這股氣流前行。噴射氣流通常位於對流層頂部,因巨大的氣壓與溫度差,流速每小時可高達 200 至 300 公里;過去就有人利用噴射氣流降低航空器的油耗,甚至嘗試用來發電。

-----廣告,請繼續往下閱讀-----

既然它是搭乘噴射氣流移動,所以它應該就沒有動力囉?也不一定。目前無法知道這顆探測氣球的確切規格,其搭載的太陽能板除了提供儀器電力外,也可能在某種程度上提供動力。

由於氣候影響很大,釋放氣球也得要考量季節。在冬季的降溫下,西風帶會變得更加寬廣,風速也較為強勁;等到了夏天北半球漸暖後,西風帶就會變得狹窄且緩慢。因此,不論是過去的日本氣球炸彈,還是這次的探測氣球,都選擇在冬季釋放。

然而,氣球的路程並沒有一路大順暢。就正常情況而言,氣球在兩天內就該飄離,但這趟旅程就這麼剛好地遇到了平流層突然變暖,使得西風帶減弱,造成氣球的飄移速度下降,也就在美國本土多滯留了幾天。

究竟飛多高

這顆氣球在離開美國時,高度預計在一萬八千公尺以上。

-----廣告,請繼續往下閱讀-----
一般民航機飛行高度約為一萬一千公尺。圖/Envato Elements

民航機通常會選擇在一萬一千公尺的高度飛行,這剛好是大氣對流層與平流層的分界,平流層的氣流穩定性,使航程不那麼顛頗,而越往上空氣也會越稀薄,飛機越難取得足夠的爬升力。就氣球的一萬八千公尺而言,在美國現役的戰機中僅有 F-22 能上升到兩萬公尺,在安全距離內破壞氣球。

那為什麼不是以飛機用機槍將氣球射下呢?有必要用到要價 40 萬美金的響尾蛇飛彈嗎?過去加拿大也曾有氣象氣球失控朝著俄羅斯領空飛去,然而高速飛行的飛機不僅難以瞄準氣球,靠著打出的幾個小洞也無法將其擊落,只能盯著它慢慢洩氣,最後墜落。

這次美國等到氣球離開陸地再一次性擊落,在能掌握情況的前提下,可能為最佳方式了。

氣球比你想像得還要有用

氣球能上到一般航空器到不了的高度,充分展現了其戰略價值。

-----廣告,請繼續往下閱讀-----

而能上到兩萬五千公尺以上的探空氣球,同步串聯全球大氣資料,各國氣象研究單位藉此分析出完整資料。探空氣球的任務就是在緩緩上升的過程中,紀錄每個高度的溫度、濕度、氣壓、風向、風速、GPS 訊號等變化,做到大氣垂直方向上最精細的測量。

全球的探空氣球會統一在格林威治時間 0 點與 12 點釋放,台灣當然也沒缺席,同時間也就是台灣早晚八點,會從彭佳嶼、新店、花蓮、馬公機場、屏東機場、綠島、東沙島等地釋放探空氣球,遇到特殊天氣,下午兩點還會再多放一次。

探空氣球攜帶無線電遙測儀器,進入大氣層測量各種參數。圖/維基百科

商業氣球還能用來做什麼?其實在馬斯克的星鏈計畫之前,Google 也有類似計畫——Project Loon,要讓全世界偏遠地區都能上網;Project Loon 使用的就是可上升至兩萬公尺的網路氣球,而這項技術早在 2013 年 6 月於紐西蘭實驗成功。雖然 Google 已於 2021 年放棄該計畫,但這種概念並沒有因此消失,可作為發生天災、或遭遇戰事時,便宜、方便的重要通訊替代方案。

這次的氣球漂流記,撇除牽扯到兩大強權國的政治角力,讓全球民眾見證了,看似不起眼的氣球,能完成超高難度的移動。

-----廣告,請繼續往下閱讀-----